Metropolitan Sources of Electoral Support for Transportation Funding

Final Report

METRANS Project 06-10

June 2009

Jefferey M. Sellers, Doreen Grosvirt-Dramen and Lillyanne Ohanesian

Department of Political Science
University of Southern California
Los Angeles, CA 90089-0044
This project was funded in its entirety under this contract to California Department of Transportation.

The contents of this report reflect the views of the authors, who are responsible for the facts and the accuracy of the information presented herein. This document is disseminated under the sponsorship of the Department of Transportation, University Transportation Centers Program, and California Department of Transportation in the interest of information exchange. The U.S. Government and California Department of Transportation assume no liability for the contents or use thereof. The contents do not necessarily reflect the official views or policies of the State of California or the Department of Transportation. This report does not constitute a standard, specification, or regulation.
Abstract

This Report analyzes local variations in voting on transportation referenda at the state and county level over 1998-2006 in five metropolitan areas (Fresno, Los Angeles and San Francisco/San Jose in California, along with Seattle, Washington and Cincinnati, Ohio) to explore the sources of electoral support for transportation funding. The analysis employs several types of variation in voting patterns: (1) variations in support for successful ballot measures according to the ecological characteristics of communities, (2) comparison over time between results of successful and unsuccessful ballot measures in the same places, and (3) comparison of the ecological correlates of voting between successful and unsuccessful referenda in different counties or states.

The results confirm several hypotheses about effective electoral coalition-building in support of ballot measures.

• Support for transportation funding measures tends to be higher in regions with higher levels of congestion as well as rapidly increasing congestion, and lowest in regions with little congestion.
• Successful highway funding referenda depend on support from urban, minority, relatively disadvantaged communities.
• With the partial exception of areas where mass transit is more available (in this study, San Francisco and Seattle), successful transit funding referenda depend on attracting support from suburban, affluent and nonminority communities with little local interest in transit.
• In areas where mass transit use is widespread, successful electoral coalitions can center around more urban, more transit-oriented communities. Even when this occurs, affluent and middle class users remain crucial constituencies for a transit ballot measure to succeed.
• Successful referenda to fund mixed modes of transportation combine the coalition-building tendencies of highway and transit funding referenda. In doing so these measures build electoral coalitions across the class, ethnic and spatial divides that have often frustrated the governance of metropolitan areas.
• Ballot measures that frame funding decisions in regulatory rather than allocational terms can attract support through appeals to collective rather than local goods.

The results suggest that transportation ballot measures have added new dynamics of metropolitan coalition-building that may qualify as well as reinforce the role of middle class, suburban, white communities as influences on transportation policy.
Table of Contents

Abstract .. 2
Table of Contents ... 3
Tables and Figures .. 4
Introduction ... 7
Background and Hypotheses ... 8
Design of the Research .. 14
Overview and Initial Comparison ... 19
 a. Types of transportation and mechanisms ... 19
 b. Existing transportation infrastructure as an influence on referendum support 21
Comparing Patterns of Support by Types of Referenda ... 28
 Highway Funding Referenda ... 28
 a. Expectations about highway funding referenda .. 30
 b. Ballot measures compared ... 30
 c. Political partisanship .. 30
 d. Spatial contexts: Distance, commuters, homeowners 30
 e. Socioeconomic status, race and ethnicity .. 33
 f. Multivariate tests .. 35
 Transit Funding Referenda .. 36
 a. Expectations about transit funding referenda .. 36
 b. Ballot measures compared .. 37
 c. Political partisanship .. 38
 d. Spatial contexts: Distance, commuters, homeowners 38
 e. Socioeconomic status, race and ethnicity .. 42
 f. Multivariate tests .. 43
 Mixed-mode Funding Referenda ... 43
 a. Expectations about mixed-mode funding referenda .. 44
 b. Ballot measures compared .. 44
 c. Political partisanship .. 45
 d. Spatial contexts: Distance, commuters, homeowners 48
 e. Socioeconomic status, race and ethnicity .. 51
 f. Multivariate tests .. 56
Alternative Framing of Referenda on Transportation Funding 60
 a. Expectations about mixed-mode funding referenda .. 61
 b. Ballot measures compared ... 61
 c. Political partisanship .. 63
 d. Spatial contexts: Distance, commuters, homeowners 63
 e. Socioeconomic status, race and ethnicity ... 65
 f. Multivariate tests .. 65
Review of Main Tests ... 68
Conclusion and Recommendations ... 74
Implementation ... 75

Appendix One: Summary and Background Information on Referenda 76
Appendix Two: Variables Used in Correlations and Regressions 118
Sources Cited .. 119
Tables and Figures

Table 1. State and County Transportation Referenda: Types and Results, 1998-2006
Table 2. Congestion and Transportation Modes by Metropolitan Area, 1998-2005
Table 3. Congestion Levels and County Funding Referendum Success, 1998-2005
Table 4. Congestion levels and State Referendum Support
Table 5. Local Contextual Correlates of State and County Referenda to Raise Funds for Highways
Table 6. Social and Demographic Correlates of Support for State and County Highway Funding Referenda
Table 7. Multivariate Models of Sources of Support for State Highway Referenda
Table 8. Local Contextual Correlates of Support for Transit Funding in County Referenda
Table 9. Local Social and Demographic Correlates of Support for County Transit Funding Referenda
Table 10. Local Contextual Correlates of Successful and Failed Transit/Highway Referenda, Fresno and Sonoma Counties
Table 11. Local Contextual Correlates of Other County Transit/Highway Referenda
Table 12. Local Contextual Correlates of Support for State Referenda to Raise Funding for Transit and Highways
Table 13. Local Social and Demographic Correlates of Support for Transit/Highway Funding, Fresno and Sonoma Counties
Table 14. Local Social and Demographic Correlates of Support for Other County Highway/Transit Referenda
Table 15. Social and Demographic Correlates of Support for State Highway/Transit Referenda
Table 16. Multivariate Models of Sources of Support for State Highway/Transit Referenda
Table 17. Local Contextual Correlates of Support for Referenda to Protect or to Cut Back Transportation Funding
Table 18. Social and Demographic Correlates of Support for State Referenda to Protect and Cut Transportation Funding

Table 19. Multivariate Models of Support for Other State Referenda

Table 20. Results of Tests for Hypotheses About Highway Funding

Table 21. Results of Tests for Hypotheses About Transit Funding

Table 22. Results of Tests for Hypotheses About Mixed Transportation Ballot Measures (County Level Measures)

Table 23. Results of Tests for Hypotheses About Mixed Transportation Ballot Measures (State Level Measures)

Table A-1. Comparison of 1998 and 2000 Measure B

Appendix 2. Variables Used in Correlations and Regressions
Introduction

Increasingly, states and localities have turned to electoral referenda as a means to raise funds for transportation infrastructure. Despite the growing importance of these ballot measures, there have been few systematic comparative studies of who supports and who opposes transportation funding in ballot measures. In particular, there has been little systematic exploration of how local contexts in the interconnected metropolitan regions where the overwhelming proportion of citizens live affect support for referenda. Decisions about transportation infrastructure pose a familiar, pervasive problem for governance in the United States: how to build support for collective goods in institutionally fragmented, segregated, diverse and far-flung metropolitan regions. The mechanism of direct democracy highlights the problem of building regional coalitions for governance in the most transparent terms possible. An analysis of the types of communities and constituencies that have come together in successful electoral coalitions offers important insights into why some referendum campaigns have succeeded while others have failed. It can also generate more general lessons about the prospects for metropolitan governance.

In California, but also in the United States in general, the overwhelming majority of the population lives in metropolitan regions. With a few exceptions, the electoral majority in these regions is suburban rather than urban. The contrasting mixes of transportation infrastructure in different parts of metropolitan areas make sharply opposed benefits from the same aspects of common infrastructures for transportation. Highways, for instance, form the backbone of the suburban transportation infrastructure. In many suburban areas buses or light rail take up a virtually negligible proportion of everyday travel routines. Dwellers in highly urbanized communities, by contrast, can develop strong interests in mass transit. Lower income residents, including many minority households, may require public transit services in order to commute to work. Other urban residents may simply prefer to have an opportunity to use public transit. Segregation and sorting by race, class and residential preferences reinforces a kaleidoscope of interests corresponding to different types of places.

Ballot box transportation finance thus exemplifies a problem of political coalition-building that is central to many sectors of policy in the United States, and that influences policymaking and implementation from the local to the national level. On the one hand, the search for common ground among the divergent interests of urban centers and suburban or exurban communities presents some of the most daunting challenges for contemporary governance in the United States. On the other hand, since suburban and exurban voters comprise the majority of the electorate, the majoritarian decisionmaking inherent in direct democracy could solve the problem of governance in a way that introduces an inherent suburban, middle class bias. A working metropolitan majority of middle class and affluent suburban residents, empowered by direct democratic mechanisms, could marginalize the interests of urban and underprivileged constituencies in transportation policy.

This study seeks to shed new light on the sources of successful electoral coalition building across metropolitan areas to fund transportation infrastructure. Through systematic ecological analysis of referendum voting over the 1990s and 2000s in a representative sample of metropolitan regions with ballot-box transportation finance, we
will examine what types of communities have made the difference for success and failure of referenda. The analysis will examine numerous influences on community support for transportation referenda: partisan orientations, social and economic characteristics, geographic characteristics, and the framing of referenda themselves. Our comparison focuses on three metropolitan regions of California (Fresno, Los Angeles and San Francisco-San Jose), as well as two additional metropolitan regions chosen to represent the variety of patterns in other states (Seattle in Washington state and Cincinnati in Ohio). The referenda in our study span a period from the late 1990s through 2006. In contrast with most previous studies, we consider a range of referenda from highway to transit measures, and voting on state as well as county measures.

The analysis demonstrates that transportation referenda enjoyed growing success over this period. Comparative ecological analysis will demonstrate that a broadened geographic basis of support for referenda has made much of the difference in this success. Effective campaigns for funding referenda have generally succeeded by drawing additional support from communities less likely to derive local benefits from the forms of transportation infrastructure proposed for funding. For the growing number of mixed-mode referenda as well as for highway referenda, support from urban, minority and less privileged communities has been critical to success. For transit referenda, by contrast, support from middle class suburbia has often been crucial.

The first section of this report will review existing work on local transportation referenda, and sketch the data and methodology of the study. Subsequent sections will examine referenda for highway funding, transit funding, mixed funding, and other funding-related decisions for overarching tendencies in the ecological correlates of electoral success. The conclusion will review the patterns that have emerged, discuss the policy implications, and sketch promising lines for subsequent research.

Background and Hypotheses

More and more, state and local governments across much of the United States have turned directly to voters for approval of new revenue-raising measures for transportation spending. Successful electoral referenda comprise an increasingly pivotal component of effective policy in this area. Ballot box transportation funding poses issues directly to the electorate that have long presented challenges for effective governance of metropolitan areas. Enduring dilemmas of democratic governance lie at the heart of these challenges. Understanding the sources of popular support and opposition to referenda can help policymakers to address these challenges, and improve both the substance and the effectiveness of policy.

The growth of referenda in the area is well established (Goldman, Corbett and Wachs 2001; Myers and Puentes 2001; Ernst, Corless and McCarty 2003). Wachs (2005) documents 44 state or local referenda nationwide in 2002, and 43 in 2003. In 2004, the Center for Transportation Excellence counted a total of 53 (Center for Transportation Excellence). As Wachs notes, this growth must be understood against the background of decades of relative decline across the U.S. in the use of fuel taxes to finance transportation improvements, and more general pressure on state and local finances. Cities, counties and sometimes state governments have turned to voters to directly authorize funding that legislators have been unable to pass.
The metropolitan dimension of transportation infrastructure presents one of the most consistent dilemmas for ballot-box transportation finance. Since the mid-twentieth century, a growing majority of the U.S. population has resided in extended urban regions (Sellers 2005). Several generations of scholarship have demonstrated the progressive expansion of these settings into extensive areas of interconnected urban, suburban and peripheral settlement. Regions like the San Jose region and the Bay Area in California, or the Seattle and Tacoma areas in Washington state, have grown into single, continuous metropolitan areas. Sprawling expanses like metropolitan Los Angeles have stretched out into the desert to the east and the Central Valley to the north.

With this expansion, patterns of settlement and economic exchanges across metropolitan areas have diversified and become more complex. Local government boundaries have rarely expanded to keep pace with the changing patterns of metropolitan settlement. In much of the country, the growth of functionally specialized authorities for transportation and other services has instead compounded the jurisdictional fragmentation of metropolitan regions. A heterogeneous landscape of communities has increasingly replaced the sharp divide that formerly separated central cities from their suburbs. Increasingly, centralized settlement has given way to networks of urbanized nodes, suburban enclaves, and half-rural peripheral areas. Segregation and clustering by class, race, ethnicity, and national origin now divide suburbs from each other as well as from central cities (Katz, Lang and Berube 2003). There is also suggestive evidence that cultural and even political sorting has reinforced divisions between liberal and conservative communities (Bishop and Cushing 2005). At the same time, intensified networks of commuting, shopping and communication link the localities of diverse metropolitan regions. The transportation infrastructure of highways, rail and subways, itself one of the best examples of these intrametropolitan linkages, also makes possible many other kinds of functional linkages between different metropolitan localities.

Decisions about this infrastructure and how to finance it are only one of many domains in which metropolitan divisions influence policy. As representatives of central cities shrank to a small minority of the U.S. Congress, urban policy has increasingly assumed a marginal place in national policy agendas (Mollenkopf 1983; Wolman and Marcini 1998). Within the legislatures of states with large urban regions, much of the challenge for building successful governing coalitions has revolved around bringing together urban and suburban representatives with often divergent interests (Weir, Swanstrom and Wolman 2005). In domains from K-12 education to economic development to policing, public policy and the politics of coalition-building have revolved around divisions rooted in different parts of metropolitan regions with divergent local interests (Sellers 2009).

The decision-making mechanism of a referendum places the burden of overcoming these divisions among metropolitan communities on the electorate itself. A number of previous studies have examined the varied success of ballot measures and the effects of the campaigns surrounding on voter support. Initial comparative case studies of ballot box transportation finance drew a clear consistent conclusion that the ways a referendum frames the projects to be funded can be crucial for passage. Referenda that combine funding for more than one mode of transportation stand a better chance of passage (Middleton 1998; Haas, Massey, Valenty and Werbel 2000: 115-116; Werbel and Haas 2001: 180-181). In particular, inclusion of highway funding along with transit
funding has been found to enhance support for a measure. A wider geographic distribution of transportation improvements among the local electorate has also been shown to enhance the chances of passage (Middleton 1998; Werbel and Haas.: 181-182).

These conclusions suggest that the ways different portions of the electorate perceive the distribution of benefits from a ballot box finance measure are also crucial. What remains to be understood is which specific geographic divisions have made a difference for voting on referenda, and what approaches toward coalition-building among the parts of metropolitan regions have worked to enhance support. To address these questions requires a more systematic analysis of the underlying differences among metropolitan localities, and how these differences influence local preferences to fund local benefits from transportation measures.

In important respects, the network of roads, rail lines and transit service for a metropolitan region represents a collective good for the entire electorate of that region. Any firm or household can make use of this infrastructure. When it is in place, any resident or business has the benefit of easier access even to the portions of the region that it rarely visits. Economists also point to the general benefits for regional prosperity that collective goods like a solid infrastructure can bring. Local firms and residents throughout a region can benefit from aggregation economies that occur at a regional scale in leading economic sectors (Krugman 1991; Scott 1998). Although how much suburbs benefit from the prosperity of central cities has been questioned, the economic fates of the different parts of metropolitan regions are nonetheless linked (Barnes and Lebedur 1993; Savitch et al. 1993; Blair and Zhang 1994).

A pure public good for a metropolitan region would provide indivisible, similar benefits for all voters. By contrast, a transportation infrastructure provides divisible local goods. These vary with the location and other characteristics of a neighborhood, household or individual, and the specific transportation choices made available there. In most U.S. regions, for instance, highways and private vehicles dominate the transportation infrastructure of the suburbs. Transit usage is characteristically much higher in the most urbanized portions of metropolitan regions, and among lower income and minority populations. Case studies of voting for referenda focused on specific projects, whether new rail lines or highway corridors, show that voters often mobilize more strongly in support of new infrastructure when they perceive special benefits from it to the specific neighborhood where they live (Peterson et al. 2008; Hannay and Wachs 2007)

The transportation infrastructure thus combines a pure collective good for a metropolitan region with an assortment of independent local goods. Depending on such circumstances, voters may treat it as more one or more the other. Interrelated benefits from highways or light rail systems provide for individual neighborhoods links the local goods provided to wider collective dimensions. Even when a new bus line gives the immediate neighborhoods it serves a local good, it gives the rest of the electorate new opportunities to visit that neighborhood from other neighborhoods throughout the region. Even a commuter who has no intention of using a new bus line herself may support it as a way to relieve traffic congestion on the freeways she will continue to use.

Confronted with these ambiguities in the goods that transportation infrastructure provides, voters could respond to ballot box transportation funding measures in a variety of different ways. The literature suggests several alternative hypotheses about what is
decisive for the success of these measures. Analyses of these effects must also take into account other dimensions of proposed measures, such as the regressivity or progressivity of the funding mechanism.

A longstanding argument in the literature on metropolitan governance and politics in the U.S. has pointed to the decisive power of middle class and affluent suburban interests on urban policy (e.g., Mollenkopf 1983). Since suburban residents emerged as a majority of the electorate in the 1970s and 1980s, voting in national elections has been regarded as one of the main ways that this dominance has played out (Dreier, Mollenkopf and Swanstrom 2001). Accounts of referenda have often put this hypothesis in terms of racial or ethnic rather than class or suburban dominance. Several studies point to the disadvantages that minority ethnic and racial constituencies face in a majoritarian referendum process (cf. Gamble 1997; Donovan and Bowler 1998). Minority constituencies are also likely to be among the most underserved by existing transportation infrastructure. Where referenda are decisive for funding decisions, an electorate dominated by suburban middle class and affluent voters could easily reinforce the “upper middle class bias” that Boschken contends pervades transportation decision-making (2002). So long as voters base support for transportation funding on local goods rather than wider collective goods, goods for middle class and affluent suburbs will be crucial for the success of a ballot box funding measure. Wealthier and middle income households may furnish a core constituency for transit funding through sales taxes because of stronger interests than others (Hannay and Wachs 2007: p. 33): “wealthier individuals are likely to travel more and wealthier individuals may pay less in sales taxes as a proportion of their total income.”

Hypothesis 1: Transportation funding referenda depend for success on the support of suburban, affluent and middle class communities.

An alternative source of electoral majorities for transportation funding could be coalitions among the many different constituencies of metropolitan regions. Rather than appeals to a single, dominant electoral constituency in the suburbs, success in this logic of coalition-building depend on appeals to a broader range of smaller constituencies. The dilemmas of coalition building should reflect the broader problem of finding common ground between the policy interests of poorer, central urbanized areas and an increasingly diverse array of local interests throughout metropolitan regions (Dreier, Mollenkopf and Swanstrom 2001; Orfield 2003). Following this logic, coalition building depends on bringing together communities with divergent interests in local goods rather than those with similar interests in a single type of local good.

This logic suggests that the places to look for a winning electoral coalition are those with less direct, immediate local interests in the type of transportation a ballot box measure will fund. Residents of older urban centers and densely settled outlying communities, places with high usage of public transit and large numbers of renters may furnish core constituencies for a transit measure. But success for such a measure depends on winning support from more suburban, more sparsely settled, more highway-dependent neighborhoods of homeowners. Conversely, the metropolitan suburbs that depend most on the local goods from highways are unlikely to provide enough votes to pass a referendum to fund new highway construction. The decisive votes will come from the
more densely settled and more central neighborhoods with higher proportions of renters, where public transit usage is also higher. Either highway or transit measures stand a greater chance of success when their appeal extends beyond the communities with large numbers of commuters that are most likely to benefit directly.

Hypothesis 2: Transportation funding referenda depend for success on coalition building among places beyond those with the most immediate, direct local interest in the services or structures to be funded.

The divergences among metropolitan communities go far beyond the territorial contexts and transportation behaviors alone. Generations of historical and sociological accounts show the story of suburbanization in the United States to be largely a narrative of class, race, ethnic and generational dynamics. Throughout most of twentieth century, the exodus of affluent and middle class white residents from inner city areas with concentrations of minority residents dominated patterns of metropolitan settlement. In recent decades demographic sorting among metropolitan localities has become increasingly complex, but even more pervasive. Poor and minority households have migrated from central cities. Older suburbs have declined. In areas of the country with large immigrant and minority populations, like California, places throughout metropolitan regions now sort into a variety of ethnic, racial, income and generational clusters.

This social, class and ethnoracial diversity adds another dimension to the building of electoral coalitions for ballot box transportation funding. Communities with lower socioeconomic status, greater concentrated economic hardship, larger minority populations depend disproportionately on mass transit. A successful referendum to raise funds to meet the greater transit needs of these communities depends on support from metropolitan communities with greater social and economic advantages. Conversely, wealthier, whiter, more privileged communities generally depend the most on highways in the outlying parts of a metropolitan area for transportation. A majority vote to raise funds for these highways requires support from communities that rely on these highways less exclusively than they themselves do.

Hypothesis 3: Transportation funding referenda depend for success on coalition building among socioeconomic, racial and ethnic community interests beyond those with the most immediate, direct local interest in the services or structures to be funded.

A final dimension of the divergences among metropolitan places goes beyond either their demographics or their physical attributes. As households select residences within a metropolitan region, they also choose communities on the basis of local lifestyles or culture. Especially among more the privileged groups with access to a range of residential choices, metropolitan sorting has led to clustering by ideological orientations and political cultures. Since 1990, affluent localities with growing Democratic preferences, like such suburbs as Pasadena and South Pasadena in Los Angeles County, have increasingly diverged from others that have retained strong Republican orientations, like the middle class suburbs of Orange County. Some commentators portray these trends as the consequence of a nationwide process of
residential sorting into more politically homogenous communities (e.g., Bishop 2005; Dreier, Mollenkopf and Swanstrom 2001).

These ideological divergences entail different political stances toward infrastructure policy. Democrats tend to endorse more state-provided services like public transit, as well as greater attention to the needs of poorer groups and minorities for these services. Republicans often profess greater support for the personal freedom they find in private vehicle transportation on highways and in suburban housing choices. Similar libertarian principles could lead them to oppose taxation or public funding for collective goods in general.

In this political dimension, coalition-building necessitates outreach among communities with divergent political cultures for a ballot box funding measure to succeed. This bipartisan coalition-building logic helps to account for the growing resort to mixed-mode funding measures, and for the political effectiveness of expenditure limits and accountability mechanisms in the framing of ballot box funding measures.

Hypothesis 4: Transportation funding referenda depend for success on bipartisan coalition building among communities.

Hypotheses 2-4 presume that the distribution of divisible local goods combines with fragmented interests among metropolitan communities. In this event, the predominant logic of electoral success is likely to be a matter of coalition-building among different types of communities. Another possibility, however, would be circumstances that create either indivisible goods or uniformly negative conditions (“bads”) across a metropolitan region regardless of the territorial, sociological, and political divergences.

One highly relevant general condition of this nature is the need for new infrastructure. Previous studies indicate that the more pervasive the congestion and other inadequacies in the existing transportation network, the more likely voters are to support new infrastructure funding (Werbel and Haas 2001: 176-177). Conversely, where there is little congestion or evidence that existing highways are inadequate, voters will generally be more reluctant to raise funds for new construction or services. To exert this kind of general effect, a condition must be experienced across the various modes of transportation, from highways to transit.

Hypothesis 5: Where transportation infrastructures create widely shared conditions throughout a jurisdiction, consensual or majoritarian electoral dynamics replace coalition-building among groups.

Hypothesis 5a: High congestion fosters consensual or majoritarian support for new infrastructure funding; Absence of congestion increases majoritarian or consensual resistance to new funding.

A second condition that could limit coalition-building dynamics would be a form of infrastructure that provides similar local goods throughout a metropolitan area. For example, an extensive light rail or subway transit network could generate local interests in transit among middle class, white and suburban communities as well as among urban, minority and poorer communities. In this event, as Hypothesis 1 suggests, these groups
can supplant poor and minority communities as the core constituencies for transportation funding.

Hypothesis 5b. A transportation infrastructure with generally available options throughout a jurisdiction generates more generalized support for transportation funding measures, and majoritarian or consensual rather than coalition-building dynamics of support.

Coalition-building dynamics also depend on how a ballot measure is framed. Rather than pose a choice about allocation of new expenditures, for instance, referenda could ask voters whether existing transportation funds should continue to be spent on transportation or be diverted to other purposes. In the terms of Lowi’s classic policy typology (1964), this frames the issue as a regulatory question than a distributive or a redistributive one. This way of posing the question asks voters to decide on a rule about allocation rather than an allocation itself. As a result, it can be expected to promote majoritarian or consensual dynamics rather than coalition-building. In most metropolitan regions this would amount to preservation of a status quo in which transportation infrastructure generally serves the interests of suburban and middle-class constituencies.

Hypothesis 6. Ballot measures that frame funding decisions in terms other than specific allocation choices among types of transportation will depend less on coalition-building across diverse metropolitan communities, and more on general middle class, suburban support.

The electoral rules of the game are also an important potential influence on whether coalition-building dynamics will dictate patterns of voting. Beyond the usual majoritarian threshold for passage in most referenda, for instance, county financing referenda in California require a 2/3 majority in order to pass. This more stringent requirement of support should make it all the more likely that coalition-building tactics will be central to passage of ballot measures.

Hypothesis 7. A supermajoritarian threshold for passage, such as a 2/3 majority, increases the need for transportation funding measures to rely on coalition-building among distinct constituencies for success.

Design of the Research

This study employs an analysis of local variations in voting on state and local transportation referenda over 1996-2006 in a national sample of metropolitan regions. The analysis draws on the demographic and electoral data collected by the International Metropolitan Observatory Project, an international comparative project that examines variations in metropolitan politics throughout Europe and the United States.
Comparative design. This analysis aims to build on a number of comparative case studies focused on how the framing of measures and the conduct of campaigns have enhanced the chances of success (Werbel and Haas 2001; Myers and Puenttes 2001; Goldman, Corbett and Wachs 2001; Ernst, Corless and McCarty 2003). Most recently, intensive quantitative studies of local or neighborhood-level variations have illuminated voting for a transit referendum (Peterson et al. 2008) as well as a mixed referendum (Hannay and Wachs 2007). In this study, we examine recent voting on referenda that were framed in a variety of different ways at both the state and county level, and that were carried out in a variety of different metropolitan regions. The aim of this comparison, in contrast to previous studies, is to discern regularities in the metropolitan electoral constituencies responsible for the passage of referenda across a wide variety of circumstances.

The most appropriate research design for this aim, known as a “most different systems” design (e.g., Przeworski and Teune 1970; Collier 1991), seeks to discern similar patterns of variation in a wide variety of cases. The five metropolitan areas were selected to capture the variety of metropolitan settings both within the state of California and parallels in other states with ballot-box transportation funding. The frequency of transportation ballot measures varies greatly across the country. Although ballot measures in this area occasionally take place in the Northeast and Midwest, only in a few other Western states has this practice become as regular a feature of policymaking in this area as in California. To compare these California results with national patterns, the sample included referenda from another Western state, Washington, and the Midwestern state of Ohio. We focused data collection and comparative analysis in each context on a single metropolitan area that could be compared with the local data in the three California metropolitan areas. In Ohio the analysis centered on the Ohio portion of the Cincinnati metropolitan area. In Washington State the comparison focused on the Seattle metropolitan region.

The three metropolitan contexts of California included the two largest metropolitan regions with the largest proportion of the state’s population. The Los Angeles and San Francisco-San Jose Consolidated Metropolitan Areas contain the largest proportion of the state’s population, have absorbed some of the largest portions of recent growth, and have been each been the sites of repeated county and municipal referenda on infrastructure and its financing. These two regions also enable an investigation of how referendum voting has proceeded in the distinct contexts of northern and southern California. The metropolitan region of Fresno in the Central Valley offered an instance of how smaller inland agricultural regions with much less extensive infrastructure but growing needs treated infrastructure.

The metropolitan areas also reflected regional differences in growth that could have an impact on decisions about infrastructure. The metropolitan areas in California and Washington state have experienced regular growth throughout recent decades, and infrastructure debates take places against the backdrop of forecasts for continued growth. In Cincinnati, as in other metropolitan regions of the East and Midwest, infrastructure debates are less about accommodating expected metropolitan expansion than about upgrading or maintaining existing structures.

Finally, the metropolitan areas also sampled a variety of local political cultures. The three California metropolitan areas encompassed the most liberal in the nation, (San
Francisco-San Jose), an area that has traditionally voted Republican (Fresno), and a third metropolitan area divided between strongly Democratic and strongly Republican concentrations (Los Angeles). In Seattle, we selected another strongly liberal metropolitan area. In Cincinnati, we chose one of the most conservative metropolitan areas in Ohio and the Midwest.

The referenda selected for this study also encompassed several different dimensions of variation. These provided a way to test the main hypotheses.

First, the types of transportation at issue varied, from primarily or solely transit, to primarily or solely highways, to various combinations of the two. Although the state measures usually included more mixed packages, county level referenda included measures devoted exclusively to transit or to highways.

Proposed measures also included different mechanisms, and these could be decisive. Variations of this kind included various forms of funding, such as new taxes or bonds, but also decisions to cut or eliminate transportation-linked taxes and to place procedural restrictions on funds. All the measures lent themselves to coding according to degrees of support or opposition to some form of transportation infrastructure. But the mechanisms proposed, as Hypothesis 1 suggests could be decisive for levels and sources of support.

Although the California and Ohio measures were referenda initiated by the legislature, several of the Washington referenda were initiated by legislators but challenged existing policies of the legislature. This is important because several of the Washington State ballot measures have been framed as voter approval or disapproval of legislative decisions rather than as choices put directly to the voters.

Finally, the referenda faced different thresholds for success. In all of the state ballot measures and in Ohio and Washington state, a simple majority (50% plus one) was required. In California counties, a 2/3 majority was necessary for funding measures to pass. Comparison of voting under these different conditions provided a test of whether this higher threshold promoted coalitions among more diverse interests (Hypothesis 7).

Since a crucial component of the main hypotheses is what made a difference for success or failure, the research design revolves around comparison between successful and unsuccessful referenda. The record of referenda over 1998-2006 in these settings enabled us to compare success and failure for each of the three main categories of funding referenda we examined (highways, transit, and mixed-mode). In interpreting the sources of success and failure of different referenda across different contexts, it remains necessary to take into account how different metropolitan contexts as well as the aims of the referenda varied.

In a few instances, such as Fresno County and Sonoma County, sequences of largely similar failed and successful referenda in the same setting has made it possible to employ comparisons between most similar systems to supplement the “most different” design. In a “most similar systems” design, an identical spatial and demographic setting between the sequential votes made it possible to focus analysis precisely on a small set of influences on the changes in the vote. This form of comparison holds an advantage over comparison among most different systems in that it controls for the many differences between ballot measures and between metropolitan areas that could account for differences in voting. It therefore offers a powerful analytical tool for confirmatory
The combination of these two comparative methods allows each method to reinforce the other.

Data. The analysis draws on the International Metropolitan Observatory (IMO) dataset for the United States. That dataset compiled census data on incorporated places within a total of twelve metropolitan areas of the U.S., from the two largest Consolidated Metropolitan Areas to a sampling of areas down to an overall population of 200,000 in the 2000 census. The IMO dataset collected results from the presidential elections of 1996-2004 and local election data from 1998-2005 from state and local elections offices. Election data for incorporated municipalities within these metropolitan areas was compiled alongside corresponding demographic data from the 1990 and 2000 U.S. censuses. Voting in the 2000 and 2004 presidential elections provided the basis to measure partisanship. Demographic data from the 2000 census measured the social, racial and economic composition of communities. Other data from the census was used to compute most of the local contextual influences, from homeownership to population density, local commuting and public transit. The GIS program ArcInfo was used to generate additional contextual indicators for the distance from the center of each locality to the metropolitan central business district, and the distance from the center to the nearest interstate highway. Referendum results themselves were obtained from the Secretaries of State or the relevant county elections offices (See Appendix 2).

Like the IMO dataset, the tests in this analysis are restricted to places within metropolitan areas as defined by the U.S. Bureau of the census. This restriction enabled us to focus the comparison on attributes common to places within multiple metropolitan settings, such as location in relation to central cities and to infrastructure. Effects of state or regional differences could also be considered in terms of the consequences for metropolitan localities only, rather than the entire range of localities in a region.

This empirical focus is tailored to the analytical focus of this study on the effects from different locations within metropolitan areas. Conclusions drawn from these metropolitan localities also have implications for patterns of voting behavior beyond metropolitan regions themselves. Since current census metropolitan boundaries are based on counties, and county units are often quite large, the sample actually includes a small selection of rural localities on the outskirts of each metropolitan area. This assures that the sample includes a range of localities from the most urban to the rural periphery.

The IMO dataset includes data on incorporated municipalities only. To generate parallel data on unincorporated places would require collection of additional electoral data on individual precincts as well as census demographics at the tract or block group level, along with a separate procedure to reconcile census and precinct boundaries. Moreover, that the range of variation among incorporated places in settlement density and other characteristics remains essentially the same as it would be with a sample that includes incorporated places.

Ecological inference in this analysis. This analysis represents an initial inquiry in a line of research with the potential to cast new light on both the possibilities for metropolitan cooperation and the ways effective coalitions for transportation funding can

1 Note that metropolitan area definitions follow the classifications of counties into Metropolitan Areas or Consolidated Metropolitan Areas by the U.S. Census Bureau in 1999 for the 2000 census.
be constructed. A final, but important caution concerns the proper inference to be drawn from the ecological statistics analyzed here.

Throughout this research, cities and communities constitute the unit of analysis. This choice represents a methodological compromise. As generations of work on the ecological fallacy have shown, additional testing would be necessary for patterns at the community level to generate reliable conclusions about the behavior of individual voters (Robinson 1950; King, Rosen and Tanner 2004). For purposes of this analysis, however, inferences about individual voters remain secondary to comparative testing of the support for referenda in different communities across metropolitan areas.

Rather than a detailed comparative account of two elections in a single county, this study aims to generalize about the geographic sources of success for parallel referenda in a variety of specific circumstances. Consequently, in order to reach conclusions about the three dozen ballot measures encompassed in this study, we have also chosen municipal units than the census block groups employed for three Sonoma County measures in Hannay and Wachs (2007). Municipalities furnished units of analysis for the IMO project. As a result, data at this level was readily available in all the settings. Precinct level analyses would have been ideal, but were only available in some counties in a form that could be reconciled with the geographies of census data.

Among communities, the main challenges to inference arise out of the competing hypotheses to account for voter proclivities. Several of the principal hypotheses concern coalition-building among constituencies that correlate strongly with each other. As the alternative multivariate models will demonstrate, political culture, demographics and spatial contextual characteristics each help to define distinct dimensions of places across a metropolitan region. Each of these elements probably captures a portion of a locality’s interest in transportation infrastructure. Each captures one aspect in the logic of building coalitions among these places. Relationships between any of these three types of variables and patterns of referendum support could confirm the presence of coalition-building.

In light of the multicollinearity in the data, and the parallels among the hypotheses, the analysis here focuses heavily on alternative, multiple bivariate tests and partial correlations. The electoral coalitions that comprise the main focus of the hypotheses can form on around any among a number of potential spatial, demographic and political bases at the same time. They may reflect cross-partisan, cross-ethnic or cross-class coalition-building, or coalitions among distinct interests in such factors as the geography of commuting and homeownership. Multiple bivariate or partial correlations serve to test the alternative hypotheses about the bases for these coalitions. This method offers both an appropriate means to test these relationships and to explore alternative specific explanations under each hypothesis.

To confirm the results, and to further test which relationships are most consistent, full multivariate analyses will be employed where the size of the dataset permits. But the more limited correlations will enable the analysis to account for both the interdependence among community characteristics and the alternative hypotheses about the bases of coalition-building.
Overview and Initial Comparisons

The tests employed county and state referenda in these metropolitan settings over 1998-2006. Each referendum was first classified according to several important dimensions: the mix of transportation at issue; the way the ballot measure posed the issue of support (positively or negatively); whether the issue involved the protection of existing funding or the allocation of funding; and whether the ballot measure passed. This initial overview demonstrated a growing success for ballot box measures in these metropolitan areas. Part of this success appears attributable to the increased resort to mixed-mode referenda. Overall, voters in regions with greater highway congestion or more rapid increases in congestion or higher rates of transit use have also generally given stronger support to ballot box transportation funding measures.

a. Types of transportation and mechanisms. The broad variations among referenda and their success rates reveal several broad tendencies in patterns of electoral support for transportation funding. The types of transportation referenda vary by the type or types of transportation at issue, as well as in the mechanisms for support of or opposition to each type. These variations can have important implications for the success of transportation ballot issues. An overview of these measures demonstrates an increasing success rate over the study period for transportation funding measures. There is reason to infer that this trend has partly been due to a shift from both highway and transit funding measures toward mixed-mode referenda.

We divided the measures up broadly by the type of transportation (highways, transit or both), and the types of funding sought (generally, taxes or bonds, but in some cases stipulations or prohibitions on funding). Within each group, we compared the success or failure of the referenda (Table 1).

The one consistent success story came with the three state ballot measures in California that framed the question for voters in terms of preserving existing funds allocated to transportation. Both Proposition 2 of 1998 and Proposition 1A of 2006 were mainly measures to protect state transportation funds devoted to a range of issues from being diverted to other purposes. Prop 42 of 2002 also featured such a provision alongside other funding for transportation infrastructure. Consistent with Hypothesis 6, framing funding decisions in these regulatory terms rather than as a matter of allocation succeeded in winning broad support for these measures. In each instance the referenda passed overwhelmingly.

Measures to fund specific kinds of transportation have encountered much more mixed success at the ballot box. Consider first the votes for transit funding. Measures of this kind occurred only in counties, and employed sales tax increases as funding mechanisms. The success rate here was very close to 50 percent. With the purely advisory votes of 2004 in King County excluded, six of these measures succeeded while five failed. Four of the six successful votes came as part of the response among the Seattle area counties to the passage of Washington State Proposition 695, which slashed vehicle fees that had previous gone to fund transit.
<table>
<thead>
<tr>
<th>Highway + Transit support</th>
<th>State measures</th>
<th>County measures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protection of funds</td>
<td>Success</td>
<td>Success</td>
</tr>
<tr>
<td></td>
<td>Failure</td>
<td>Failure</td>
</tr>
<tr>
<td>Highway and transit opposition</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transit opposition</td>
<td></td>
<td>CA LA County A (1998)</td>
</tr>
</tbody>
</table>

*Advisory measures only
Highway funding measures were mostly confined to Washington State, and encountered even more consistent voter disfavor. Only in Washington State Referendum 49 of 1998 did a measure of this type pass. In Washington State Referendum 745 of 2000, in Sonoma County, California in 2000, and in Snohomish County, Washington in 1998, highway funding measures lost. At the county level, the losses occurred even though revenues for highway funding were to be raised through bonds rather than through taxes.

Since 2002, however, both the county and the state referenda demonstrate a clear trend toward funding referenda that combine highway and transit funding. Before 2002, only two of the ten county funding measures and none of the state funding measures included support for more than one mode. From that year to 2006, six of the nine county measures and all of the state measures included funding for both modes. It is probably no accident that this shift coincides with the appearance of studies that advocate mixed-mode referenda and other framing strategies to build support (e.g., Werbel and Haas 2001). Most typically, mixed measures have been centered on highways and the campaigns have often emphasized highway transportation.

At the county level, measures that included funding for both modes encountered greater success than funding measures focused on either highways or transit. In five of eight cases, despite the higher supermajoritarian threshold at the county level in California, mixed-mode referenda succeeded. In Fresno and Sonoma counties in California, where single mode measures had earlier failed, mixed measures enough additional support to surmount the 2/3 threshold for passage. Beyond this, referenda in Alameda, Orange and San Bernardino counties succeeded while only one in Ventura County failed.

At the state level, the success of mixed-mode referenda appears linked to their reliance on bonds rather than taxation as a funding mechanism. Two of the three mixed-mode referenda that passed depended on bonds for funding. In the case of Ohio issue 1B, the infrastructure improvements were also part of a more general package of economic development measures to be funded through bonds. Similarly, California Proposition 1B in 2006 appeared on the ballot next to the funds protection referendum in Proposition 1A, and proposed issuance of a bond rather than imposition of a tax. By contrast, three of the four state referenda that proposed taxes as the funding mechanism failed. The only exception was California Proposition 42 from 2002, which combined transportation funding with a commitment to protect funding commitments. The relative success of taxes at the county level but not at the state level suggests that voters view the more local taxes as conferring local goods in a way that state taxes do not.

Alongside these funding measures, a smaller number of referenda have offered voters the choice to oppose specific highway or transit policies. A succession of initiative against highway and transit funding in Washington State have played a prominent role in the development of state transportation policy. In the late 1990s and early 2000s, entrepreneur Tim Eyman and Republican allies led initiatives that twice succeeded in limiting state funding for transportation by cutting motor vehicle taxes. A third initiative that would have mandated transportation funding go to roads (Washington State Referendum 912) failed in 2005. Los Angeles County also held a successful referendum to oppose subway construction in 1998.
Overall, funding referenda have encountered the greatest success after 2002. From that year to 2006, eight funding measures have passed, and only one at the state level and two at the county level have fallen short. This compares with success rates of one of three at the state level and seven of seventeen at the county level from 1998 to 2002. The increasing success of funding referenda over this period appears linked to increasingly sophisticated ways of framing ballot measures, especially the adoption of mixed-mode designs. At the same time, this success may partly reflect optimism about the economy or a changing public mood. An inquiry into coalition-building among different electoral constituencies can further illuminate the sources of increased support.

b. Existing transportation infrastructure as an influence on referendum support. As Hypotheses 5A and 5B have posited, the state of the existing metropolitan transportation system can influence the prospects for a ballot funding measure to win support from voters. Communities faced with more metropolitan traffic congestion should be more willing to vote for taxes or bonds to improve the transportation infrastructure. A more extensive transit system also furnishes more local transportation choices for a wider cross-section of the electorate. These more widely distributed local goods should give more metropolitan communities reasons to support additional infrastructure measures. Comparison among the referenda in these settings provides support for each of these hypotheses.

As the 2007 Urban Mobility Report (Texas Transportation Institute, 2008) shows, the metropolitan regions in this study differ widely in levels of congestion (Table 2). In the Los Angeles and San Francisco Consolidated Metropolitan Areas, further breakdowns among groups of counties corresponding largely to Primary Metropolitan Statistical Areas enabled more nuanced comparison between different local conditions within wider metropolitan settings. Along with a variety of useful indicators for comparing levels of congestion and its costs in time and money, the Report includes summary comparative ratings for levels of congestion, congestion costs, and rates of increase in congestion from 1982 to 2005. Although these ratings are useful to convey the relative extent of congestion, they are based on comparison among Primary Metropolitan Areas and Metropolitan Areas of similar size rather than among Consolidated Metropolitan Areas and Metropolitan Areas across a wide range of sizes. Since the comparison of this study focuses on this wider variation, the comparative ordering in Table 2 is based on the overall metropolitan congestion levels revealed in the indicators for travel delays, costs per peak traveler and percent congested travel.

Communities experiencing high levels of congestion might be expected to be more willing to support taxes or bonds for new infrastructure measures that promise congestion relief. Beyond this, communities that have had to contend with a rapid increase in congestion might also be expected to demonstrate more awareness of a need for infrastructure improvements than others who have become accustomed to high levels of congestion.

The Los Angeles Consolidated Metropolitan Area clearly ranks highest in congestion (Table 2), not just among the metropolitan areas of this study but among all those in the Urban Mobility Report. Virtually without exception among the indicators,

2 Metropolitan Areas, Consolidated Metropolitan Areas and Primary Metropolitan Areas are defined by the U.S. Census Bureau.
Table 2. Congestion and Transportation Modes by Level of Metropolitan Congestion, 1998-2005

<table>
<thead>
<tr>
<th></th>
<th>(Los Angeles CMSA)</th>
<th></th>
<th>(San Francisco CMSA)</th>
<th></th>
<th>Seattle</th>
<th></th>
<th>Cincinnati</th>
<th></th>
<th>Fresno</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Congested Travel (%) of peak VMT</td>
<td>83</td>
<td>86</td>
<td>59</td>
<td>78</td>
<td>39</td>
<td>57</td>
<td>78</td>
<td>81</td>
<td>61</td>
<td>76</td>
</tr>
<tr>
<td>Congested System (% of lane-miles)</td>
<td>58</td>
<td>62</td>
<td>35</td>
<td>50</td>
<td>30</td>
<td>43</td>
<td>58</td>
<td>58</td>
<td>48</td>
<td>63</td>
</tr>
<tr>
<td>Fuel per Peak Traveler (gallons)</td>
<td>53</td>
<td>57</td>
<td>28</td>
<td>40</td>
<td>16</td>
<td>27</td>
<td>40</td>
<td>47</td>
<td>34</td>
<td>38</td>
</tr>
<tr>
<td>Delay per Peak Traveler (person-hrs)</td>
<td>70</td>
<td>72</td>
<td>36</td>
<td>49</td>
<td>22</td>
<td>39</td>
<td>54</td>
<td>60</td>
<td>50</td>
<td>54</td>
</tr>
<tr>
<td>Increase in delay (%)</td>
<td>3%</td>
<td>36%</td>
<td>77%</td>
<td>11%</td>
<td>8%</td>
<td>-15%</td>
<td>-10%</td>
<td>-13%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cost per Peak Traveler (constant $)</td>
<td>1053</td>
<td>1374</td>
<td>580</td>
<td>961</td>
<td>338</td>
<td>727</td>
<td>829</td>
<td>1121</td>
<td>718</td>
<td>973</td>
</tr>
<tr>
<td>Increase in cost (%)</td>
<td>30%</td>
<td>66%</td>
<td>115%</td>
<td>35%</td>
<td>36%</td>
<td>7%</td>
<td>13%</td>
<td>8%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Public Transit: Annual Psgr-Miles (millions)</td>
<td>2382</td>
<td>2981</td>
<td>127</td>
<td>128</td>
<td>17</td>
<td>24</td>
<td>2140</td>
<td>2283</td>
<td>238</td>
<td>167</td>
</tr>
<tr>
<td>Public Transit Psgr-Miles/Freeway VMT</td>
<td>20</td>
<td>21</td>
<td>8</td>
<td>8</td>
<td>5</td>
<td>3</td>
<td>13</td>
<td>47</td>
<td>46</td>
<td>13</td>
</tr>
<tr>
<td>Public Transit Psgr-Miles/Arterial VMT</td>
<td>20</td>
<td>24</td>
<td>11</td>
<td>10</td>
<td>4</td>
<td>5</td>
<td>36</td>
<td>76</td>
<td>73</td>
<td>14</td>
</tr>
<tr>
<td>Freeways Daily Vehicle-Miles of Travel (1000s)</td>
<td>121555</td>
<td>140000</td>
<td>15500</td>
<td>24020</td>
<td>6080</td>
<td>6700</td>
<td>45145</td>
<td>50000</td>
<td>17650</td>
<td>16820</td>
</tr>
<tr>
<td>Arterial Daily Vehicle-Miles of Travel (1000s)</td>
<td>119485</td>
<td>126000</td>
<td>11275</td>
<td>12965</td>
<td>4380</td>
<td>4755</td>
<td>28260</td>
<td>31100</td>
<td>16630</td>
<td>17000</td>
</tr>
</tbody>
</table>

(Delay per Traveler) (2007)	H+	H+	H+	H+	L-	L-	L-									
(Travel Time Index) (2007)	H+	H+	H+	H+	L-	L-	L-									
(Total Delay) (2007)	H+	H+	0	L	H+	L-	L-									
(Delay per Traveler) (1982 to 2005)	S	F+	F+	F	F	0	S	S								
(Total Delay) (1982 to 2005)	F+	F+	F+	S	F+	S	S	S								

Explanatory Notes:
- 0 — Average congestion levels or average congestion growth
- H Higher congestion; H+ Much higher congestion; F Faster congestion growth; F+ Much faster growth
- L Lower congestion; L- Much lower congestion; S Slower congestion growth; S- Much slower growth

| Travel Time Index (TTI) — The ratio of travel time in the peak period to travel time at free-flow conditions. A Travel Time Index of 1.35 indicates a 20-minute free-flow trip takes 27 minutes in the peak. |
| Delay per Peak Traveler — The extra time spent traveling at congested speeds rather than free-flow speeds divided by the number of persons making a trip during the peak period |
| Vehicle-miles — Total of all vehicle travel (10 vehicles traveling 9 miles is 90 vehicle-miles). |

SOURCE: Texas Transportation Institute, 2007 Urban Mobility Report (retrieved February 1, 2009 at http://mobility.tamu.edu/ums/).
the immediate Los Angeles area itself maintained the highest levels of congestion and congestion costs throughout the study period (1998-2005). Delay per peak traveler there persisted at 70 or more person hours, ten hours beyond that in any other setting. The cost from delay per peak traveler climbed to $1374, more than $250 more than anywhere else.

The smaller outlying metropolitan areas of Riverside and Oxnard experienced less congestion than central Los Angeles, but retained highest ratings in the Report for their respective size classes. Moreover delay per traveler in the central Los Angeles area increased at the rate of only three percent over 1998-2005, delay in Riverside and Oxnard rose by 36 percent and 77 percent. In Riverside, the delays in 2005 remained ten person-hours higher than in the smaller, less populated suburbs of Oxnard. But in Oxnard both delays and costs per traveler rose more dramatically over the period than in any other area.

At the other end of the continuum, congestion in the smaller metropolitan areas of Cincinnati and Fresno remained much lower. Even in comparison with other smaller metropolitan areas, the authors of the Report found both low levels of congestion and slower congestion growth in these settings. Compared with the larger metropolitan areas in this study, the contrast was still more dramatic. In 2005, peak delay per traveler took up half or fewer person-hours as in the most congested regions, and had declined by ten percent or more from levels in 1998.

The other two larger metropolitan areas fell between these extremes. The San Francisco Consolidated Metropolitan Area approached the Los Angeles CMSA in the overall level of congestion. In the central San Francisco area, the Report rated congestion levels high but not as high as the central area of Los Angeles, and total delay comparatively low among the largest metropolitan regions. Although delay per traveler there had increased at a slightly higher rate than in Los Angeles, total delay had risen more slowly. In the San Jose area, adjoining the Bay Area, the levels of congestion were slightly higher than in the outlying Los Angeles areas of Riverside or Oxnard. However, the increases in congestion in San Jose over 1998-2005 remained comparatively modest.

Seattle presents the contrasting picture of a large metropolitan area with limited congestion. In the national comparative rankings of the Urban Mobility Report, this area had maintained the lowest possible rating for congestion in all three categories. Despite considerable growth in population and vehicle miles traveled over 1998-2005, Seattle had also enjoyed a decline of fifteen percent in delay per peak traveler. Congestion had decreased there at a rate that exceeded those of the small metropolitan areas.

As Hypothesis 5B posits, an extensive transit system can also shift the logic of electoral support. Where metropolitan communities generally derive local goods from transit service, consensual or majoritarian electoral appeals to the interests of these localities may take the place of appeals to localities that are less likely to use transit. In Table 2, figures on the annual passenger-miles of public transit trips in relation to vehicle-miles traveled on roads and highways indicate levels of transit usage in each metropolitan area. By these measures, public transit in the San Francisco metropolitan area ranks as the most extensive, followed by Seattle area public transit. The stable 46 passenger-miles per vehicle mile traveled on freeways in San Francisco and the rising rate of 34 passenger-miles per vehicle mile in Seattle far outstrip even the corresponding rate of 21 passenger-miles in the Los Angeles area.
Table 3. Congestion Levels and County Funding Referendum Success, 1998-2005

<table>
<thead>
<tr>
<th></th>
<th>Los Angeles</th>
<th>San Francisco</th>
<th>San Jose</th>
<th>Riverside</th>
<th>Seattle</th>
<th>Oxnard</th>
<th>Cincinnati</th>
<th>Fresno</th>
</tr>
</thead>
<tbody>
<tr>
<td>Congested Travel (% of peak VMT)</td>
<td>83 86</td>
<td>78 81</td>
<td>61 76</td>
<td>59 78</td>
<td>70 70</td>
<td>39 57</td>
<td>53 51</td>
<td>38 37</td>
</tr>
<tr>
<td>Delay per Peak Traveler (person-hrs)</td>
<td>70 72</td>
<td>54 60</td>
<td>50 54</td>
<td>36 49</td>
<td>53 45</td>
<td>22 39</td>
<td>30 27</td>
<td>23 20</td>
</tr>
<tr>
<td>Cost per Peak Traveler (constant $)</td>
<td>1053 1374</td>
<td>829 1121</td>
<td>718 973</td>
<td>580 961</td>
<td>807 866</td>
<td>338 727</td>
<td>443 502</td>
<td>354 381</td>
</tr>
</tbody>
</table>

Referendum type and outcome

<table>
<thead>
<tr>
<th>Success</th>
<th>transit</th>
<th>transit</th>
<th>transit</th>
<th>mixed</th>
<th>transit</th>
<th>mixed</th>
</tr>
</thead>
<tbody>
<tr>
<td>LA County A ('98)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Pierce Tr. ('02)</td>
<td></td>
</tr>
<tr>
<td>mixed</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Thurston Tr. ('02)</td>
<td></td>
</tr>
<tr>
<td>Orange M ('06)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Snohomish 1 ('01)</td>
<td>King 1 ('00)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Failure</th>
<th>mixed</th>
<th>transit</th>
<th>mixed</th>
<th>transit</th>
<th>mixed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sonoma C ('00)</td>
<td></td>
<td>Kitsap Tr. 1 ('03)</td>
<td>Ventura B ('04)</td>
<td>Butler 6 ('02)</td>
<td>Fresno C ('02)</td>
</tr>
<tr>
<td>highway</td>
<td></td>
<td>Kitsap Tr. 1 ('00)</td>
<td></td>
<td>Hamilton 7 ('02)</td>
<td></td>
</tr>
<tr>
<td>Sonoma B ('00)</td>
<td></td>
<td></td>
<td>highway</td>
<td>Butler 1 ('01)</td>
<td></td>
</tr>
</tbody>
</table>

Sources: See Tables 1 and 2.
Following the hypotheses, higher levels of congestion and more extensive public transit might be expected to make transportation funding measures easier to pass. Comparison of the overall rates of success and failure by metropolitan area for the county funding measures provides especially clear support for the effects of congestion (Table 3). In the four areas with the highest delay and greatest overall cost per peak traveler (Los Angeles, San Francisco, San Jose, and Riverside), seven of nine funding referenda passed. In the three with the lowest delay and cost (Oxnard, Cincinnati and Fresno), five of six referenda failed.

The effects of higher rates of transit usage in San Francisco and Seattle are more qualified. Efforts to build out transit in these metropolitan areas gave rise to more funding referenda than in the other settings, but also to more contestation. The result was a more mixed record of success and failure for referenda than in all but one of the other metropolitan areas. In the congested Bay Area, where transit usage was also highest, proponents of transit had ultimately won the main battles. Ballot funding in Sonoma County had passed in 2004 after losing in 2000. In the less congested Seattle area, transit funding measures had passed in most counties but had failed twice in Kitsap County.

Metropolitan support of state funding referenda in California might be expected to show similar correspondence with congestion or public transit usage. This comparison focuses on the variation among different metropolitan levels of congestion and transit ridership within the same state (Table 4). Although none of the intermetropolitan differences in means exceeds standard deviations, f-tests suggested statistically significant differences between metropolitan means. The most notable variations corresponded to differences in congestion, but not to public transit ridership. In the one funding measure that passed, however, even the correlation of congestion with referendum support was partly reversed.

Consistent with hypothesis 5A, Fresno, the metropolitan area with the least congestion, gave the weakest mean support to both of the transportation funding referenda that failed. Similarly, in all three referenda framed as measures to protect transportation funds, support among Fresno localities averaged the lowest. The next least congested metropolitan area, Oxnard, averaged the next lowest rate of support.

The highly congested metropolitan areas of Los Angeles and San Francisco supported these measures no more strongly than the other metropolitan areas. However, Riverside County offered the strongest support for four of these five referenda. Faced with one of the most dramatic increases in congestion as well as high overall levels by 2005, it responded with the most consistent voter demands for state ballot box funding.

In the 2006 vote on the one successful funding measure (Proposition 1A), the relationship between metropolitan support and congestion disappeared. The Fresno area registered the strongest support among all these metropolitan areas for this measure, with over 66 percent. Riverside now averaged only 63 percent support, around the mean for all these metropolitan areas. This reversal suggests that the success of Proposition 1B stemmed partly from its appeal to metropolitan areas beyond those with the most pressing congestion needs. More systematic multivariate analysis (see infra) will be necessary to sort out these effects more fully.

The correspondence between congestion and the success of county referenda points a clear effect from existing infrastructure on support for ballot box funding. Other such effects are clearly more complicated, and could differ in nature or even in direction.
Table 4. Congestion levels and State Referendum Support (California metropolitan areas only)

<table>
<thead>
<tr>
<th></th>
<th>Prop 1B funding success</th>
<th>Prop 53 funding failure</th>
<th>Prop 51 funding failure</th>
<th>Prop 1A protection success</th>
<th>Measure 2 protection success</th>
<th>Prop 42 protection success</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>mean</td>
<td>std. dev</td>
<td>mean</td>
<td>std. dev</td>
<td>mean</td>
<td>std. dev</td>
</tr>
<tr>
<td>Los Angeles</td>
<td>62.6</td>
<td>7.7</td>
<td>36.5</td>
<td>8.6</td>
<td>40.4</td>
<td>7.3</td>
</tr>
<tr>
<td>San Francisco</td>
<td>64.8</td>
<td>3.9</td>
<td>36.6</td>
<td>4.3</td>
<td>44.0</td>
<td>2.9</td>
</tr>
<tr>
<td>San Jose</td>
<td>64.3</td>
<td>3.5</td>
<td>34.0</td>
<td>2.3</td>
<td>44.4</td>
<td>4.2</td>
</tr>
<tr>
<td>Riverside</td>
<td>63.2</td>
<td>6.2</td>
<td>39.6</td>
<td>3.4</td>
<td>45.3</td>
<td>4.4</td>
</tr>
<tr>
<td>Oxnard</td>
<td>60.5</td>
<td>3.6</td>
<td>37.0</td>
<td>2.3</td>
<td>43.7</td>
<td>2.9</td>
</tr>
<tr>
<td>Fresno</td>
<td>66.2</td>
<td>9.5</td>
<td>36.1</td>
<td>3.3</td>
<td>41.4</td>
<td>8.3</td>
</tr>
<tr>
<td>Total</td>
<td>63.5</td>
<td>6.4</td>
<td>36.7</td>
<td>6.2</td>
<td>42.7</td>
<td>6.0</td>
</tr>
</tbody>
</table>

ANOVA: 2.186 0.056 3.717 0.003 7.366 0.000 12.416 0.000 47.376 0.000 16.880 0.000
between state and local ballot measures. To discern these more fully, and the ultimate consequences for coalition-building, we turn now to the geographic patterns of support for the different types of referenda.

Comparing Patterns of Support by Types of Referenda

Although transportation funding has often been contested at the ballot box, the growing success of ballot box funding measures demonstrates that formulas for effective electoral coalition-building have increasingly emerged. In order to test the sources of successful coalition-building, the analysis compared the ecological sources of support for referenda that passed to parallel patterns of support among referenda that failed. Comparative analysis demonstrates that coalition-building between Democratic and Republican constituencies, between urban centers and suburban areas, and between different social and ethnic constituencies has often made the difference between success and failure.

This section will review these tests for each of the main types of referenda. We begin with funding referenda to fund highways, then transit, then mixtures of transit and highways. A final section extends the analysis to other referenda that opposed funding or sought protection of existing funding. In each section, the analysis will proceed from correlations to multivariate regressions.

Highway funding referenda

For the suburbanized metropolitan regions that typify the United States, highways form the backbone of the transportation infrastructure. Accounts of U.S. suburban growth typically point to the construction of the Interstate Highway system in the years following World War Two as a major catalyst (Judd and Swanstrom). Highways remain a much more exclusive option for transportation in the suburbs of U.S. metropolitan areas than in central area. The ballot box funding measures that focused exclusively on highway funding made it possible to compare the spatial sources of support for highways. As expected, suburban, white, middle-class and affluent communities have supported highway funding most consistently, Winning sufficient support to pass a measure to fund highway construction, however, has depended on attracting votes from beyond the suburbs alone.

a. Expectations about highway funding referenda. In a number of ways, the suburban portions of metropolitan areas erive the most exclusive benefits from highways. A number of factors contribute to the much lower rates at which suburbanites use transit or alternative modes of transportation like walking. More dispersed settlement makes transit stops less accessible, and lengthens the distance suburbanites need to go to shop or reach workplaces. Higher rates of automobile ownership make vehicles more accessible. The individual vehicle transportation that predominates on U.S. highways exemplifies the more privatized, exclusive “car culture” that has come to be identified with the suburbs.
For all of these reasons, suburbs and the white, affluent or middle class electorate who predominates there comprise a natural core constituency for support of highways.

In another sense, however, highways represent a widely available transportation good. Even a household that depends entirely on buses and walking for transportation benefits from the highways and other streets that buses use. Similarly, workers in inner cities or poor communities may depend on highways to access workplaces in the suburbs. Communities without the same exclusive, local goods from highways as many suburbs thus comprise potential constituencies for ballot box funding directed to highways. To build the necessary majority for a measure to pass, these constituencies can be crucial:

Hypothesis 2A. Successful highway funding referenda depend on support from urban centers as well as suburban majorities.

A similar coalitional logic applies to the poor and minority communities that remain clustered in the central cities and inner ring suburbs of U.S. metropolitan areas. Because of their joint interest in the wider metropolitan goods highway infrastructure can provide, these communities contain potential constituencies for highway funding as a general metropolitan collective good.

Hypothesis 3A. Successful highway funding referenda depend on support from poor and minority communities as well as others who use transit more, alongside affluent, middle class and white ones.

Finally, coalition-building shares an ideological or politico-cultural dimension. A more privatized, self-regarding, and conservative political ethos has often been held to typify the suburban areas of the United States. Yet highway infrastructure also represents a collective good for a metropolitan region regardless of its partisan dimensions. Moreover, as the example of Washington State shows, Democratic as well as Republican politicians have pursued highway funding. Bipartisan political mobilization represents another way that coalitions among different parts of metropolitan regions may coalesce around an agenda of funding for highway funding.

Hypothesis 4A. Successful highway funding referenda depend on support from Democratic party constituencies.

b. Ballot measures compared. Several referenda in these metropolitan areas provide a basis for testing these hypotheses.

--Washington State Referendum 49 (1998) allocated $1.9 billion in bonds for state and local highways, reduced motor vehicle excise taxes and modified spending limits. Proposed by Republicans an opposed by the Democratic governor and Democratic allies, it passed with 57 percent of the vote (Appendix, pp.).

--Washington State Referendum 745 (2000) proposed to allocate 90 percent of transportation funds, including transit taxes for roads, to require audits of transportation agencies, and to exempt road construction and maintenance from sales taxes. Proposed by Tim Eyman and supported by an array of construction businesses, the measure encountered a well financed opposition that included the Seattle Chamber of Commerce
and other business groups as well as environmentalist groups. The measure failed with only 40 percent of the vote (Appendix, pp. 97-98).

--Sonoma County Measure B (2000) proposed a 5-cent sales tax for up to eight years that was designated for improvements to two specific federal highways. It appeared on the ballot alongside a measure that proposed an additional sales tax for mass transit (see infra). Contested by environmentalist groups, and supported by the construction industry, Measure B received 58.4% of the vote. It therefore failed to clear the 2/3 majoritarian threshold to pass among California counties.

c. **Political partisanship.** Perhaps the first place many political scientists would look for evidence of electoral coalitions is between parties. If highway referenda depend on bipartisanship to pass, then support for successful referenda should be stronger in areas of Republican support.

The tests of this hypotheses compared rates of electoral support for referenda by incorporated municipality with the Republican margin relative to the Democratic candidate in the nearest Presidential election (here, 2000). A positive correlation meant that stronger support for the referendum went along with a greater Republican margin over the Democratic candidate. A negative correlation meant that Democratic towns voted more strongly for the referendum than Republicans. Because the number of towns in the test varied greatly among the tests, statistical significance provides a less reliable basis for comparing these figures than the correlation coefficients themselves. Since the correlations represent not simply a sample but the universe of relevant municipalities in each case, even a relationship that falls short of statistical significance accurately represents the direction of variation.

Comparing these figures reveals bipartisanship to be an important correlate of the success of Washington Referendum 49 by comparison with Washington Referendum 745 or Sonoma County Measure C. (Table 5). In the two cases of failure, support for the referenda clearly concentrates in Republican strongholds (correlations of .527 (p<.05) and .583 (p<.05)). In the one case of success, the lower correlation remains significant (at .294, p<.05), but indicates a sizeable shift toward greater support among Democratic communities. Even though the Republican Party campaigned for Referendum 49, and Democrats opposed it, the measure attracted more support outside Republican areas than Referendum 745.

d. **Spatial contexts: Distance, commuters, homeowners.** Comparing vote totals with the spatial characteristics of communities supplies a critical component of the explanation. These correlations provide strong indications that coalition-building between metropolitan places with different interests in highway funding has been critical to the success of referenda.
Table 5. Local Contextual Correlates of State and County Referenda to Raise Funds for Highways

<table>
<thead>
<tr>
<th>Name</th>
<th>WA Ref 49</th>
<th>WA Ref 745</th>
<th>CA Sonoma B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Success or Failure</td>
<td>Success</td>
<td>Failure</td>
<td>Failure</td>
</tr>
<tr>
<td>Overall Percent Voting in Favor</td>
<td>57.14%</td>
<td>40.66%</td>
<td>58.40%</td>
</tr>
</tbody>
</table>

Political Correlation
Republican margin in nearest presidential election (%)
0.294 0.53 0.583

Contextual Correlations
% residents who are homeowners -0.243 0.161 0.551
Index for Population Density -0.076 -0.223 0.318
Near distance to central city 0.199 0.34 -0.23
Distance to nearest highway -0.088 -0.068 0.153
% Commuters 0.167 0.216 0.109
% housing built since 1980 0.02 0.089 0.698
% workers taking public transit -0.154 -0.672 0.344
Simpson index (3 categories) 0.316 0.421 0.4

Contextual Partial Correlation controlling for political variable
% residents who are homeowners -0.243 0.195 0.324
Index for Population Density -0.017 -0.107 0.516
Near distance to central city 0.039 0.126 -0.705
Distance to nearest highway -0.09 -0.211 0.171
% Commuters 0.09 0.255 0.251
% housing built since 1980 -0.108 -0.065 0.583
% workers taking public transit -0.114 -0.495 0.841
Simpson index (3 categories) 0.547 0.595 -0.072

Number of Cases (n) 116 134 9

The tests here employ multiple demographic and spatial indicators of community characteristics that are linked to preferences (Table 5).

--Higher percentages of homeowners usually characterize suburban communities with preferences for highway transportation over mass transit. Communities of renters are more likely to look to mass transit to meet their transportation needs. Moreover, homeowners may have a stronger stake in long-term infrastructure investments in general (Hannay and Wachs 2007).

--Low suburban population densities favor automobiles as the main mode of transportation. High density communities furnish one of the most important conditions that makes expansion of transit feasible.

--In places more distant from the metropolitan central business district, citizens are more likely to rely on road networks. Places closer to the center are more likely to have access to efficient forms of transit as a realistic alternative.
Distance to interstate highways may have various effects. Citizens living close to major highways may have a stronger interest in supporting highways as a mode of transportation. But distance from highways can also give incentives to vote to extend highway networks.

Communities with large numbers of commuters may have an interest in highways. The measure of commuting from the census takes the percentage of the workforce who commute to work in another town.

Communities that have experienced strong recent growth have a more pressing interest in provision of infrastructure, potentially including both highways and transit. More stable localities should have weaker incentives of this kind. To measure recent growth, the proportion of housing built between 1980 and 2000 was used.

Finally, the economic diversity of the resident population could also affect preferences for transportation. Economically homogenous bedroom towns should have stronger interests in highways as a transportation option. More heterogeneous localities, usually those with larger proportions of resident workers in manufacturing, should have stronger preferences for transit. We use a three component Simpson Index (see Sellers and Latner 2007) to measure economic diversity.

If success for referenda depended on mobilizing communities around distinct local interests, then these indicators should correlate positively with positive outcomes from referenda. But if success is instead predicated on coalition-building with communities that have opposed local interests, then funding referenda that pass should correlate negatively with these indicators.

Among the highway measures in Washington state, the similar geography highlights a number of significant shifts in favor of Referendum 49 (Table 5). Compared to Referendum 745, the successful referendum attracted more support from renters than from homeowners (-.243 compared to .151), more support from communities with more transit users (-.154 compared to -.672), more support from higher density communities (-.075 compared to -.223), and more support from places closer to the central city (.199 with distance from the center, as compared to .34). With a control for partisanship, the partial correlations show these shifts persist for transit use and commuting. Along each of these dimensions, Referendum 49 succeeded in bringing more urbanized parts of the metropolitan area into the winning electoral coalition.

Since the correlations in Sonoma County clearly reflect a very different geography from either of the Washington State votes, the results there are more difficult to compare with the success of Referendum 49. However, the stronger correlations with most of the variables in the voting for Measure B manifest a more consistent relation with several types of local interests. As Hannay and Wachs found in a multivariate analysis of precinct and block group patterns (2007), areas with stronger Democratic orientations and greater proximity to the metropolitan center gave more support to the measure. The correlations also show a strong relationship between the vote and the areas where more housing after 1980 gave rise to stronger local interests in new road construction. Contrary to the patterns in Hannay and Wach’s analysis, homeownership at the community level correlated strongly with the vote as expected.3 Somewhat anomalously,

3 Although Hannay and Wachs did not discuss relations among the independent variables in their analysis, or explore correlations between their dependent and independent variables, it seems likely that their
but consistent with their results, higher population density and greater transit usage also correlated with support. These anomalies may be linked to the stronger support they found for the Measure along the two highway corridors where specific projects to be funded by the Measure were proposed.

e. Socioeconomic status, race and ethnicity. Finally, differences in income, ethnicity, and race are linked to the interests of different types of places in different forms of transportation. Segregation and residential sorting among social classes and racial and ethnic groups is a well-established source of the divisions across metropolitan areas. According to hypothesis 3A, these segregated communities can form part of the basis for electoral coalition-building around joint interests. Separation of these dimensions from partisanship and local spatial structures illuminates their contribution to electoral coalition-building.

A first test of these influences examined ecological correlations with several types of demographic indicators compiled by municipality from the 2000 census:

-- Socioeconomic status (SES) is a composite variable made up of indicators for per capita income and the percentage of college graduates.

-- Socioeconomic hardship is a second composite that combines the poverty rate, unemployment, crowded housing and those with a high school education.

-- As indicators of disadvantaged minorities, the indicators employ the percent African-Americans and the percent Latino.

-- The proportion of older residents (here those over age 60) measures a group who generally travel less on highways and live in less dispersed areas, and might be expected to have less interest in highway infrastructure.

-- More families with children in a community (measured by the proportion of residents under age 18), a typical attribute of suburbs, should also generate stronger interests in highway improvements.

Comparison of these correlates between the two Washington State highway funding referenda clearly demonstrates the importance of support from communities with more minority and disadvantaged residents to the success of Referendum 49 (Table 6). Support for this measure correlated significantly with socioeconomic hardship (.232), with African Americans (.221) and with Latino residents (.304). With Democratic political orientations controlled, the relation between each of these groups and the vote was even stronger. Referendum 745 had drawn no significantly greater support from any of these groups. Both the winning and the losing referenda drew stronger support from the largely suburban communities with high proportions of children, and from the more dispersed areas with fewer retirees. But support was skewed much less toward communities with fewer retirement-age residents and more in the successful referendum (.242 and -.234) than in the failed one (.242 and -.234).

variables for homeownership are multicollinear with other variables in their equation for income and education.
Table 6. Social and Demographic Correlates of Support for State and County Highway Funding Referenda

<table>
<thead>
<tr>
<th>Name</th>
<th>WA Ref 49</th>
<th>WA Ref 745</th>
<th>CA Sonoma B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year</td>
<td>1998</td>
<td>2000</td>
<td>2000</td>
</tr>
<tr>
<td>Success or Failure</td>
<td>Success</td>
<td>Failure</td>
<td>Failure</td>
</tr>
<tr>
<td>Overall Percent Voting in Favor</td>
<td>57.14%</td>
<td>40.66%</td>
<td>58.40%</td>
</tr>
</tbody>
</table>

Political Correlation
Republican margin in nearest presidential election (%)

<table>
<thead>
<tr>
<th></th>
<th>WA Ref 49</th>
<th>WA Ref 745</th>
<th>CA Sonoma B</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.294</td>
<td>0.53</td>
<td>0.583</td>
</tr>
</tbody>
</table>

Compositional Correlation
Social Economic Status (SES)

<table>
<thead>
<tr>
<th></th>
<th>WA Ref 49</th>
<th>WA Ref 745</th>
<th>CA Sonoma B</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-0.312</td>
<td>-0.38</td>
<td>-0.023</td>
</tr>
</tbody>
</table>

Hardship indicator

<table>
<thead>
<tr>
<th></th>
<th>WA Ref 49</th>
<th>WA Ref 745</th>
<th>CA Sonoma B</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.232</td>
<td>-0.036</td>
<td>0.002</td>
</tr>
</tbody>
</table>

% African-American residents

<table>
<thead>
<tr>
<th></th>
<th>WA Ref 49</th>
<th>WA Ref 745</th>
<th>CA Sonoma B</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.221</td>
<td>-0.123</td>
<td>0.436</td>
</tr>
</tbody>
</table>

% Latino residents

<table>
<thead>
<tr>
<th></th>
<th>WA Ref 49</th>
<th>WA Ref 745</th>
<th>CA Sonoma B</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.304</td>
<td>0.066</td>
<td>0.193</td>
</tr>
</tbody>
</table>

% of residents over the age of 60

<table>
<thead>
<tr>
<th></th>
<th>WA Ref 49</th>
<th>WA Ref 745</th>
<th>CA Sonoma B</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-0.234</td>
<td>-0.419</td>
<td>-0.575</td>
</tr>
</tbody>
</table>

% of residents under the age of 18

<table>
<thead>
<tr>
<th></th>
<th>WA Ref 49</th>
<th>WA Ref 745</th>
<th>CA Sonoma B</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.242</td>
<td>0.51</td>
<td>0.481</td>
</tr>
</tbody>
</table>

Compositional Partial Correlation controlling for political variable
Social Economic Status (SES)

<table>
<thead>
<tr>
<th></th>
<th>WA Ref 49</th>
<th>WA Ref 745</th>
<th>CA Sonoma B</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-0.4</td>
<td>-0.397</td>
<td>0.114</td>
</tr>
</tbody>
</table>

Hardship indicator

<table>
<thead>
<tr>
<th></th>
<th>WA Ref 49</th>
<th>WA Ref 745</th>
<th>CA Sonoma B</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.414</td>
<td>0.083</td>
<td>-0.133</td>
</tr>
</tbody>
</table>

% African-American residents

<table>
<thead>
<tr>
<th></th>
<th>WA Ref 49</th>
<th>WA Ref 745</th>
<th>CA Sonoma B</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.27</td>
<td>-0.064</td>
<td>0.789</td>
</tr>
</tbody>
</table>

% Latino residents

<table>
<thead>
<tr>
<th></th>
<th>WA Ref 49</th>
<th>WA Ref 745</th>
<th>CA Sonoma B</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.333</td>
<td>0.106</td>
<td>-0.364</td>
</tr>
</tbody>
</table>

% of residents over the age of 60

<table>
<thead>
<tr>
<th></th>
<th>WA Ref 49</th>
<th>WA Ref 745</th>
<th>CA Sonoma B</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-0.233</td>
<td>-0.467</td>
<td>-0.678</td>
</tr>
</tbody>
</table>

% of residents under the age of 18

<table>
<thead>
<tr>
<th></th>
<th>WA Ref 49</th>
<th>WA Ref 745</th>
<th>CA Sonoma B</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.272</td>
<td>0.571</td>
<td>0.278</td>
</tr>
</tbody>
</table>

Number of Cases (n)

<table>
<thead>
<tr>
<th></th>
<th>WA Ref 49</th>
<th>WA Ref 745</th>
<th>CA Sonoma B</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>116</td>
<td>134</td>
<td>9</td>
</tr>
</tbody>
</table>

These correlations with more children and fewer retirees were even more marked in the failed Measure B in Sonoma County (.481 and -.575). Curiously, communities with African Americans supported Measure B more (.436), but none of the other correlations with disadvantaged groups exceeded .20. In Hannay and Wach’s multivariate analysis of block group level variations, moreover, a variable for higher education that comprised part of our index for socioeconomic status bore a significant positive relation to support for the Measure (Hannay and Wachs, p. 25). Although Table 6 shows no such correlation at the city level, their analysis indicates that the more educated neighborhoods did give greater support to the Measure.

Multivariate tests. In a final stage, the results of the state-level referenda were compared in a series of full multivariate ecological regressions (Table 7). Due to the small number of localities in the county votes, this portion of the analysis could only effectively be carried out for the state referenda and initiatives. Among this subset, the analysis confirmed the importance of diverse coalitions for combined highway and transit support, as well as other findings from the bivariate analyses.
Since the multicollinearity among the independent variables made it difficult to interpret their significance in a pooled model, three different multivariate models were run for each referendum. One employed the contextual or spatial variables; a second, the demographic characteristics like socioeconomic status, ethnicity and race; and a third all variables. This enabled an examination of alternative sets of variables reflecting distinctive approaches to ecological analysis as well as a full test.

Among the highway funding referenda in Washington state, multivariate analysis confirms that support came more from Republican areas (Table 7). Variables significant
for one of the referenda but not for the other also indicate the kinds of shifts that brought failure in the second vote. The successful referendum gained significantly great support among places with renters as opposed to homeowners. This relationship disappears in the second, failed referendum. A significant relation to hardship also vanishes, and a negative relation emerges for places with more workers using public transit. At the same time, a negative relationship to retirement age residents emerges. The comparison thus confirms that the second referendum lost considerable support among a variety of comparatively disadvantaged communities. Lower socioeconomic status and greater economic diversity correspond to greater support for both the successful and the unsuccessful referenda.

Transit Funding Referenda

The overwhelming majority of single-mode funding referenda in these settings concerned transit. The definition of this category here encompasses bus service as well as light rail and subways. Previous analyses of infrastructure funding referenda have predominantly focused on this category. The hypotheses point to alternative logics of generating electoral support for transit measures. Failed transit referenda generally reflect a similar concentration of support in communities with more potential or actual transit users. Coalition-building has sometimes succeeded by mobilizing communities with fewer potential users, but in other instances has been based on mobilizing communities that already provide a strong user base. By either logic, middle and upper middle class suburbanites have furnished a critical constituency.

a. *Expectations about support for transit funding.* Comparison with highway users helps to establish what is distinctive about the constituencies that derive local benefits from transit. Both who uses transit, and how many use it make a major difference for the logics of electoral support.

Even if not all households in U.S. metropolitan areas make use of the highway network equally, all vehicle owners as well as bus users benefit from the network. This nearly universal usage is far from the case with mass transit. In most metropolitan regions the base of potential riders can be identified mainly among several well defined sets of demographic and spatial categories. Urban middle class and well to do residents may choose transit for reasons of convenience. Poor and less educated people, minorities, students and others often resort to it for reasons of necessity.

In most U.S. metropolitan areas, these constituencies with local interests in transit make up only a minority of the electoral, and concentrate in specific localities. Building an electoral majority for transit funding in these circumstances depends on mobilizing a variety of additional constituencies that lack these same local interests. Following the coalition-building logics of Hypotheses 2-4, these additional sources of support can be defined in ways diametrically opposed to those for highway funding referenda:

Hypothesis 2B. Successful transit funding referenda depend on support from suburban and exurban majorities as well as from urban centers.
Hypothesis 3B. Successful transit funding referenda depend on support from affluent, middle-class and white communities with more limited interests in transit.

Hypothesis 4B. Successful transit funding referenda depend on support from Republican constituencies.

Hypothesis 5B suggests an alternative logic to building electoral support. Where the metropolitan electorate views a transit system as a widely distributed set of local goods, logics of territorial coalition building can give way to majoritarian or consensual decision-making. High, widespread ridership throughout a metropolitan area, including in suburban, middle class, affluent and nonminority areas, can lay the foundations for this logic of electoral support. When this occurs, intensified mobilization among the communities that benefit the most from transit can provide the winning margin for a transit funding measure.

b. Ballot measures. Although no referenda on transit funding were held at the state level, the County ballot measures available for comparative analysis encompassed a range of metropolitan settings and outcomes:

--Bay Area Regional Measure 2, considered in seven San Francisco area counties in 2004, authorized a Regional Transit plan that included new rail lines, bus lines and ferries, along with a $1 increase in bridge tolls. The Measure passed in six of seven counties with 57% of the total vote.

--King County (Washington) Referendum 1 (2000) imposed a .02 cent sales tax increase following cuts in state transit funding as a result of Washington State Referendum 695 in 1999. This measure passed with 52.9% of the vote.

--Snohomish County (Washington) Referendum 1 (2001) levied a .03 cent sales tax increase to pay for transit, also following state funding cuts as a result of Washington State Referendum 695. The measure passed with 53.09% of the vote.

--Santa Clara County (California) Measure A in 2000 levied a .05 cent sales tax to fund an array of transit projects and services. Measure A passed with 70.4 % of the vote.

--Santa Clara County Measure A in 2006 would have raised an additional .05 cent sales tax to fund unspecified transportation projects along with hospitals and an number of other general purpose projects. The Measure failed with 42.87% of the vote.

--Butler County (Ohio) Measure 1 in 2001 would have imposed a .025 cent sales tax increase to fund fixed route transit service. The Measure failed with 44.8% of the vote.

--Butler County Measure 6 in 2002 would have levied a 2.5 cent sales tax to save a county bus service. This Measure failed with 38.6% of the vote.

--Hamilton County (Ohio) Measure 7 in 2002 proposed a ½ cent sales tax to fund a light rail system for Cincinnati. This measure was the least successful by a substantial margin, winning only 31.8% of the vote.

Note that, with the exception of the two contrasting votes in Santa Clara County, the aggregate support for transit in these votes correlates quite closely with levels of highway congestion (Hypothesis 5a). In the Bay Area, the highest level of congestion corresponds to highest vote total for transit. In the Cincinnati area, where congestion is
lowest, support for transit remains the most limited. Higher levels of existing transit use in the San Francisco and Seattle areas also accompany the higher levels of support (Hypothesis 5b). Closer examination of the metropolitan distribution of support will illuminate which communities have contributed to these aggregate contrasts.

c. Political partisanship. Since the main constituencies to derive local benefits from transit are Democratic, bipartisanship in Hypothesis 4B entails attracting more support from Republican communities. Support for unsuccessful transit referenda should center among Democratic Party constituencies, yielding a negative correlation with the Republican margin in presidential elections. This is decisively the case (Table 8). Correlations with Republican support range from -.495 to even stronger, and in three of the four cases -.68 or more.

Among the successful referenda in the San Francisco-San Jose and Seattle areas, the correlations are weaker than an all but one of the unsuccessful cases. In the two successful Referenda in the Bay Area and Santa Clara County, the evidence of bipartisan electoral coalition-building is especially strong. Support among Republican areas clearly made up much of the difference between the 70 percent of the vote that Santa Clara County Measure attained in 2000 and 43 percent Measure A received in 2006. From an insignificant relation to the Republican margin in 2000 (-.126), the correlation jumped to -.829. In the vote for Regional Measure 2, carried out throughout the Bay Area, the correlation dropped even lower (-.059) despite a lower margin of victory (57 percent).

In the two Seattle counties, however, bipartisanship was not a primary basis for the passage of transit funding referenda. In both counties, as significant negative correlations with Republican voting (-.359 and -.596) demonstrate, mobilization among Democratic communities was most important to the successful outcomes. Both referenda took place in response to cuts in local transit funding as a result of a state referendum that had passed as a result of strong Republican backing. As a result, political partisan mobilization was more central to the county referendum campaigns than in the Bay Area. As the Seattle cases demonstrate, transit funding need not always depend on support from Republican areas to pass. Where Democratic constituencies are large enough, and a transit system is already extensive enough to generate other local interests in transit, mobilization of a Democratic partisan base can be sufficient to push a measure over the majoritarian threshold.

d. Spatial contexts: Distance, commuters, homeowners. Correlations with the indicators of spatial conditions reveal a similarly mixed view of the sources of success for transit funding measures. For unsuccessful measures, support tends to be confined to those communities that could expect to derive the most direct benefits. Support from the successful referenda has come partly from these same areas, and partly from others that benefit less from the local goods transit would provide.
Table 8. Local Contextual Correlates of Support for Transit Funding in County Referenda

<table>
<thead>
<tr>
<th>Name</th>
<th>CA Bay Area 2</th>
<th>WA King 1</th>
<th>WA Snohomish 1</th>
<th>CA S Clara A</th>
<th>CA S Clara A</th>
<th>OH Butler 1</th>
<th>OH Butler 6</th>
<th>OH Hamilton 7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Success or Failure</td>
<td>Success</td>
<td>Success</td>
<td>Success</td>
<td>Success</td>
<td>Failure</td>
<td>Failure</td>
<td>Failure</td>
<td>Failure</td>
</tr>
<tr>
<td>Overall Percent Voting in Favor</td>
<td>57.00%</td>
<td>52.90%</td>
<td>53.09%</td>
<td>70.40%</td>
<td>42.87%</td>
<td>44.80%</td>
<td>38.60%</td>
<td>31.80%</td>
</tr>
<tr>
<td>Political Correlation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Republican margin in nearest presider</td>
<td>-0.059</td>
<td>-0.359</td>
<td>-0.596</td>
<td>-0.126</td>
<td>-0.829</td>
<td>-0.728</td>
<td>-0.681</td>
<td>-0.493</td>
</tr>
<tr>
<td>Contextual Correlations</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% residents who are homeowners</td>
<td>0.012</td>
<td>-0.138</td>
<td>-0.038</td>
<td>-0.076</td>
<td>-0.76</td>
<td>-0.763</td>
<td>-0.685</td>
<td>-0.099</td>
</tr>
<tr>
<td>Index for Population Density</td>
<td>-0.044</td>
<td>0.647</td>
<td>0.453</td>
<td>0.221</td>
<td>0.458</td>
<td>0.608</td>
<td>0.573</td>
<td>0.087</td>
</tr>
<tr>
<td>Near distance to central city</td>
<td>-0.006</td>
<td>-0.595</td>
<td>-0.549</td>
<td>-0.721</td>
<td>-0.219</td>
<td>0.281</td>
<td>0.08</td>
<td>-0.241</td>
</tr>
<tr>
<td>Distance to nearest highway</td>
<td>-0.005</td>
<td>-0.089</td>
<td>0.209</td>
<td>-0.167</td>
<td>0.186</td>
<td>0.074</td>
<td>0.421</td>
<td>0.147</td>
</tr>
<tr>
<td>% Commuters</td>
<td>-0.346</td>
<td>-0.369</td>
<td>0.223</td>
<td>0.235</td>
<td>-0.686</td>
<td>0.295</td>
<td>0.038</td>
<td>0.321</td>
</tr>
<tr>
<td>% housing built since 1980</td>
<td>-0.562</td>
<td>-0.491</td>
<td>-0.474</td>
<td>-0.469</td>
<td>-0.076</td>
<td>-0.421</td>
<td>-0.344</td>
<td>-0.193</td>
</tr>
<tr>
<td>% workers taking public transit</td>
<td>-0.01</td>
<td>0.764</td>
<td>0.61</td>
<td>-0.248</td>
<td>0.59</td>
<td>0.497</td>
<td>0.483</td>
<td>0.344</td>
</tr>
<tr>
<td>Simpson index (3 categories)</td>
<td>-0.786</td>
<td>-0.673</td>
<td>-0.71</td>
<td>-0.47</td>
<td>0.001</td>
<td>-0.57</td>
<td>-0.594</td>
<td>-0.658</td>
</tr>
<tr>
<td>Contextual Partial Correlation controlling for political variable</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% residents who are homeowners</td>
<td>0.079</td>
<td>0.175</td>
<td>0.27</td>
<td>0.064</td>
<td>-0.388</td>
<td>-0.653</td>
<td>-0.958</td>
<td>0.571</td>
</tr>
<tr>
<td>Index for Population Density</td>
<td>-0.093</td>
<td>0.596</td>
<td>0.313</td>
<td>0.179</td>
<td>0.014</td>
<td>0.219</td>
<td>0.471</td>
<td>-0.395</td>
</tr>
<tr>
<td>Near distance to central city</td>
<td>0.026</td>
<td>-0.642</td>
<td>-0.605</td>
<td>-0.717</td>
<td>0.425</td>
<td>-0.386</td>
<td>-0.791</td>
<td>-0.028</td>
</tr>
<tr>
<td>Distance to nearest highway</td>
<td>0.009</td>
<td>-0.035</td>
<td>0.031</td>
<td>-0.198</td>
<td>-0.06</td>
<td>0.44</td>
<td>0.762</td>
<td>0.115</td>
</tr>
<tr>
<td>% Commuters</td>
<td>-0.342</td>
<td>-0.233</td>
<td>0.285</td>
<td>0.715</td>
<td>-0.419</td>
<td>-0.554</td>
<td>-0.333</td>
<td>-0.206</td>
</tr>
<tr>
<td>% housing built since 1980</td>
<td>-0.581</td>
<td>-0.459</td>
<td>-0.232</td>
<td>-0.475</td>
<td>0.368</td>
<td>0.068</td>
<td>0.215</td>
<td>0.15</td>
</tr>
<tr>
<td>% workers taking public transit</td>
<td>-0.039</td>
<td>0.729</td>
<td>0.613</td>
<td>-0.497</td>
<td>0.238</td>
<td>0.485</td>
<td>0.791</td>
<td>-0.121</td>
</tr>
<tr>
<td>Simpson index (3 categories)</td>
<td>-0.826</td>
<td>-0.891</td>
<td>-0.769</td>
<td>-0.536</td>
<td>0.539</td>
<td>-0.704</td>
<td>-0.599</td>
<td>-0.831</td>
</tr>
<tr>
<td>Number of Cases (n)</td>
<td>55</td>
<td>43</td>
<td>17</td>
<td>13</td>
<td>13</td>
<td>16</td>
<td>16</td>
<td>41</td>
</tr>
</tbody>
</table>
Expectations about the demographic and geospatial indicators of community characteristics to transit funding bear a mostly contrary relation to the expectations for highway funding.

--Higher percentages of homeowners typically characterize suburban communities with preferences for highways over mass transit. Communities of renters are more likely to look to mass transit to meet their transportation needs.

--High density communities furnish one of the most important conditions that makes expansion of transit feasible.

--Places closer to the metropolitan center are more likely to have access to efficient forms of transit, and therefore to support transit funding.

--Distance from interstate highways may contribute to greater support for alternative transportation modes, but might also make a community more likely to prefer highway funding to transit funding.

---Communities with a large proportion of workers taking public transit have more reason to prefer this mode of transportation.

--Communities with large numbers of commuters may have a stronger interest in either highways or transit. However, where commuters have few transit options, these communities are likely to view transit as a local benefit.

--Communities that have experienced strong recent growth have a more pressing interest in provision of infrastructure, potentially including transit. If recent growth has concentrated in peripheral suburban areas, however, these areas may be more opposed to transit funding.

--Finally, more economically heterogeneous localities, usually those with larger proportions of resident workers in manufacturing, should have stronger preferences for transit.

Among the failed referenda, the correlations with these indicators manifest parallel local interests as significant bases of support (Table 8). Support for each correlates between .344 and .59 with the proportion of workers already using transit. Among the three measures that garnered between 38 percent and 44 percent of the vote there are further consistent local interests. In each, the vote concentrated in areas with more renters as opposed to homeowners (-.76, to -.685), and with greater population density (.458 to .608), and with controls for partisanship, with higher commuting (-.333 to -.554).

For successful transit referenda, the evidence indicates a mix of coalition-building with communities that should be expected to have less direct interests in transit with mobilization around common local interests. In Santa Clara County, the successful referendum of 2000 clearly benefited from mobilization among localities with lower current transit use. Support for this measure correlated at -.248 with public transit use, and -.497 with partisanship controlled. By contrast, support for the later unsuccessful measure correlated highly (.59) with transit use. The success of the 2000 referendum did reflected a mobilization of support for transit among commuter towns. Support
Table 9. Local Social and Demographic Correlates of Support for County Transit Funding Referenda

<table>
<thead>
<tr>
<th>Name</th>
<th>CA Bay Area 2</th>
<th>WA King 1</th>
<th>WA Snohomish 1</th>
<th>CA S Clara A</th>
<th>CA S Clara A</th>
<th>OH Butler 1</th>
<th>OH Butler 6</th>
<th>OH Hamilton 7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall Percent Voting in Favor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Success</td>
<td>57.00%</td>
<td>52.90%</td>
<td>53.09%</td>
<td>70.40%</td>
<td>42.87%</td>
<td>44.80%</td>
<td>38.60%</td>
<td>31.80%</td>
</tr>
<tr>
<td>Political Correlation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Republican margin in nearest</td>
<td>-0.059</td>
<td>-0.359</td>
<td>-0.596</td>
<td>-0.126</td>
<td>-0.829</td>
<td>-0.728</td>
<td>-0.681</td>
<td>-0.493</td>
</tr>
<tr>
<td>presidential election (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Compositional Correlation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Social Economic Status (SES)</td>
<td>0.683</td>
<td>0.389</td>
<td>0.466</td>
<td>0.161</td>
<td>-0.276</td>
<td>0.183</td>
<td>0.015</td>
<td>0.496</td>
</tr>
<tr>
<td>Hardship indicator</td>
<td>-0.258</td>
<td>-0.045</td>
<td>-0.027</td>
<td>-0.463</td>
<td>0.43</td>
<td>0.693</td>
<td>0.704</td>
<td>0.071</td>
</tr>
<tr>
<td>% African-American residents</td>
<td>-0.322</td>
<td>0.119</td>
<td>0.224</td>
<td>0.177</td>
<td>-0.752</td>
<td>0.44</td>
<td>0.375</td>
<td>0.498</td>
</tr>
<tr>
<td>% Latino residents</td>
<td>-0.511</td>
<td>-0.18</td>
<td>-0.346</td>
<td>-0.673</td>
<td>0.234</td>
<td>0.598</td>
<td>0.546</td>
<td>0.234</td>
</tr>
<tr>
<td>% of residents over the age of 60</td>
<td>0.55</td>
<td>0.497</td>
<td>0.32</td>
<td>0.244</td>
<td>-0.403</td>
<td>0.014</td>
<td>-0.21</td>
<td>0.238</td>
</tr>
<tr>
<td>% of residents under the age of 18</td>
<td>-0.538</td>
<td>-0.718</td>
<td>-0.683</td>
<td>-0.671</td>
<td>-0.463</td>
<td>-0.714</td>
<td>-0.702</td>
<td>0.101</td>
</tr>
<tr>
<td>Compositional Partial Correlation controlling for political variable</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Social Economic Status (SES)</td>
<td>0.763</td>
<td>0.771</td>
<td>0.637</td>
<td>0.212</td>
<td>-0.549</td>
<td>0.334</td>
<td>-0.139</td>
<td>0.837</td>
</tr>
<tr>
<td>Hardship indicator</td>
<td>-0.35</td>
<td>-0.449</td>
<td>-0.356</td>
<td>-0.595</td>
<td>0.522</td>
<td>0.505</td>
<td>0.469</td>
<td>-0.454</td>
</tr>
<tr>
<td>% African-American residents</td>
<td>-0.428</td>
<td>-0.096</td>
<td>0.119</td>
<td>0.126</td>
<td>0.736</td>
<td>0.13</td>
<td>-0.049</td>
<td>-0.217</td>
</tr>
<tr>
<td>% Latino residents</td>
<td>-0.591</td>
<td>-0.436</td>
<td>-0.353</td>
<td>-0.751</td>
<td>0.44</td>
<td>0.615</td>
<td>0.532</td>
<td>0.036</td>
</tr>
<tr>
<td>% of residents over the age of 60</td>
<td>0.565</td>
<td>0.577</td>
<td>0.595</td>
<td>0.351</td>
<td>-0.507</td>
<td>-0.087</td>
<td>-0.439</td>
<td>0.3</td>
</tr>
<tr>
<td>% of residents under the age of 18</td>
<td>-0.54</td>
<td>-0.644</td>
<td>-0.551</td>
<td>-0.697</td>
<td>0.157</td>
<td>-0.566</td>
<td>-0.393</td>
<td>0.212</td>
</tr>
<tr>
<td>Number of Cases (n)</td>
<td>55</td>
<td>39</td>
<td>17</td>
<td>13</td>
<td>13</td>
<td>16</td>
<td>16</td>
<td>41</td>
</tr>
</tbody>
</table>
correlated at .235 with local commuting rates, or .715 with the control for partisanship, compared to strong negative correlations for the failed measure (-.686 and -.419). Other correlations show that areas with older housing and greater proximity to San Francisco also supported the successful referendum more (at correlations of -.469 and -.721 with the respective indicators), as did places with greater occupational diversity (-.471).

In the California Bay Area transit vote the correlations also suggest more effective coalition-building among local spatial interests than in the unsuccessful referenda. Correlations in the failed referenda with renters, with population density and with transit usage all disappeared with the mobilization around this successful ballot measure. Here again, however, other indicators show more concentrated support in areas with older housing and greater occupational diversity.

In Washington State, the mobilization in support of the referenda in King County and Snohomish County concentrated even more among specific types of places with direct local interests in transit. In each county, one of the two strongest correlations (.764 in King County and .61 in Snohomish County) was between public transit ridership and the vote. Other strong correlations linked support with population density (.647 in King and .453 in Snohomish) with proximity to the metropolitan center (-.595 with distance from the center in King and -549 in Snohomish) and with occupational diversity (-.673 and -71).

Both coalition-building and majoritarian mobilization are evident in the successful cases here. In the two Washington counties, an urban-centered electoral coalition mobilized effectively around local interests in transit. In the two California referenda, however, coalition-building also won over more suburban, more peripheral, less transit-based communities.

e. Socioeconomic status, race and ethnicity. Either electoral logic for building electoral support to pass transit funding depends on winning support for transit among communities with higher socioeconomic status and less economic hardship or other disadvantages. Where existing transit use is limited, these communities contain crucial constituencies for coalition-building even as they contain few transit users. Where transit extends more broadly and usage is high, communities of affluent, middle class and white residents are often critical constituencies among those with local interests in transit use.

A first test of these influences examined ecological correlations with several types of demographic indicators compiled by municipality from the 2000 census:

--Socioeconomic status (SES) is calibrated to measure the proportion of higher status residents, as measured by income and higher education.

--Socioeconomic hardship captures more concentrated social and economic disadvantage in education, income, employment and housing.

--As indicators of disadvantaged racial and ethnic minorities, the indicators employ the percent African-Americans and the percent Latino.

--A further demographic indicators gauges proportions of older residents (over age 60), including retirees.

--The proportion of children (under age 18), as an indicator of families with children, captures one of the most distinctive demographic characteristics of the suburbs.

Among the failed referenda, support clearly concentrates among the more disadvantaged communities (Table 9). Except in Hamilton County, where the measure
received significantly lower support, communities with higher hardship furnished significantly higher support (at correlations of .43 to .704). Partial correlations showed this relationship to persist or even strengthen with political partisanship controlled (.469 to .522). With the single exception of African Americans in Santa Clara County, support also correlates consistently, though at varying strength, with higher percentages of minorities (.234 to .546).

Almost uniformly, the difference between success and failure for transit funding lay in a shift from these concentrations to new bases of support in higher status communities. Comparison of the successful Santa Clara measure of 2000 with the failed referendum in the same county in 2006 demonstrates this pattern clearly. Support for the failed referendum correlated at .43 with the hardship index and at -.276 with the index for higher socioeconomic status. Support for the successful transit funding measure of 2000 had correlated at -.463 with hardship and .161 with socioeconomic status. Although the correlation with African-Americans had shifted to .177 from -.752, the correlation with Latino residents shifted from .234 to -.673. Support for the successful measure had also concentrated more in communities without older residents and without children.

Among the other successful referenda, the correlation of support with higher socioeconomic status was even more uniform. With the control for partisanship included, the partial correlations of this indicator with electoral support ranged from .637 to .771. The correlations with hardship were almost as consistently negative, ranging from -.35 to -.449. Places with more children voted almost as consistently negative, ranging from -.35 to -.449. Places with more children voted consistently less frequently for these three measures as well as Santa Clara Measure A, with partial correlations from -.54 to -.697. Places with more retirees voted with slightly less consistency in favor of the measures, with partial correlations of .351 to .595.

The positive correlations with socioeconomic status, as well as the negative correlations with most disadvantaged groups, are strongest for the Bay Area Regional funding measure. Here, in the metropolitan area where transit ridership is most extensive, the correlations show a consistent concentration of support for transit funding away from communities with African-American and Latino residents as well as areas with high hardship. More than in the other settings, these patterns of support point to a dominant role for white, affluent and middle class communities in this election.

Mixed-mode funding referenda

Increasingly, mixed funding referenda have replaced single-mode transit funding measures with more comprehensive packages of support. In a growing number of jurisdictions in California, ballot measures now provide support for an entire spectrum of transportation investments from bicycle paths and sidewalks to new highway construction, as well as an important proportion of operating expenses for transit services. The logics of successful territorial coalition-building for these measures reflect a mixture of the territorial logics for highway and transit measures. Winning strategies have also varied significantly with the metropolitan context, especially with the extent of existing transit service and levels of congestion. Most mixed referenda have predominantly funded highways. But their success has most often hinged on support from places with the strongest local interests in transit and other alternatives to highways.
a. *Expectations about mixed-mode measures.* For mixed-mode measures, coalition-building between constituencies with stronger local interests in both highways and transit is intrinsic in the framing of the issue. For each of the spatial, socioeconomic and political dimensions of these interests, a successful mixed-mode measure should bridge these local interests.

Hypothesis 2C. To succeed, mixed transit and highway referenda depend on electoral coalitions between communities with local spatial interests in mass transit, and communities with predominant spatial interests in highways.

Hypothesis 3C. To succeed, mixed transit and highway referenda depend on electoral coalitions between poor and minority communities as well as any others with interests in mass transit, and affluent, middle-class and white communities with predominant interests in highways.

Hypothesis 4C. To succeed, mixed funding referenda depend on support from Democratic constituencies with stronger preferences for transit as well as Republican constituencies with stronger preferences for highways.

Since mixed-mode funding packages have predominantly funded highways, the hypotheses imply that constituencies for transit and other highway alternatives should be the critical constituency. Were a referendum to provide more local goods to communities with interests in transit, the challenge of coalition-building would lie in winning support from communities with stronger local interest in highways. The main exception to these expectations, as Hypothesis 5B suggests, applies to metropolitan areas where high transit ridership makes transit as well as highways sources of widely available local goods. In this instance, as the Bay Area counties should most clearly reflect, we can expect majoritarian rather than coalition-building logics to dictate patterns of support.

b. *Ballot measures compared.* The county measures generally followed a similar model. Each levied a sales tax and designated a diverse array of transportation improvements. Although transit, bicycle routes and other highway alternatives usually took up a significant portion of the designated funding, highway and road funding consistently occupied the largest share.

The analysis will first compare county level referenda that passed in two counties with previous referenda in both counties that failed.

--Fresno County (California) Measure C in 2006 would extend a ½ cent sales tax for a package of transportation improvements. Approximately 2/3 of the funding was designated for roads and 25 percent for transit. The measure passed with 77 percent of the vote.

--Fresno County Measure C in 2002 proposed extension of a ½ cent sales tax to fund a package of transportation improvements, predominantly roads but 13 percent public transportation. The measure failed with 54 percent of the vote.

--Sonoma County (California) Measure M in 2004 authorized a ¼ cent sales tax to fund a variety of transportation projects. The Measure funded fifteen percent rail and bus
components, but predominantly highway and road projects. Proposed in the wake of the failure of Measures B and C in 2000, this measure passed with 67.20 percent of the vote.

A second comparison will extend this analysis to a comparison across a larger group of county referenda, including one unsuccessful and three successful ones.

--Alameda County (California) Measure B in 2000 raised a ½ cent sales tax to fund a mix of highway improvements, BART extensions, and transit services. This measure passed with 81.5 percent of the vote.

--Orange County (California) Measure M in 2006 continued a one percent sales and use tax for an array of transportation projects, mainly highway improvements, along with transit services. Measure M passed with 68.5 percent of the vote.

--San Bernardino (California) Measure I in 2004 extended a ½ cent sales tax to pay for a transportation package that included mainly freeway and road projects, but also rail and bus transit. This measure passed with 79.44 percent of the vote.

--Ventura County (California) Measure B in 2004 would have established a ½ cent sales tax to fund transportation. Eighty percent of the funds would go to highway and road projects, and twenty percent to bus, rail and transit. The measure failed with 41.7 percent of the vote.

The state measures included a variety of packages, some including additional measures beyond transportation. All authorized bonds rather than levying taxes.

--California Proposition 1B in 2006 authorized bonds for an array of transportation projects. Bond funds included a large public transportation component, but more than twice this amount for highways and other roads. The measure passed with 61.2 percent of the vote.

--Ohio Issue One in 2005 authorized issuance of bonds to fund a variety of infrastructure projects, including roads and bridges. The transportation portion of this measure consisted predominantly of highways. The measure passed with 54.12 percent of the vote.

--Washington State Referendum 51 in 2002 would have raised transportation fees and taxes to fund an array of public transportation and rail projects. The preponderance of funding would have gone to improvements and new construction of highways and roads. This measure failed with 38.42 percent of the vote.

--California Proposition 51 in 2002 would have allocated 30 percent of sales and use taxes from sale or lease of vehicles to an array of transportation projects roughly balanced between traffic congestion relief on roads and transit or rail. This proposition failed with 41.4 percent of the vote.

c. Political partisanship. Consistent with the hypotheses, the relation between partisanship and support for measures with mixtures of transit with highway funding most closely resembled that for successful highway referenda. Unlike in funding for highways alone, however, Democratic communities tended to support mixed referenda more strongly regardless of success or failure. For both the state and the county level mixed mode referenda, there are also significant exceptions to this general pattern.

The comparison between successful and failed referenda in Fresno and Sonoma Counties illustrates two different logics of partisanship in coalition-building under diametrically opposed regional circumstances (Table 10). As part of the San Francisco metropolitan area, Sonoma County belonged to the region with the highest rates of transit
Table 10. Local Contextual Correlates of Successful and Failed Transit/Highway Referenda, Fresno and Sonoma Counties

<table>
<thead>
<tr>
<th>Name</th>
<th>(a) CA Fresno C (06)</th>
<th>(b) CA Fresno C (02)</th>
<th>(b) CA Sonoma M</th>
<th>CA Sonoma C</th>
<th>(Highway Funding) CA Sonoma B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Year</td>
<td>Success or Failure</td>
<td>Overall Percent Voting in Favor</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Success</td>
<td>Failure</td>
<td>Success</td>
<td>Failure</td>
</tr>
<tr>
<td></td>
<td></td>
<td>77%</td>
<td>54%</td>
<td>67.20%</td>
<td>60.20%</td>
</tr>
</tbody>
</table>

Political Correlation

Republican margin in nearest presidential election (%)

<table>
<thead>
<tr>
<th>% residents who are homeowners</th>
<th>-0.786</th>
<th>-0.845</th>
<th>-0.441</th>
<th>-0.382</th>
<th>0.583</th>
</tr>
</thead>
<tbody>
<tr>
<td>Index for Population Density</td>
<td>0.512</td>
<td>0.649</td>
<td>0.39</td>
<td>0.358</td>
<td>0.318</td>
</tr>
<tr>
<td>Near distance to central city</td>
<td>-0.173</td>
<td>0.111</td>
<td>-0.696</td>
<td>-0.841</td>
<td>-0.23</td>
</tr>
<tr>
<td>Distance to nearest highway</td>
<td>0.239</td>
<td>0.057</td>
<td>0.155</td>
<td>0.259</td>
<td>0.153</td>
</tr>
<tr>
<td>% Commuters</td>
<td>0.369</td>
<td>0.371</td>
<td>0.353</td>
<td>-0.11</td>
<td>0.109</td>
</tr>
<tr>
<td>% housing built since 1980</td>
<td>0.16</td>
<td>0.203</td>
<td>0.062</td>
<td>-0.236</td>
<td>0.698</td>
</tr>
<tr>
<td>% workers taking public transit</td>
<td>0.429</td>
<td>0.473</td>
<td>0.917</td>
<td>0.779</td>
<td>0.344</td>
</tr>
<tr>
<td>Simpson index (3 categories)</td>
<td>-0.464</td>
<td>-0.561</td>
<td>-0.413</td>
<td>-0.635</td>
<td>0.4</td>
</tr>
</tbody>
</table>

Contextual Partial Correlation controlling for political variable

<table>
<thead>
<tr>
<th>% residents who are homeowners</th>
<th>0.008</th>
<th>-0.205</th>
<th>0.293</th>
<th>-0.188</th>
<th>0.324</th>
</tr>
</thead>
<tbody>
<tr>
<td>Index for Population Density</td>
<td>0.353</td>
<td>0.624</td>
<td>0.379</td>
<td>0.324</td>
<td>0.516</td>
</tr>
<tr>
<td>Near distance to central city</td>
<td>-0.625</td>
<td>-0.19</td>
<td>-0.626</td>
<td>-0.811</td>
<td>-0.705</td>
</tr>
<tr>
<td>Distance to nearest highway</td>
<td>0.088</td>
<td>-0.265</td>
<td>0.136</td>
<td>0.291</td>
<td>0.171</td>
</tr>
<tr>
<td>% Commuters</td>
<td>0.217</td>
<td>0.214</td>
<td>0.386</td>
<td>-0.187</td>
<td>0.251</td>
</tr>
<tr>
<td>% housing built since 1980</td>
<td>-0.176</td>
<td>-0.148</td>
<td>0.46</td>
<td>-0.061</td>
<td>0.583</td>
</tr>
<tr>
<td>% workers taking public transit</td>
<td>-0.012</td>
<td>0.019</td>
<td>0.904</td>
<td>0.735</td>
<td>0.841</td>
</tr>
<tr>
<td>Simpson index (3 categories)</td>
<td>-0.002</td>
<td>-0.131</td>
<td>-0.13</td>
<td>-0.571</td>
<td>-0.072</td>
</tr>
</tbody>
</table>

Number of Cases (n)

| 15 | 14 | 9 | 9 | 9 | 9 |

use as well as one of the highest levels of traffic congestion. It was also one of the most Democratic metropolitan areas in the country (Sellers 2005). The much smaller metropolitan area of Fresno County had a low rate of transit ridership and one of the lowest levels of congestion. In partisan voting, it had remained predominantly Republican through the 2004 national elections.

These different circumstances contributed to divergent partisan logics of electoral success. In Sonoma County, support for the mixed-mode measure M built more on the Democratic constituencies of the earlier Measure B, which would have funded alternatives to highways, than on the base for Measure C, which would have funded highways only. Consistent with intensified mobilization of the Democratic base, support
for Proposition M correlated more strongly with Democratic voting (as indicated by the correlation of -.441 with the Republican presidential election margin) than even the earlier transit measure (-.382). Hannay and Wachs (2007) confirmed this relationship. Their precinct-level multivariate analysis demonstrated a stronger relation to Democratic voter registration for Measure M than for Measure C.

In Fresno County, support for both measures correlated heavily with Democratic voting. In the successful referendum of 2006, however, the correlation with the Republican presidential election margin weakened slightly to -.786 from -.845 in 2002. Electoral success in this case grew out of additional support from more Republican parts of the county.

Among the other county referenda (Table 11), the differences among both the ballot measures and the political geographies require more qualifications to any conclusions. What stands out across the board here, however, is the consistent negative
correlation with Republican voting. Regardless of their success or failure, these measures have drawn their strongest support from Democratic communities. The successful referenda in Orange and Alameda Counties register the strongest correlations with Democratic voting (−.744 and −.71 respectively with the Republican margin). However, the correlation in the unsuccessful case of Ventura County Measure B (−.517) is slightly stronger than for the successful measure San Bernardino County (−.495).

Among the state measures, the correlations suggest that support from Democratic communities was critical to the success of most measures (Table 12). The two state measures that succeeded, California Proposition 1B and Ohio Issue 1, both drew support much more heavily from areas voting Democratic. The negative correlations with the Republican presidential margin were strongest for these two measures, at −.629 for Proposition 1B and −.656 for Issue 1. Among two of the failed measures, Republican voting correlated either positively (for California Proposition 53) or much less negatively (for Washington Referendum 51) with support.

California Proposition 51, the sole measure that included roughly as much funding for transit and highway alternatives as for highways and roads, presents an intriguing exception to this general pattern. It is also an exception that clarifies the limits to Democratic mobilization as a state-level strategy. Although voting for this measure correlated negatively with Republican voting at a rate that nearly matched the two successful measures (−.59), it attained only 41 percent voter support overall. Both successful measures had overwhelmingly emphasized highway funding rather than the more balanced mix of this measure. Clearly support for highway funding plays a critical element in successful coalition-building even when Democratic support is also crucial.

Democratic constituencies have generally played the critical role in the success of mixed-mode measures. But both the contrasts between Fresno County and Sonoma County and the case of Proposition 51 demonstrate important qualifications to this conclusion. Influences along other dimensions can provide a more penetrating account of how communities vote.

d. **Spatial contexts: Distance, commuters, homeowners.** For mixed-mode funding, as for transit and highways separately correlations with spatial features provide strong indications that coalition-building between metropolitan places with different interests in transportation has been critical to the success of referenda. These correlations also further highlight how differences between metropolitan settings have altered the basis for electoral coalitions.

The same indicators used to assess patterns of voting for the single-mode funding measures can illuminate the spatial patterns of territorial coalition building that enabled mixed-mode funding measures to succeed. More homeowners, lower density, greater distance from highways and the central business district, more recent growth, more commuters, less public transit, and greater occupational homogeneity each capture dimensions of the local interests associated with suburban areas. Conversely, more renters, greater density, proximity to the central business district, older housing, fewer commuters, more transit and economic diversity capture more urban local interests. Electoral coalition-building has usually corresponded to some of these indicators, but not others. In a few instances, the indicators can also capture common local interests around which successful coalitions were forged.
Table 12. Local Contextual Correlates of Support for State Referenda to Raise Funding for Transit and Highways

<table>
<thead>
<tr>
<th>Name</th>
<th>CA Prop 1B</th>
<th>OH Issue 1</th>
<th>CA Prop 53</th>
<th>WA Ref 51</th>
<th>CA Prop 51</th>
</tr>
</thead>
<tbody>
<tr>
<td>Success or Failure</td>
<td>Success</td>
<td>Success</td>
<td>Failure</td>
<td>Failure</td>
<td>Failure</td>
</tr>
<tr>
<td>Overall Percent Voting in Favor</td>
<td>61.20%</td>
<td>54.12%</td>
<td>36.30%</td>
<td>38.42%</td>
<td>41.40%</td>
</tr>
</tbody>
</table>

Political Correlation
Republican margin in nearest presidential election (%)

-0.629 -0.656 0.694 -0.263 -0.59

Contextual Correlations

% residents who are homeowners	-0.332	-0.423	0.315	-0.06	-0.248
Index for Population Density	0.323	0.512	-0.46	0.377	0.236
Near distance to central city	-0.187	-0.48	0.172	-0.631	-0.116
Distance to nearest highway	0.032	0.246	0.092	0.077	-0.053
% Commuters	0.105	0.508	-0.078	-0.023	0.024
% housing built since 1980	-0.188	-0.327	0.355	-0.048	0.105
% workers taking public transit	0.393	0.539	-0.364	0.532	0.247
Simpson index (3 categories)	0.044	-0.511	-0.082	-0.652	0.224

Contextual Partial Correlation controlling for political variable

% residents who are homeowners	-0.058	0.356	0.215	-0.155	0.005
Index for Population Density	0.088	0.051	-0.338	0.44	-0.089
Near distance to central city	0.186	-0.403	-0.259	-0.62	0.107
Distance to nearest highway	0.117	0.206	0.055	0.364	0.002
% Commuters	0.074	-0.051	-0.013	-0.038	-0.085
% housing built since 1980	0.082	0.145	0.272	0.146	0.404
% workers taking public transit	-0.022	0.225	0.052	0.626	-0.129
Simpson index (3 categories)	0.102	-0.536	-0.225	-0.786	0.235

Number of Cases (n)

299 117 299 147 299
As in the examination of partisanship, comparison of success with failure in Fresno and Sonoma counties helps control for the background differences in local electoral contexts (Table 10). In Fresno, the changes from 2002 to 2006 show coalition-building beyond the constituencies with the strongest local interests in transit. A negative correlation of -0.725 with homeowners weakens to -0.603. A positive correlation of 0.649 with density shifts back to 0.512. Both effects emerge more strongly with the control for partisanship.

The most significant shift comes in the indicator for distance from the center. This effect must be understood in light of the unusual spatial structure of the Fresno metropolitan area. As in a number of metropolitan areas dominated by an agricultural economy and a Latino workforce, concentrations of poor, mostly Latino agricultural workers in the urban periphery surround higher status and white populations in the central city and its immediate area (Sellers 2005). The negative relationship with distance in the successful referendum (-0.625 with the control for partisanship) thus reflects a surge of support among relatively privileged central area residents. In the successful referendum, correlations with commuting and new housing also drop.

In Sonoma County as well, the correlations point to added complexities in the coalition that passed the second referendum. In the initial, failed transit referendum, support correlated strongly with public transit use (0.779) and moderately with density (0.358). There were also strong or moderate negative relationships to homeownership (-0.362), to distance from San Francisco (-0.841), to economic heterogeneity (-0.635) and to homeowners. In the later, successful transit vote, the changes in the distribution show some coalition-building among opposed local interests. The concentrations of support shifted toward homeowners (0.293, with partisanship controlled) and toward areas with new housing (0.46 with the control), and away from San Francisco (as distance shifted back to -0.696) as well as from economic diversity (to -0.413).

At the same time, the indicators most directly connected to transportation suggest stronger mobilization around common local interests. The correlation with local use of public transit grew to an impressive 0.917, and the proportion of commuters now registered a partial correlation of 0.386 with support for the measure. Even as wider coalition-building generally succeeded, the successful measure gained support through more effective targeting of areas more likely to derive local benefits. Hannay and Wachs’ precinct-level analysis shows that this stronger support was mobilized specifically in the main highway corridor designated for projects under the measure (20007: p. 30). Comparison with the shifts from the simultaneous 2000 referendum that focused solely on highway funding reinforces this conclusion. There the shift away from indicators of outlying suburban constituencies (homeowners, distance from the CBD, new housing) is even more unmistakable.

Among the three mixed mode referenda from 2004-2006 in the Los Angeles metropolitan area (Table 11), coalition-building among different types of communities was also crucial to success. Patterns of voting for the failed referendum in Ventura County showed that support remained concentrated in denser areas (0.661), in economically diverse places (0.805), in towns with more commuters (with the control for partisanship, 0.835) and transit users (0.312 with the control), as well as in areas of lower homeownership (-0.488). Support for the successful referenda in Orange and San Bernardino counties was more evenly distributed as well as stronger overall. In Orange
County, support centered less on denser areas (.107 with the control), places with fewer homeowners (-.456), or places with more commuters (-.165). A slightly higher correlation with public transit use (.346) disappeared with the control for partisanship (.025). In San Bernardino County, none of the correlations was stronger than .325 and no partial correlation was stronger than .239.

The different pattern that went along with the successful referendum in Alameda County reflects the different logic of support in the Bay Area that was also evident in Sonoma County. The extensive transit system assured that more of the county had a common interest in the mixed-mode package. Rather than bring together diverse interests in different kinds of places, the winning coalition drew concentrated support from high density (.813), less economically diverse areas (-.788) with less new housing (-.57) and less distance from the San Francisco CBD (-.817). As in Sonoma County, support concentrated strongly in areas of high transit use (.839).

Among the state ballot measures, the same correlations offer more limited indications of electoral coalitions among places with divergent interests (Table 12). Even though all but one of these measures provided more funding for highways than for transit, the successful referenda in California and Ohio manifested stronger correlations with the urban places usually identified with interests in transit. In both instances the vote correlated most strongly with public transit users (.393 and .593). Support also correlated more strongly than in the other referenda with population density (.323 and .512), with low homeownership (-.332 and -.423) and with less new housing (-.188 and -.327). Since most of these relationships parallel political partisanship, they generally disappeared in the partial correlations.

Overall, the spatial correlates offer evidence that coalition-building among diverse interests linked to the characteristics of places has been one element in the success of mixed mode funding measures. In light of the emphasis on highway funding in most of these measures, the importance of support from places with interests in transit may seem surprising. Just how important these places are, however, depends on whether coalition-building and or majoritarian political logics provide the formula for success. In regions with less extensive transit infrastructure, as the votes in the Fresno and Los Angeles areas demonstrate, mixed ballot measures rely for success on broadening support beyond central urban areas to the areas that benefit most from highways. In the Bay Area, by contrast, as the votes in Sonoma and Alameda Counties suggest, extensive transit has enabled support to mobilize more systematically around common local interests in infrastructure.

e. *Socioeconomic status, race and ethnicity.* Alongside partisan politics and the geography of places, the politics of demographic groups comprises a division for mixed-mode ballot measures to overcome. Much of the literature on metropolitan governance has highlighted the divergences among class, racial and ethnic interests as the most serious challenge measures like these to overcome. On the whole higher status communities are more likely to use highways the most and transit the least. Lower status or disadvantaged communities use highways less exclusively and transit the most often. One of the main divisions that mixed-mode referenda have sought to bridge lies between these different types of communities.
Table 13. Local Social and Demographic Correlates of Support for Transit/Highway Funding, Fresno and Sonoma Counties

<table>
<thead>
<tr>
<th>Name</th>
<th>(a) CA Fresno C (06)</th>
<th>CA Fresno C (02)</th>
<th>(b) CA Sonoma M</th>
<th>CA Sonoma C</th>
<th>CA Sonoma B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year</td>
<td>2006</td>
<td>2004</td>
<td>2000</td>
<td>2000</td>
<td></td>
</tr>
<tr>
<td>Success or Failure</td>
<td>Success</td>
<td>Failure</td>
<td>Success</td>
<td>Failure</td>
<td>Failure</td>
</tr>
<tr>
<td>Overall Percent Voting in Favor</td>
<td>77%</td>
<td>54%</td>
<td>67.20%</td>
<td>60.20%</td>
<td>58.40%</td>
</tr>
</tbody>
</table>

Political Correlation
Republican margin in nearest presidential election (%)
(a) CA Fresno C (06)
-0.786
(b) CA Sonoma B
0.583

Compositional Correlation
Social Economic Status (SES)
-0.57
-0.728
-0.441
0.512
-0.023

Hardship indicator
0.726
0.857
-0.143
-0.4
0.002

% African-American residents
-0.232
-0.288
0.59
0.353
0.436

% Latino residents
0.658
0.744
-0.465
-0.611
0.193

% of residents over the age of 60
-0.534
-0.685
-0.494
0.114
-0.575

% of residents under the age of 18
0.594
0.55
-0.071
-0.629
0.481

Compositional Partial Correlation controlling for political variable
Social Economic Status (SES)
0.334
0.005
0.097
0.483
0.114

Hardship indicator
0.07
0.417
-0.074
-0.363
-0.133

% African-American residents
-0.051
-0.129
0.56
0.271
0.789

% Latino residents
-0.128
-0.021
-0.264
-0.521
-0.364

% of residents over the age of 60
0.416
0.142
-0.639
0.106
-0.678

% of residents under the age of 18
-0.118
-0.431
0.244
-0.549
0.278

Number of Cases (n)
15
14
9
9
9

The indicators for socioeconomic status, socioeconomic hardship, African Americans, Latino Americans, the elderly and children offer a clear view of these relations in the voting. According to a logic of coalition-building, mixed mode referenda support highways that disproportionately benefit more privileged communities, and transit for disadvantaged communities. To pass, referenda should balance support from both types of communities. By contrast, a majoritarian logic would hold that both the different modes delivers similar local goods to communities across the spectrum of privilege and disadvantage. If this logic holds, a privileged or middle class majority could pass a mixed measure. So could a majority made up of poor communities.

Again, the comparisons between the successful and failed referenda in both Fresno and Sonoma Counties offer a view of these logics under very different conditions (Table 13). The San Francisco region not only has the more extensive transit system among these regions, but also the highest average per capita income of any metropolitan
region in the United States (Sellers 2005). The metropolitan area of Fresno, in addition to its limited transit infrastructure, is one of the poorest in the country.

Support for both measures in Fresno County centered in the poorer localities, but higher status communities made the difference for success. The referendum of 2000 fell short despite strong support in poor and minority localities. Support correlated at -.728 with socioeconomic status, .857 with hardship and .744 with the strong Latino presence in the county. In 2006, these correlations fell to -.57 with socioeconomic status, .726 with hardship and .658 with Latino residents. The control for partisanship revealed a significant shift toward support from better off communities. The partial correlation of socioeconomic status with the vote rose from a negligible .005 to .334. For hardship the partial correlation fell from .417 to .07. The partial correlation of community support with Latinos shifted to -.128. New support from higher SES and nonLatino areas thus made the critical difference in the 2006 vote. The only other indicator that pointed to a stronger relationship to referendum support in 2006 was the number of children in a community.

In Sonoma County, as expected, the higher status, less disadvantaged, white communities provided the main base of support in the initial failed referendum. The electoral support that pushed the second referendum over the threshold for passage came from the poor localities with larger proportions of minorities. The correlation between socioeconomic status and support fell from .512 to .189. Although Hannay and Wachs confirmed a positive relation between median income and the vote for Measure M, their precinct-level analysis also confirmed a less significant relation than in the vote for Measure C (2007: p. 30).

The mobilization of support among communities with more African-Americans proved the most notable shift linked to disadvantaged groups. Even the partial correlation with this group rose from .271 to .56, reflected a similar rise in the simple correlation. Communities with more African Americans had supported the highway vote from 2000 more than the transit-centered one, but supported the 2004 measure even more strongly. Negative correlations with hardship and with Latinos persisted but fell considerably in 2004 by comparison with the transit centered vote of 2000. Mobilization of localities with more children was even more dramatic. Having registered the strongest negative correlations with support in 2000, this variable shifted to a positive partial correlation with support in 2006.

The other mixed transportation ballot measures, all of them from California, reflect a largely similar contrast between the Bay Area and other metropolitan regions (Table 14). The contrast between the correlations for the successful referenda in Orange and San Bernardino Counties and the unsuccessful one in Ventura County largely resembles the contrast between the two referenda in Fresno County. In the two successful cases referendum support correlates modestly (at .2 to .53) with socioeconomic hardship, African-Americans and Latinos and somewhat negatively (-.33 and -.219) with socioeconomic status. In Ventura support for the referendum clearly remained confined to lower status groups and Latinos. The correlations with hardship and with the latter group remain much higher (.857 and .821), and the negative relationship to socioeconomic status is also much stronger (-.728).
Table 14. Local Social and Demographic Correlates of Support for Other County Highway/Transit Referenda

<table>
<thead>
<tr>
<th>Name</th>
<th>CA Alameda B</th>
<th>CA Orange M</th>
<th>CA San Bernardino I</th>
<th>CA Ventura B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year</td>
<td>2000</td>
<td>2006</td>
<td>2004</td>
<td>2004</td>
</tr>
<tr>
<td>Success or Failure</td>
<td>Success</td>
<td>Success</td>
<td>Success</td>
<td>Failure</td>
</tr>
<tr>
<td>Overall Percent Voting in Favor</td>
<td>81.50%</td>
<td>68.50%</td>
<td>79.44%</td>
<td>41.70%</td>
</tr>
</tbody>
</table>

Political Correlation
Republican margin in nearest presidential election (%)

<table>
<thead>
<tr>
<th>Political Correlation</th>
<th>CA Alameda B</th>
<th>CA Orange M</th>
<th>CA San Bernardino I</th>
<th>CA Ventura B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Social Economic Status (SES)</td>
<td>-0.71</td>
<td>-0.744</td>
<td>-0.495</td>
<td>-0.517</td>
</tr>
<tr>
<td>Hardship indicator</td>
<td>-0.559</td>
<td>0.383</td>
<td>0.391</td>
<td>0.755</td>
</tr>
<tr>
<td>% African-American residents</td>
<td>0.44</td>
<td>0.262</td>
<td>0.531</td>
<td>0.333</td>
</tr>
<tr>
<td>% Latino residents</td>
<td>-0.503</td>
<td>0.209</td>
<td>0.359</td>
<td>0.821</td>
</tr>
<tr>
<td>% of residents over the age of 60</td>
<td>0.316</td>
<td>0.267</td>
<td>-0.27</td>
<td>-0.515</td>
</tr>
<tr>
<td>% of residents under the age of 18</td>
<td>-0.53</td>
<td>-0.27</td>
<td>0.411</td>
<td>0.755</td>
</tr>
</tbody>
</table>

Compositional Correlation controlling for political variable

<table>
<thead>
<tr>
<th>Compositional Partial Correlation controlling for political variable</th>
<th>CA Alameda B</th>
<th>CA Orange M</th>
<th>CA San Bernardino I</th>
<th>CA Ventura B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Social Economic Status (SES)</td>
<td>0.885</td>
<td>-0.122</td>
<td>-0.067</td>
<td>-0.694</td>
</tr>
<tr>
<td>Hardship indicator</td>
<td>-0.014</td>
<td>0.004</td>
<td>0.264</td>
<td>0.688</td>
</tr>
<tr>
<td>% African-American residents</td>
<td>-0.064</td>
<td>-0.384</td>
<td>0.324</td>
<td>0.268</td>
</tr>
<tr>
<td>% Latino residents</td>
<td>-0.857</td>
<td>-0.017</td>
<td>-0.146</td>
<td>0.752</td>
</tr>
<tr>
<td>% of residents over the age of 60</td>
<td>0.05</td>
<td>0.163</td>
<td>0.019</td>
<td>-0.777</td>
</tr>
<tr>
<td>% of residents under the age of 18</td>
<td>-0.254</td>
<td>-0.111</td>
<td>0.183</td>
<td>0.852</td>
</tr>
<tr>
<td>Number of Cases (n)</td>
<td>14</td>
<td>35</td>
<td>23</td>
<td>10</td>
</tr>
</tbody>
</table>

In Alameda County however, the correlations manifest even more of a decisive role for higher status groups than in Sonoma County. Unlike in the counties outside the Bay Area, support for the referendum correlates strongly with higher socioeconomic status (.676, for an even stronger partial correlation of .885). In contrast with the other settings, Latino support correlates negatively (-.503) with support. However, strong positive correlations with support mark the indicators for socioeconomic hardship (.559) and for African Americans. Taking partisanship into account essentially eliminates these relations, and strengthens the negative relation between support and Latinos (partial correlation of -.857). This pattern indicates an electoral alliance of privileged white localities with a portion of high hardship and African-American communities, largely to the exclusion of Latinos. Under the further influence of the distinctive transportation system of the Bay Area, this more limited cross-class and interethnic coalition offered a sufficient basis for the referendum to succeed.

Correlations of the same factors with the successful state funding referenda for mixed-mode funding measures also point to electoral coalitions between more privileged and more disadvantaged communities (Table 15). Both for California Proposition 1B
Table 15. Social and Demographic Correlates of Support for State Highway/Transit Referenda

<table>
<thead>
<tr>
<th>Name</th>
<th>CA Prop 1B</th>
<th>OH Issue 1</th>
<th>CA Prop 53</th>
<th>WA Ref 51</th>
<th>CA Prop 51</th>
</tr>
</thead>
<tbody>
<tr>
<td>Success or Failure</td>
<td>Success</td>
<td>Success</td>
<td>Failure</td>
<td>Failure</td>
<td>Failure</td>
</tr>
<tr>
<td>Overall Percent Voting in Favor</td>
<td>61.20%</td>
<td>54.12%</td>
<td>36.30%</td>
<td>38.42%</td>
<td>41.40%</td>
</tr>
</tbody>
</table>

Political Correlation
Republican margin in nearest presidential election (%)
-0.629, -0.656, 0.694, -0.263, -0.59

Compositional Correlation
Social Economic Status (SES)
-0.17, 0.344, 0.107, 0.69, -0.323
Hardship indicator
0.394, 0.155, -0.225, -0.285, 0.311
% African-American residents
0.099, 0.582, -0.084, 0.177, 0.091
% Latino residents
0.456, 0.388, -0.327, -0.109, 0.364
% of residents over the age of 60
0.003, 0.233, 0.137, 0.312, -0.198
% of residents under the age of 18
0.139, -0.061, -0.113, -0.457, 0.259

Compositional Partial Correlation controlling for political variable
Social Economic Status (SES)
-0.136, 0.5, 0.162, 0.811, -0.272
Hardship indicator
0.363, -0.206, -0.258, -0.417, 0.173
% African-American residents
-0.115, 0.02, 0.157, 0.449, -0.146
% Latino residents
0.412, 0.272, -0.443, 0.048, 0.248
% of residents over the age of 60
0.13, 0.1, 0.049, 0.316, -0.058
% of residents under the age of 18
0.237, 0.087, -0.246, -0.586, 0.261
Number of Cases (n)
299, 117, 299, 147, 299

and Ohio Issue 1, stronger support in the successful referenda correlated significantly with higher socioeconomic status (.47 and .344, respectively). At the same time, positive correlations with Latinos (.456 and .388), with socioeconomic hardship (.394 and .155) and in the Ohio case with concentrations of African Americans (.582) showed disadvantaged communities were also important. The correlation with Latino concentrations appears especially strong, and persists even with the control for partisanship (.412 for Proposition 1B and .272 for Issue 1).

The three failed referenda on mixed modes lacked one or both elements of these coalitions. Support for Washington Referendum 51 concentrated in high socioeconomic status localities (.69) and correlated negatively at -.285 with socioeconomic status. Although support for California Proposition 53 did correlate weakly (.107) with higher socioeconomic status, it correlated negatively with hardship (-.225) and with Latino concentrations (-.327). Failure to win support among disadvantaged communities helps account for the defeat of these measures.
California Proposition 51, however, found even more of its support than that for Proposition 1B among some disadvantaged constituencies. Its large transit component helped enable it to mobilize support among both communities with higher hardship (.311) and Latino communities (.394) to a degree that rivaled Proposition 1B. It also appealed relatively more to communities with children (.259). Yet its failure to appeal more either to minorities and disadvantaged communities or to communities of higher socioeconomic status (-.323) helps to account for its defeat.

The correlations and partial correlations also demonstrate coalition building among communities with diverse social and economic composition. In most metropolitan areas, success for mixed and transit funding has depended on logics of coalition-building between communities with partly divergent local interests. In the county referenda in Southern California and Fresno, broadening support beyond the minority and disadvantaged communities that have the most consistent direct interests in transit has been critical to passage. In the state ballot measures, successful outcomes have depended on a balance of support between disadvantaged and other communities.

Majoritarian logics have also been partly at work. In the Bay Area, where more privileged communities provided the bulwark of support for referenda, majoritarian logics have largely prevailed. Even there, broadening appeals to less privileged communities has still played a role in the success of referenda like Sonoma Measure M. And even as support for the successful ballot measure in Fresno County centered among disadvantaged communities, other parts of the county made a critical difference for passage.

f. Multivariate tests. Multivariate tests of the variables on state referenda to approve funding for mixed transportation modes confirm many of the relationships evident from bivariate and partial correlations (Table 16). As in the correlation analyses of these, the models again point to partisanship, spatial and diverse demographic variables as sources of significantly stronger support.

As the juxtaposition of alternative models shows, the contextual variables are often collinear with the compositional ones. Thus the R squared for a contextual model of the vote for Proposition 1B shows that it explains 42% of the variation. Although the compositional model accounts for 60.5%, the combined model explains only 1.5% more of the variation than the compositional one. It seems clear that the compositional and contextual models are explaining much of the same variation in different ways. In the vote for Proposition 1B, for instance, distance to highways and distance to the central business district are significant predictors in the contextual model. Both lose their significance in the full model, once the indicators for race and class are taken into account. Other contextual indicators, such as commuters, new housing and even public transit, only become significant predictors once the demographic variables are included.

Several explanations clearly account for the success of California Proposition 1B and Ohio Measure 1. Despite the fact that each was advocated by a Republican governor, Democratic partisanship clearly explains a portion of the vote for both of these successful ballot measures. In two of the three failed cases, the support instead remained concentrate in Republican strongholds.
Table 16. Multivariate Models of Sources of Support for State Highway/Transit Referenda

<table>
<thead>
<tr>
<th>Name</th>
<th>CA Prop 1B</th>
<th>OH Issue 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year</td>
<td>2006</td>
<td>2005</td>
</tr>
<tr>
<td>Success or Failure</td>
<td>Success</td>
<td>Success</td>
</tr>
<tr>
<td>Overall Percent Voting in Favor</td>
<td>61.20%</td>
<td>54.12%</td>
</tr>
<tr>
<td>adjusted R^2</td>
<td>0.605</td>
<td>0.594</td>
</tr>
<tr>
<td>Republican margin in nearest presidential election (%)</td>
<td>-12.477</td>
<td>-0.13</td>
</tr>
<tr>
<td>t-score</td>
<td>-13.418</td>
<td>-2.187</td>
</tr>
<tr>
<td>Social Economic Status (SES)</td>
<td>8.782</td>
<td>0.062</td>
</tr>
<tr>
<td>t-score</td>
<td>4.388</td>
<td>0.986</td>
</tr>
<tr>
<td>Hardship indicator</td>
<td>7.804</td>
<td>0.101</td>
</tr>
<tr>
<td>t-score</td>
<td>1.843</td>
<td>1.026</td>
</tr>
<tr>
<td>% African-American residents</td>
<td>-3.838</td>
<td>-0.039</td>
</tr>
<tr>
<td>t-score</td>
<td>-0.899</td>
<td>-0.438</td>
</tr>
<tr>
<td>% Latino residents</td>
<td>11.499</td>
<td>1.44</td>
</tr>
<tr>
<td>t-score</td>
<td>5.01</td>
<td>1.837</td>
</tr>
<tr>
<td>% of residents under the age of 18</td>
<td>18.154</td>
<td>0.329</td>
</tr>
<tr>
<td>t-score</td>
<td>2.596</td>
<td>2.244</td>
</tr>
<tr>
<td>% of residents over the age of 60</td>
<td>26.981</td>
<td>0.01</td>
</tr>
<tr>
<td>t-score</td>
<td>6.892</td>
<td>0.067</td>
</tr>
<tr>
<td>% residents who are homeowners</td>
<td>0.703</td>
<td>0.095</td>
</tr>
<tr>
<td>t-score</td>
<td>0.242</td>
<td>1.094</td>
</tr>
<tr>
<td>Index for Population Density</td>
<td>0.848</td>
<td>0.034</td>
</tr>
<tr>
<td>t-score</td>
<td>0.273</td>
<td>0.351</td>
</tr>
<tr>
<td>Near distance to central city</td>
<td>0.649</td>
<td>-0.075</td>
</tr>
<tr>
<td>t-score</td>
<td>2.66</td>
<td>1.866</td>
</tr>
<tr>
<td>Distance to nearest highway</td>
<td>25.737</td>
<td>-1.722</td>
</tr>
<tr>
<td>t-score</td>
<td>2.295</td>
<td>0.287</td>
</tr>
<tr>
<td>% Commuters</td>
<td>3.26</td>
<td>-0.039</td>
</tr>
<tr>
<td>t-score</td>
<td>1.179</td>
<td>-0.752</td>
</tr>
<tr>
<td>% housing built since 1980</td>
<td>2.658</td>
<td>0.082</td>
</tr>
<tr>
<td>t-score</td>
<td>1.525</td>
<td>1.663</td>
</tr>
<tr>
<td>% workers taking public transit</td>
<td>1.773</td>
<td>0.519</td>
</tr>
<tr>
<td>t-score</td>
<td>0.194</td>
<td>1.392</td>
</tr>
<tr>
<td>Simpson index (3 categories)</td>
<td>0.794</td>
<td>-0.037</td>
</tr>
<tr>
<td>t-score</td>
<td>0.397</td>
<td>1.986</td>
</tr>
<tr>
<td>Number of Cases (n)</td>
<td>297</td>
<td>79</td>
</tr>
</tbody>
</table>

57
<table>
<thead>
<tr>
<th></th>
<th>CA Prop 53</th>
<th>WA Ref 51</th>
<th>CA Prop 51</th>
</tr>
</thead>
<tbody>
<tr>
<td>Success or Failure</td>
<td>Failure</td>
<td>Failure</td>
<td>Failure</td>
</tr>
<tr>
<td>Overall Percent Voting in Favor</td>
<td>36.30%</td>
<td>38.42%</td>
<td>41.40%</td>
</tr>
<tr>
<td>adjusted R²</td>
<td>0.622</td>
<td>0.584</td>
<td>0.705</td>
</tr>
<tr>
<td>Republic margin in nearest presidential election (%)</td>
<td>9.909</td>
<td>10.79</td>
<td>9.527</td>
</tr>
<tr>
<td>t-score</td>
<td>14.051</td>
<td>11.07</td>
<td>9.678</td>
</tr>
<tr>
<td>Social Economic Status (SES)</td>
<td>-5.319</td>
<td>-5.39</td>
<td>34.38</td>
</tr>
<tr>
<td>t-score</td>
<td>-3.501</td>
<td>-2.84</td>
<td>7.336</td>
</tr>
<tr>
<td>Hardship indicator</td>
<td>7.019</td>
<td>8.434</td>
<td>-35.048</td>
</tr>
<tr>
<td>t-score</td>
<td>2.176</td>
<td>2.269</td>
<td>-2.492</td>
</tr>
<tr>
<td>% African-American residents</td>
<td>2.393</td>
<td>5.293</td>
<td>46.665</td>
</tr>
<tr>
<td>t-score</td>
<td>0.739</td>
<td>1.576</td>
<td>1.949</td>
</tr>
<tr>
<td>% Latino residents</td>
<td>-13.2</td>
<td>-9.04</td>
<td>-7.274</td>
</tr>
<tr>
<td>t-score</td>
<td>-7.534</td>
<td>-4.67</td>
<td>-0.218</td>
</tr>
<tr>
<td>% of residents under the age of 18</td>
<td>1.45</td>
<td>-15.6</td>
<td>-51.825</td>
</tr>
<tr>
<td>t-score</td>
<td>0.274</td>
<td>-2.5</td>
<td>-2.089</td>
</tr>
<tr>
<td>% of residents over the age of 60</td>
<td>-6.059</td>
<td>-8.32</td>
<td>0.513</td>
</tr>
<tr>
<td>t-score</td>
<td>-2.036</td>
<td>-2.52</td>
<td>0.033</td>
</tr>
<tr>
<td>% residents who are homeowners</td>
<td>-1.6</td>
<td>1.486</td>
<td>-3.18</td>
</tr>
<tr>
<td>t-score</td>
<td>-0.84</td>
<td>0.679</td>
<td>-0.98</td>
</tr>
<tr>
<td>Index for Population Density</td>
<td>-6.59</td>
<td>-4.1</td>
<td>-22.7</td>
</tr>
<tr>
<td>t-score</td>
<td>-3.2</td>
<td>-2.2</td>
<td>-2.03</td>
</tr>
<tr>
<td>Near distance to central city</td>
<td>-0.35</td>
<td>-0.21</td>
<td>-18.2</td>
</tr>
<tr>
<td>t-score</td>
<td>-2.19</td>
<td>-1.33</td>
<td>-7.15</td>
</tr>
<tr>
<td>Distance to nearest highway</td>
<td>6.218</td>
<td>17.28</td>
<td>-1.03</td>
</tr>
<tr>
<td>t-score</td>
<td>0.843</td>
<td>2.58</td>
<td>-0.03</td>
</tr>
<tr>
<td>% Commuters</td>
<td>3.368</td>
<td>4.5</td>
<td>-4.16</td>
</tr>
<tr>
<td>t-score</td>
<td>1.852</td>
<td>2.67</td>
<td>-1.13</td>
</tr>
<tr>
<td>% housing built since 1980</td>
<td>5.06</td>
<td>4.393</td>
<td>-1.46</td>
</tr>
<tr>
<td>t-score</td>
<td>4.462</td>
<td>3.927</td>
<td>-0.61</td>
</tr>
<tr>
<td>% workers taking public transit</td>
<td>10.28</td>
<td>0.052</td>
<td>11.96</td>
</tr>
<tr>
<td>t-score</td>
<td>1.709</td>
<td>0.009</td>
<td>0.525</td>
</tr>
<tr>
<td>Simpson index (3 categories)</td>
<td>-1.96</td>
<td>-0.73</td>
<td>-21.5</td>
</tr>
<tr>
<td>t-score</td>
<td>-3.17</td>
<td>-0.79</td>
<td>-12.4</td>
</tr>
<tr>
<td>Number of Cases (n)</td>
<td>298</td>
<td>297</td>
<td>75</td>
</tr>
</tbody>
</table>
Beyond partisan mobilization, each of the successful ballot measures also brought together a coalition composed of both privileged and disadvantaged constituencies. On the one hand, higher socioeconomic status contributed significantly to local referendum support in both of the successful cases. For Proposition 1B, it is a consistent predictor that even gains in significance in the full model (t=3.727). For Measure 1, it is significant only in the compositional model (t=4.955). In two of the three unsuccessful ballot measures, however, socioeconomic status is instead a negative predictor. As in many of the county transportation funding measures, mobilization of affluent communities appears critical to success.

Communities with more children, a variable generally correlated with the suburbs, provided part of the margin of victory for both measures. For Issue One this was a consistent predictor (t=2.244 in the full model). For Proposition 1B, it was significant in the compositional model (t=2.596) but lost its significance in the full model to several contextual indicators for suburban communities.

At the same time, multivariate analysis confirms the importance of more disadvantaged and minority communities to the winning coalitions. Socioeconomic hardship itself is only a significant predictor in the case of Proposition 1B (B=10.255, t=2.015). As might be expected in light of the large Latino presence in California, support from Latino communities also made a major contribution to the measure’s success (B=11.853, t=4.516). In Ohio as well, Latinos were a significant predictor in the even approaches .05 significance in the full model. In the vote on Proposition 1B, concentrations of older residents also emerge as the most significant single predictor.

Although contextual influences were generally less consistent, they also contributed to the difference between success and failure. On the one hand, Proposition 1B and Issue 1 still drew some support from urban concentrations. Population density, a predictor of lower support for both California Proposition 53 (t=-2.20 in the full model) and Washington Referendum 51 (t=-2.03 in the contextual model), bore no significant relation to the vote for either successful measure.

On the other hand, mobilization of suburbs was also an element in the winning coalitions. Beyond the stronger support among communities with children, the contextual variables also affirmed the importance of the suburbs. Distance to the CBD was a significant predictor of lower vote totals for both Proposition 51 (t=-2.19 in the contextual model) and Referendum 51 (t=-4.52). It fell short of significance at p=.05 for Issue 1, and emerged as a significant positive predictor of the vote for Proposition 1B (t=2.66 in the contextual model). New growth, as measured by the variable for new housing, is a significant predictor in both of the successful cases but also two of the unsuccessful ones.

Partly reflecting differences in the referenda, communities with commuters and public transit were significant predictors of the vote for 1B but only inconsistently so for the other California referenda. Comparing Proposition 1B to these two previous referenda demonstrates two different ways that earlier efforts had failed to assemble a majority.

For Proposition 51 in 2002, the missing elements included higher status areas and suburbs. Socioeconomic status was negatively related to support. Most of the contextual sources of support for Proposition 1B, including commuters, distance from the central city and distance from highways were missing. Even among some targeted communities,
the measure also failed to win as much support as Proposition 1B. Latino communities gave no additional support, and African American communities opposed it. Even communities with more transit users failed to mobilize.

For Proposition 53, the main shortcomings were instead among Democratic constituencies. The Measure mobilized Republican communities and suburbs, including some areas with higher hardship. Low density, distance from highways, commuters and new housing each predicted significant portions of support. Other communities that would ultimately support Proposition 1B had not joined this electoral coalition. Support was significantly lower among Latinos, communities with children, and older residents. Even higher status places mobilized significantly against the measure.

There are also indications of differences between the regions. In the Cincinnati region congestion presented less of a problem than in California, and transit was not only more limited but not an object of funding under Issue 1. These conditions help to explain why the contextual variables like transit users and commuters were mostly insignificant predictors of the vote there.

Dummy variables for metropolitan regions in California also suggested differences between the metropolitan regions. For Proposition 1B, stronger support related to congestion. Support was strongest in the Riverside and Oxnard areas, where congestion had risen most sharply to high levels. It also ranged significantly higher in Los Angeles and San Francisco. Congestion also may have exerted regional effects of this sort in the vote for Propositions 51 and 53, through significantly less support in the metropolitan area with the least congestion (Fresno) for either measure.

Full multivariate analysis of this kind thus affirms several consistent patterns in electoral coalition-building. The successful mixed-mode funding referenda have won approval from both higher status groups and minorities, from both urban and growing suburban places, and from bipartisan constituencies. Successful referenda for both highway and mixed-mode funding have relied on support from urban, Democratic and disadvantaged minority communities. The state funding referenda that have fallen short have clearly failed to mobilize these constituencies with diverse interests alongside their core suburban areas of support.

Alternative Framing of Referenda on Transportation Funding

Other referenda that have had major impacts on transportation funding have framed choices for voters that do not directly involve allocations among modes. Measures of this kind have ranged from the highly popular state referenda to protect transportation funding from general purpose uses in California to a series of controversial referenda concerning fees and taxes dedicated to transportation purposes in Washington

4 With these regional dummies included, hardship dropped to insignificance in the models for Proposition 1B. Because of this multicollinearity, and because the dummy variables did not add appreciably to the R squared, they do not appear in the final models.

5 The Los Angeles area also registered significantly weaker support for Proposition 51, and the San Francisco area significantly stronger support for Proposition 53.
State. The variety among these measures and the less direct connection to specific local interests makes them less consistently predictable than the funding measures themselves. The clearest consistent influence on their success has been the mobilization of suburban majorities in both states.

a. Expectations about effects from alternative framing. According to Hypothesis 6, a funding measure that poses an allocational choice to voters among uses and projects frames the question of funding at least partly in terms of divisible local goods. When a ballot measure frames the issue in terms of what rules show apply, it frames the question in terms of collective goods. This framing discourages coalition-building among specific place-linked local interests.

As a result, majoritarian logics are more likely to prevail. Rather than the balance between opposed metropolitan interests that prevailed in the successful funding referenda, the suburban, middle class and affluent majority should dominate successful coalitions. Since highways remain the main priority in state transportation funding in both states, a measure for protection of existing state transportation funding may also mobilize underlying local interests. Any divisible local goods from such a measure have special drawing power for suburban majorities.

For measures that cut transportation funding, divisible local goods can also be at stake. A measure that directly impacts funding for local transit systems, for instance, can give rise to the same city-suburban divisions, and the same problems of coalition-building, as in funding measures.

b. Ballot measures compared. This analysis examined six state ballot measures. Three highly popular measures in California had framed transportation funding in terms of protecting established funds for transportation from diversion to other purposes.

--Proposition 2 in 1998 amended the state Constitution to place a number of restrictions on the lending of funds from an already established Transportation Fund to the state General Fund for other uses. This measure passed with 75.4 percent of the vote.

--Proposition 42 in 2002 amended the state Constitution to require that revenues from gasoline and diesel fuel taxes be used for mass transportation, public transit and street and highway improvements. A 2/3 vote of the legislature was also required for changes to the percentage allocation of revenues. This measure was enacted with 69.1 percent of the vote.

--Proposition 1A in 2006, building on Proposition 42, further amended the Constitution to protect state sales tax revenues designated for transportation purposes from use for general purposes, and require repayment of any funds borrowed from the state Transportation Fund. This measure won easily with 77 percent of the vote.

Three more closely contested measures in Washington State were framed in opposition to either highway or transit funding.

--Referendum 695 in 1999 mandated voter approval for all state and local tax increases, repealed all existing motor vehicle license fees and taxes (which had previously gone to fund transportation infrastructure), and replaced them with a flat $30 license fee for all vehicles. This measure won handily with 56.16 percent of the vote.

--Referendum 776 in 2002 reaffirmed the $30 license fee for all vehicles including light trucks, and repealed a number of local-option vehicle excise fees and...
Table 17. Local Contextual Correlates of Support for Referenda to Protect or to cut back Transportation Funding

<table>
<thead>
<tr>
<th>Type of Referendum</th>
<th>(a) Protection of Funds</th>
<th>(b) Highway and Transit Opposition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>CA Prop 1A</td>
<td>CA Prop 2</td>
</tr>
<tr>
<td>Success or Failure</td>
<td>Success</td>
<td>Success</td>
</tr>
<tr>
<td>Overall Percent Voting in Favor</td>
<td>77.00%</td>
<td>75.40%</td>
</tr>
</tbody>
</table>

Political Correlation
Republican margin in nearest presidential election (%)

<table>
<thead>
<tr>
<th></th>
<th>(a)</th>
<th>(b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Republican margin</td>
<td>0.413</td>
<td>0.061</td>
</tr>
</tbody>
</table>

Contextual Correlations

<table>
<thead>
<tr>
<th></th>
<th>(a)</th>
<th>(b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>% residents who are homeowners</td>
<td>0.228</td>
<td>0.173</td>
</tr>
<tr>
<td>Index for Population Density</td>
<td>-0.144</td>
<td>-0.059</td>
</tr>
<tr>
<td>Near distance to central city</td>
<td>0.349</td>
<td>-0.263</td>
</tr>
<tr>
<td>Distance to nearest highway</td>
<td>0.051</td>
<td>-0.07</td>
</tr>
<tr>
<td>% Commuters</td>
<td>0.139</td>
<td>0.043</td>
</tr>
<tr>
<td>% housing built since 1980</td>
<td>0.377</td>
<td>-0.246</td>
</tr>
<tr>
<td>% workers taking public transit</td>
<td>-0.281</td>
<td>0.325</td>
</tr>
<tr>
<td>Simpson index (3 categories)</td>
<td>0.252</td>
<td>-0.546</td>
</tr>
</tbody>
</table>

Contextual Partial Correlation controlling for political variable

<table>
<thead>
<tr>
<th></th>
<th>(a)</th>
<th>(b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>% residents who are homeowners</td>
<td>0.045</td>
<td>0.166</td>
</tr>
<tr>
<td>Index for Population Density</td>
<td>0.045</td>
<td>-0.034</td>
</tr>
<tr>
<td>Near distance to central city</td>
<td>0.176</td>
<td>-0.296</td>
</tr>
<tr>
<td>Distance to nearest highway</td>
<td>0.014</td>
<td>-0.075</td>
</tr>
<tr>
<td>% Commuters</td>
<td>0.201</td>
<td>0.055</td>
</tr>
<tr>
<td>% housing built since 1980</td>
<td>0.254</td>
<td>-0.287</td>
</tr>
<tr>
<td>% workers taking public transit</td>
<td>-0.026</td>
<td>0.413</td>
</tr>
<tr>
<td>Simpson index (3 categories)</td>
<td>0.244</td>
<td>-0.546</td>
</tr>
</tbody>
</table>

Number of Cases (n)

<table>
<thead>
<tr>
<th></th>
<th>(a)</th>
<th>(b)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>299</td>
<td>296</td>
</tr>
</tbody>
</table>
taxes that had paid for roads and transit. This measure won narrowly with 51.47 percent of the vote.

--Referendum 912 in 2005 proposed to repeal a number of motor vehicle fuel taxes that had been enacted by the legislature to fund transportation improvements. This measure was defeated with 45.38 percent of the vote.

c. Political partisanship. For both sets of referenda, the correlations with partisan voting tell a straightforward, consistent story (Table 17).

Referenda to protect transportation funding clearly have won support that is either bipartisan or Republican. In two of the three California measures, the correlation with Republican voting ranged above .4. Even in the third it was only slightly negative, suggesting no significant relation rather than a concentration among Democratic areas. In the two instances in which opposition to highways and transit proved successful, it garnered more support form Republican communities than in the case where a similar referendum failed.

d. Spatial contexts: Distance, commuters, homeowners. Between the largely consensual California ballot measures and the hotly contested measures in Washington State, the effects of spatial contexts differed widely.

Although support for the three California ballot measures was consistently high, the spatial correlates of that support varied starkly between Proposition 42 and the other two measures (Table 17). Higher homeownership rates correlated significantly with support for all three measures (.173 to .314). The vote Propositions 1A and 42 concentrated more in more peripheral areas with new housing, more economic diversity, and less transit use. Support for Proposition 2 correlated negatively with each of these variables. Especially since all of the measures passed comfortably, it is impossible to point to any distinct metropolitan constituency as critical for the passage of these measures.

By contrast, the correlates of support for the successful state referenda in opposition to transportation funding tell a clear story of metropolitan coalition-building, Washington Referenda 695 and 776, in comparison with the unsuccessful Referendum 912 there. Support for all three measures concentrate in communities that might be expected to have interests in highways over transit. But Referendum 912 had fallen short with support that concentrated in less densely populated places (-.385), in more peripheral localities (.526), and in places with fewer transit users (-.528). The stronger support for Referenda 695 and 776 had concentrated less in denser places (-.325 and - .268), or more peripheral locations (.38 and .498). At the same time, it had concentrated more among localities with more diverse occupational structures (.583 and .527), and less public transit use (-.625 and -.621). Referendum 695 had gained additional support from communities with more commuters (.259) and more new housing (.254). The central urban areas that opposed these measures were the same ones that in the following years would vote decisively to restore cuts in tax funding through such local referenda as Measure 1 in King County and Snohomish counties. Referenda 695 and 795 had succeeded in winning over parts of these same areas for an agenda of transportation tax cuts.
Table 18. Social and Demographic Correlates of Support for State Referenda to Protect and Cut Transportation Funding

<table>
<thead>
<tr>
<th>Name</th>
<th>(a) Protection of Funds</th>
<th>(b) Highway and Transit Opposition</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CA Prop 1A</td>
<td>CA Prop 2</td>
</tr>
<tr>
<td>Success or Failure</td>
<td>Success</td>
<td>Success</td>
</tr>
<tr>
<td>Overall Percent Voting in Favor</td>
<td>77.00%</td>
<td>75.40%</td>
</tr>
</tbody>
</table>

Partisanship Correlation

Republican margin in nearest presidential election (%)

| | 0.413 | 0.061 | 0.439 | 0.584 | 0.385 | 0.14 |

Compositional Correlation

Social Economic Status (SES)

| | 0.152 | 0.671 | -0.02 | -0.543 | -0.488 | -0.475 |

Hardship indicator

| | -0.101 | -0.629 | -0.094 | 0.202 | 0.135 | 0.066 |

% African-American residents

| | -0.172 | -0.063 | -0.038 | 0.01 | -0.09 | -0.212 |

% Latino residents

| | 0.049 | -0.643 | -0.08 | 0.248 | 0.126 | 0.06 |

% of residents over the age of 60

| | 0.107 | 0.353 | 0.207 | -0.405 | -0.499 | -0.289 |

% of residents under the age of 18

| | 0.099 | -0.613 | 0.068 | 0.48 | 0.533 | 0.411 |

Compositional Partial Correlation controlling for political variable

Social Economic Status (SES)

| | -0.204 | 0.703 | -0.172 | -0.701 | -0.407 | -0.6 |

Hardship indicator

| | -0.033 | -0.688 | 0.092 | 0.42 | 0.107 | 0.197 |

% African-American residents

| | -0.053 | -0.046 | 0.138 | -0.193 | -0.101 | -0.321 |

% Latino residents

| | 0.147 | -0.697 | 0.132 | 0.167 | 0.055 | -0.01 |

% of residents over the age of 60

| | 0.055 | 0.355 | 0.11 | -0.419 | -0.431 | -0.221 |

% of residents under the age of 18

| | 0.069 | -0.613 | 0.135 | 0.544 | 0.489 | 0.411 |

Number of Cases (n)

| | 299 | 296 | 298 | 146 | 141 | 86 |
Consistent with Hypothesis 6, patterns of support for ballot measures to protect transportation funding show more only limited indications of consistent coalition-building. However, coalition-building in opposition to transportation funding has succeeded with support from a range of suburban electoral constituencies.

e. Socioeconomic status, race and ethnicity. The local demographic correlates of voting also point to different dynamics of support for the two types of referenda (Table 18). For the successful Washington State measures to cut transportation funding, there is evidence of coalition-building.

For the California measures to protect transportation funding, the demographic correlates of stronger support were mostly inconsistent. A significant bias of support toward higher status communities (.671) and away from poor (-.629) or Latino communities (-.643) characterizes support for Proposition 2. But the strongest correlation with support for either of the other Propositions is .207 (between older residents and support for Proposition 42).

The referenda that succeeded in cutting tax-based highway and transit funding in Washington State appear to have relied on appeals to the demographics of suburban communities (Table 18). Support for both the defeated and the victorious referenda there concentrated significantly among communities with lower socioeconomic status (-.312 to -.488). The strongest differences associated with the successful referenda came among areas with fewer older residents (-.405 and -.499, compared with -.289 for Referendum 912) and communities with more children (.533 and .48, compared with .411 for Referendum 912). Support for both Referendum 695 and Referendum 776 also came from areas with slightly greater hardship (.135 and .201, compared to .066 for Referendum 912).

f. Multivariate tests. Multivariate analysis confirms the ecological diversity of the support for the three referenda that established protections on transportation funding, and clarifies the dynamics of the electoral coalitions that formed around the measures to cut transportation funding (Table 19).

The most consistent element that multivariate models highlighted in the ecological sources of support for all three of these referenda was the lower support in communities with high hardship (in the full models, t = -3.14 for Proposition 1A and t= -4.16 for Proposition 2). Even this relationship remained weak for Proposition 42 (at best, t= -1.789 in the compositional model). African American areas supported Proposition 42 more (t=2.306 in the compositional model), and Proposition 2 slightly more, but Proposition 1A significantly less than other communities. Latinos supported Proposition 1A more but Proposition 2 less. Older communities supported Propositions 1A and 42 more than other places, but not Proposition 2. More distant communities and places with newer housing and with more manufacturing workers voted more strongly for Propositions 1A and 42. The same variables exerted a contrary or insignificant effect on support for Proposition 2. R squareds below .40 for both Proposition 1A and Proposition 42 further indicate how support varied independent of local spatial contexts or socioeconomic structures.

Comparing unsuccessful and unsuccessful transportation funding cuts also indicates more precisely how constituencies were mobilized successfully around the tax
Table 19. Multivariate Models of Support for Other State Referenda

(a) Protection of Transportation Funding

<table>
<thead>
<tr>
<th>Name</th>
<th>CA Prop 1A</th>
<th>CA Prop 2</th>
<th>CA Prop 42</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year</td>
<td>2006</td>
<td>1998</td>
<td>2002</td>
</tr>
<tr>
<td>Success or Failure</td>
<td>Success</td>
<td>Success</td>
<td>Success</td>
</tr>
<tr>
<td>Overall Percent</td>
<td>77.00%</td>
<td>75.40%</td>
<td>69.10%</td>
</tr>
<tr>
<td>Voting in Favor</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>adjusted R^2</td>
<td>0.29</td>
<td>0.305</td>
<td>0.61</td>
</tr>
<tr>
<td>Republican margin in nearest presidential election (%)</td>
<td>0.042</td>
<td>0.024</td>
<td>0.02</td>
</tr>
<tr>
<td>Social Economic Status (SES)</td>
<td>-0.057</td>
<td>-0.03</td>
<td>13.979</td>
</tr>
<tr>
<td>Hardship indicator</td>
<td>-3.96</td>
<td>-1.42</td>
<td>7.271</td>
</tr>
<tr>
<td>t-score</td>
<td>-5.534</td>
<td>-3.14</td>
<td>-3.949</td>
</tr>
<tr>
<td>% African-American residents</td>
<td>-0.014</td>
<td>-0.07</td>
<td>6.708</td>
</tr>
<tr>
<td>t-score</td>
<td>2.882</td>
<td>1.781</td>
<td>-1.56</td>
</tr>
<tr>
<td>% Latino residents</td>
<td>0.047</td>
<td>0.032</td>
<td>-3.448</td>
</tr>
<tr>
<td>t-score</td>
<td>2.282</td>
<td>1.781</td>
<td>-1.56</td>
</tr>
<tr>
<td>% of residents under the age of 18</td>
<td>0.044</td>
<td>-0.03</td>
<td>-18.97</td>
</tr>
<tr>
<td>t-score</td>
<td>0.885</td>
<td>0.051</td>
<td>-2.842</td>
</tr>
<tr>
<td>% of residents over the age of 60</td>
<td>0.081</td>
<td>0.092</td>
<td>-1.642</td>
</tr>
<tr>
<td>t-score</td>
<td>2.878</td>
<td>2.991</td>
<td>-0.359</td>
</tr>
<tr>
<td>% residents who are homeowners</td>
<td>0.021</td>
<td>-0.01</td>
<td>5.66</td>
</tr>
<tr>
<td>t-score</td>
<td>1.234</td>
<td>-0.42</td>
<td>1.93</td>
</tr>
<tr>
<td>Index for Population Density</td>
<td>-0.01</td>
<td>-0.01</td>
<td>-1.36</td>
</tr>
<tr>
<td>t-score</td>
<td>-0.43</td>
<td>-0.49</td>
<td>-0.44</td>
</tr>
<tr>
<td>Near distance to central city</td>
<td>0.044</td>
<td>0.004</td>
<td>-0.08</td>
</tr>
<tr>
<td>t-score</td>
<td>2.907</td>
<td>2.629</td>
<td>-0.34</td>
</tr>
<tr>
<td>Distance to nearest highway</td>
<td>0.076</td>
<td>0.072</td>
<td>-19.2</td>
</tr>
<tr>
<td>t-score</td>
<td>1.15</td>
<td>1.155</td>
<td>-1.72</td>
</tr>
<tr>
<td>% Commuters</td>
<td>0.051</td>
<td>0.059</td>
<td>-0.97</td>
</tr>
<tr>
<td>t-score</td>
<td>3.178</td>
<td>3.743</td>
<td>-0.35</td>
</tr>
<tr>
<td>% housing built since 1980</td>
<td>0.04</td>
<td>0.061</td>
<td>-4.11</td>
</tr>
<tr>
<td>t-score</td>
<td>3.929</td>
<td>5.823</td>
<td>-2.26</td>
</tr>
<tr>
<td>% workers taking public transit</td>
<td>0.057</td>
<td>0.064</td>
<td>49.5</td>
</tr>
<tr>
<td>t-score</td>
<td>1.069</td>
<td>1.248</td>
<td>5.65</td>
</tr>
<tr>
<td>Simpson index (3 categories)</td>
<td>0.019</td>
<td>0.019</td>
<td>-7.8</td>
</tr>
<tr>
<td>t-score</td>
<td>3.514</td>
<td>2.158</td>
<td>-8.01</td>
</tr>
<tr>
<td>Number of Cases (n)</td>
<td>297</td>
<td>296</td>
<td>296</td>
</tr>
</tbody>
</table>
(b) Cuts in Highway and Transit Funding

<table>
<thead>
<tr>
<th>Name</th>
<th>WA Ref 776</th>
<th>WA Ref 695</th>
<th>WA Ref 912</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year</td>
<td>2002</td>
<td>1999</td>
<td>2005</td>
</tr>
<tr>
<td>Success or Failure</td>
<td>Success</td>
<td>Success</td>
<td>Failure</td>
</tr>
<tr>
<td>Overall Percent Voting in Favor</td>
<td>51.47%</td>
<td>56.16%</td>
<td>45.38%</td>
</tr>
<tr>
<td>adjusted R²</td>
<td>0.666</td>
<td>0.78</td>
<td>0.535</td>
</tr>
<tr>
<td>Republican margin in nearest Presidential election (%)</td>
<td>21.755</td>
<td>14.8</td>
<td>14.22</td>
</tr>
<tr>
<td>t-score</td>
<td>4.436</td>
<td>3.59</td>
<td>2.85</td>
</tr>
<tr>
<td>Social Economic Status (SES)</td>
<td>-23.4</td>
<td>-0.369</td>
<td>-24.887</td>
</tr>
<tr>
<td>t-score</td>
<td>-4.371</td>
<td>-0.055</td>
<td>-5.01</td>
</tr>
<tr>
<td>Hardship indicator</td>
<td>34.879</td>
<td>15.09</td>
<td>17.593</td>
</tr>
<tr>
<td>t-score</td>
<td>2.171</td>
<td>0.773</td>
<td>1.045</td>
</tr>
<tr>
<td>% African-American residents</td>
<td>-29.081</td>
<td>17.08</td>
<td>-24.416</td>
</tr>
<tr>
<td>t-score</td>
<td>-1.063</td>
<td>0.621</td>
<td>-0.798</td>
</tr>
<tr>
<td>% Latino residents</td>
<td>38.908</td>
<td>40.29</td>
<td>2.931</td>
</tr>
<tr>
<td>t-score</td>
<td>1.019</td>
<td>0.93</td>
<td>0.078</td>
</tr>
<tr>
<td>% of residents under the age of 18</td>
<td>39.524</td>
<td>-7.948</td>
<td>29.21</td>
</tr>
<tr>
<td>t-score</td>
<td>1.395</td>
<td>-0.272</td>
<td>1.056</td>
</tr>
<tr>
<td>% of residents over the age of 60</td>
<td>-20.055</td>
<td>-5.105</td>
<td>-60.931</td>
</tr>
<tr>
<td>t-score</td>
<td>-1.134</td>
<td>-0.32</td>
<td>-3.468</td>
</tr>
<tr>
<td>% residents who are homeowners</td>
<td>-0.1</td>
<td>10.08</td>
<td>-3.49</td>
</tr>
<tr>
<td>t-score</td>
<td>0.0</td>
<td>1.277</td>
<td>-0.73</td>
</tr>
<tr>
<td>Index for Population Density</td>
<td>7.73</td>
<td>8.004</td>
<td>-8.89</td>
</tr>
<tr>
<td>t-score</td>
<td>0.49</td>
<td>0.454</td>
<td>-0.56</td>
</tr>
<tr>
<td>Near distance to central city</td>
<td>10.9</td>
<td>10.91</td>
<td>-0.46</td>
</tr>
<tr>
<td>t-score</td>
<td>3.03</td>
<td>2.186</td>
<td>-0.12</td>
</tr>
<tr>
<td>Distance to nearest highway</td>
<td>2.84</td>
<td>-16</td>
<td>-19.3</td>
</tr>
<tr>
<td>t-score</td>
<td>0.05</td>
<td>-0.257</td>
<td>-0.39</td>
</tr>
<tr>
<td>% Commuters</td>
<td>7.62</td>
<td>6.502</td>
<td>14.4</td>
</tr>
<tr>
<td>t-score</td>
<td>1.46</td>
<td>1.191</td>
<td>2.468</td>
</tr>
<tr>
<td>% housing built since 1980</td>
<td>3.02</td>
<td>3.957</td>
<td>4.481</td>
</tr>
<tr>
<td>t-score</td>
<td>0.89</td>
<td>0.863</td>
<td>1.331</td>
</tr>
<tr>
<td>% workers taking public transit</td>
<td>14.4</td>
<td>-3.439</td>
<td>-63.6</td>
</tr>
<tr>
<td>t-score</td>
<td>0.45</td>
<td>-0.099</td>
<td>-2.65</td>
</tr>
<tr>
<td>Simpson index (3 categories)</td>
<td>21.1</td>
<td>18.24</td>
<td>17.84</td>
</tr>
<tr>
<td>t-score</td>
<td>8.65</td>
<td>4.811</td>
<td>7.621</td>
</tr>
<tr>
<td>Number of Cases (n)</td>
<td>75</td>
<td>74</td>
<td>74</td>
</tr>
</tbody>
</table>

75 74 74 122 120 120 45 45 45
and funding cutbacks of Referenda 695 and 776 (Table 19). Most notably, Referendum 912 failed to win the support in Republican strongholds that both Referendum 695 and Referendum 776 had mobilized (t=3.551 and t=2.85, respectively). In addition, support for Referendum 912 remained concentrated among low hardship communities, among those with fewer workers taking public transit, among those more distant from the metropolitan center, and (more surprisingly) among places with larger proportions of commuters. Support from these areas proved insufficient to gain passage.

Review of the Main Tests

Despite the wide variation in the forms of referenda and the patterns of voting, several broad patterns have emerged. The tests confirm the conclusions of such previous studies as Werbel and Haas (2001) and Middleton (1998) that a mixture of transportation modes and geographic parity have made transportation funding measures more appealing to voters. The ecological correlations, regressions and comparisons have also demonstrated why this is the case. As strategies for framing the choices for voters, they have help to build coalitions among the divergent local communities that make up U.S. metropolitan areas. The results thus provide helpful insights both into ways that transportation funding can be made viable in a world of ballot-box finance, and into the wider possibilities for effective metropolitan governance.

The analysis has employed several types of variation in voting patterns to test the hypotheses: (1) variations in support for successful ballot measures according to the ecological characteristics of communities, (2) comparison over time between results of successful and unsuccessful ballot measures in the same places (notably Fresno County, Santa Clara County and Sonoma County, California), and comparison of the ecological correlates of voting between successful and unsuccessful referenda in different counties or states. By and large, the results have confirmed the central hypotheses about the need for coalition-building (Hypotheses 2-4). Under certain limited circumstances, the hypothesis of middle class, suburban, white dominance (Hypothesis 1) applies. Infrastructure needs and pre-existing transportation infrastructure (Hypothesis 5) also exert important conditional influences on the prospects for referenda.

Washington state ballot measures 49 and 745, and to a lesser degree the 2000 vote in Sonoma County, enabled a direct comparison of the sources of support for highway referenda (Table 20). Here the results on the whole support the propositions of Hypotheses H2A and H3A. Support for the successful referendum correlates most strongly with indicators of less affluence, of larger numbers of minorities, of fewer homeowners and of economic diversity. Multivariate analysis confirmed relations with indicators of economic diversity, homeowners and lower socioeconomic status. Comparison affirmed that disadvantaged groups and even communities more reliant on transit contributed to the success of the highway referendum. A shift toward more support among Democratic communities contributed further to support (Hypothesis H4A). Middle class white suburbs had provided more of the support for the unsuccessful earlier measure. Additional support from urban, disadvantaged and Democratic areas enabled State Referendum 49 to pass.
Table 20. Results of Tests for Hypotheses about Highway Funding

<table>
<thead>
<tr>
<th>Hypothesis Description</th>
<th>Highway</th>
<th>(Correlates of successful referendum)</th>
<th>(Multivariate test)</th>
<th>(Correlates of comparative success)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H1 (Middle class, white, suburban dominance)</td>
<td>Disconfirmed</td>
<td>Disconfirmed</td>
<td>Disconfirmed</td>
<td>Disconfirmed</td>
</tr>
<tr>
<td>H2A (Place-linked coalitions with urbanized communities)</td>
<td>Partly confirmed, partly disconfirmed</td>
<td>Homeowners-, CBD Distance+, Econ. Div.+</td>
<td>Homeowners-, Econ. Div.+</td>
<td>Hwy Distance+, Commuters-, Transit+</td>
</tr>
<tr>
<td>H3A (Race, class, ethnic, age coalitions with disadvantaged communities)</td>
<td>Confirmed</td>
<td>SES-, Hardship+, Blacks+, Latinos+, Over 60-, Under 18+*</td>
<td>SES-, Hardship+</td>
<td>Hardship+, Blacks+, Latinos+, Over 60+, Under 18-+</td>
</tr>
<tr>
<td>H4A (Cross-partisan coalitions with Democratic communities)</td>
<td>Confirmed as condition of success</td>
<td>Republican+</td>
<td>Republican+*</td>
<td>Republican-+</td>
</tr>
<tr>
<td>H5A (Infrastructure needs)</td>
<td>Not applicable</td>
<td>Not applicable</td>
<td>Not applicable</td>
<td>Not applicable</td>
</tr>
<tr>
<td>H5B (Joint direct pro-transit interests)</td>
<td>Not applicable</td>
<td>Not applicable</td>
<td>Not applicable</td>
<td>Not applicable</td>
</tr>
<tr>
<td>H7 (Supermajoritarian effects)</td>
<td>Not applicable</td>
<td>Not applicable</td>
<td>Not applicable</td>
<td>Not applicable</td>
</tr>
</tbody>
</table>

NOTE: Correlations listed include either simple bivariate correlations or partial correlations controlling for partisanship. For change, a shift of .2 or more in the Pearson correlation was used as a cutoff; the direct indicates the direction of change. *significance indicated by consistency correlation or shift with and without control for partisanship.

Ballot funding for mass transit and alternatives to highways have are the most likely to validate the claim of middle class, white, suburban dominance (Table 21). Indeed, both the coalition-building hypotheses of H2B, H3B and H4B and this hypothesis point to the same dependence on this group. In the tests in Santa Clara County, support for the successful ballot measure in 2000 concentrated in areas of high commuting, low transit use, low hardship and a low minority presence. Comparison with the unsuccessful ballot measure six years later indicated that the strength of the vote these areas, along with higher SES, lower density communities, had made the difference for the earlier
Table 21. Results of Tests for Hypotheses about Transit Funding

<table>
<thead>
<tr>
<th>Hypothesis Description</th>
<th>Overall</th>
<th>Santa Clara A</th>
<th>S Clara A-A (Change 2000-2006)</th>
<th>Others (Comparative success)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H1 (Middle class, white, suburban dominance)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transit</td>
<td>Confirmed as decisive but not exclusive</td>
<td>Confirmed</td>
<td>Confirmed</td>
<td></td>
</tr>
<tr>
<td>H2B (Place-linked coalitions depend on suburban communities with less usage)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CBD Distance-, Commuters+, New Hsg-, Transit-, Econ. Diversity-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H3B (Race, class, ethnic, age coalitions depend on affluent, white communities)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Generally confirmed, except for Seattle area</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hardship-, Latinos-, Under 18-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H4B (Cross-partisan coalitions depend on Republicans)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Generally confirmed, except for Seattle area</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Confirmed (no partisan corr.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Democratic -</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H5A (Transportation needs)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Confirmed for Seattle area</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Not applicable</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H5B (Joint direct pro-transit interests)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Confirmed for Bay Area and Seattle counties</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Not applicable</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H7 (Supermajoritarian effects)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No clear patterns</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Not applicable</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTE: Correlations listed include either simple bivariate correlations or partial correlations controlling for partisanship. For change, a shift of .2 or more in the Pearson correlation was used as a cutoff; the direct indicates the direction of change.

*significance indicated by consistency of correlation or shift with and without control for partisanship.

A bipartisan distribution of the vote by communities in the successful measure also gave way in the failed measure to a concentration in Democratic bastions. Examination of wider patterns of success for county transit funding measures pointed to partly divergent logics of electoral success. In areas of high and widely distributed levels of mass transit, as Hypothesis 5B posited, more privileged, more suburban communities.
developed local interests in transit. In the Bay Area and in the Seattle metropolitan
counties, affluent, middle class and suburban constituencies formed an effective working
majority for transit funding. Elsewhere, building coalitions for transit funding measures
necessitated appeals across the class, ethnic and spatial lines that divide U.S.
metropolitan areas. Following either majoritarian or coalition-building logics, support
from middle class, affluent and suburban areas provided the fulcrum of support for transit
funding measures.

The divergent challenges of building support for either highway or transit funding
measures make it easier to understand why mixed-mode measures have emerged as the
approach of choice for many local officials. Mixed mode funding offers precisely the
mixture of local goods that is most likely to build broader coalitions among diverse
communities. Transit improvements can serve the urban and disadvantaged
constituencies that highway funding measures have struggled to attract; highway
improvements the suburban and affluent voters that transit funding often requires; and
each set of local goods can also be sold to voters as a collective benefit for both groups.

Hypotheses 2C and 3C posited that support for mixed referenda would combine
the patterns of voting for single modes. The overall patterns (Table 22) confirm and
further clarify how these dynamics work. In Fresno County overall support for the
successful 2006 ballot measure concentrated in the denser, lower income, more transit
oriented, higher minority communities. But comparison with support for the failed
measure of 2002 showed that communities with more homeowners, greater affluence and
older residents made much of the difference for success in the later vote. In Sonoma
County, comparison of the successful measure of 2004 with the unsuccessful transit-
centered measure of 2000 indicates a similar pattern. In comparison among the Los
Angeles referenda, communities with less transit, fewer commuters, less new housing and
more economic diversity also made part of the difference for success there.

The state mixed mode ballot measures enabled the most systematic tests of the
consequences from combining highways and transit (Table 23). Partly because of the
multivariate analysis that was possible here, the evidence of coalition-building was even
more unmistakable. Suburban interests in highways and in infrastructure more generally
again generated more intense support for ballot measures. More affluent communities, as
measured by the indicator for socioeconomic status, also gave the measures significantly
higher support. But support also concentrated among places with higher hardship, more
Latinos, more youth, and higher rates of transit use. Overall, Democratic communities
supported these measures significantly more than Republican ones.

The results partly confirm Hypothesis 1, and with it a major thesis of the literature
on metropolitan politics in the United States. Middle class, white and suburban
communities do play an important and in some circumstances a decisive role in the
electoral coalitions that pass transportation referenda. The most striking finding about
this hypothesis, however, is how little it explains. In voting on transit referenda, affluent
and middle class communities have often been decisive and sometimes dominated ballot
box funding. But ballot measures on highway and mixed mode transportation funding
have depended on support from urban, minority and disadvantaged communities. Cross-
metropolitan electoral coalitions, defined by divisible local goods that voters in different
communities have derived, have emerged as crucial to successful referenda. By this
Table 22. Results of Tests for Hypotheses about Mixed Transportation Ballot Measures (County level measures)

<table>
<thead>
<tr>
<th>Hypothesis</th>
<th>Overall</th>
<th>Fresno 2006</th>
<th>Fresno (Change 2002-2006)</th>
<th>Sonoma 2004</th>
<th>Sonoma (Change 2000-2004, from transit ref.)</th>
<th>Others (Comparative success)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H1 (Middle class, white, suburban dominance)</td>
<td>Disconfirmed (except for H5, and Fresno winning margin)</td>
<td>Disconfirmed</td>
<td>Confirmed as decisive but not exclusive</td>
<td>Disconfirmed</td>
<td>Confirmed as decisive but not exclusive</td>
<td>Disconfirmed</td>
</tr>
<tr>
<td>H2C (Place-linked coalitions dependent on both urban and suburban communities)</td>
<td>Generally confirmed (except for H5)</td>
<td>Homeowners-, Density+ Transit+ Econ. Div.-</td>
<td>Homeowners+, Density+, CBD Distance-, Hwy Distance**</td>
<td>CBD Distance-, Transit+, Econ. Div.**</td>
<td>Homeowners+, Commuters+, New Hsg*, Econ. Div.+*</td>
<td>(LA) Confirmed for social, not for place-linked; (Alameda) partly confirmed (LA) Density-, Commuters-, New Hsg-, Transit-, Econ. Div.-*</td>
</tr>
<tr>
<td>H3C (Race, class, ethnic, age coalitions dependent on both privileged and underprivileged communities)</td>
<td>Partly confirmed (except for H5, LA comparison)</td>
<td>SES-, Hardship+, Latinos+, Over 60-, Under 18+</td>
<td>SES+, Hardship-, Over 60+, Under 18+</td>
<td>Blacks +, Latinos-, Over 60-*</td>
<td>SES-, Hardship++, Blacks*, Latinos+, Over 60*, Under 18+</td>
<td>Latinos-, Under 18-</td>
</tr>
<tr>
<td>H4A/B (Cross-partisan coalitions dependent on both Democratic and Republican communities)</td>
<td>Generally confirmed</td>
<td>Democratic+</td>
<td>Republican+</td>
<td>Democratic+</td>
<td>Republican-</td>
<td>Disconfirmed</td>
</tr>
<tr>
<td>H5A (Transportation needs)</td>
<td>Partly confirmed</td>
<td>Not applicable</td>
<td>Not applicable</td>
<td>Not applicable</td>
<td>Not applicable</td>
<td>Partly confirmed (failure in Ventura County)</td>
</tr>
<tr>
<td>H5B (Joint direct pro-transit interests)</td>
<td>Confirmed for Sonoma, Alameda</td>
<td>Not applicable</td>
<td>Disconfirmed</td>
<td>Partly confirmed</td>
<td>Partly confirmed</td>
<td>Confirmed for Alameda</td>
</tr>
<tr>
<td>H7 (Supermajoritarian effects)</td>
<td>Confirmed (but not definitively)</td>
<td>Possible influence</td>
<td>Possible influence</td>
<td>Possible influence</td>
<td>Possible influence</td>
<td>Possible influence</td>
</tr>
</tbody>
</table>

NOTE: Correlations listed include either simple bivariate correlations or partial correlations controlling for partisanship. For change, a shift of .2 or more in the Pearson correlation was used as a cutoff; the direct indicates the direction of change.

*significance indicated by consistency correlation or shift with and without control for partisanship
Table 23. Results of Tests for Hypotheses about Mixed Transportation Ballot Measures (State level measures)

<table>
<thead>
<tr>
<th>Hypothesis</th>
<th>Mixed (Correlates of successful referenda)</th>
<th>Multivariate tests (Correlates of comparative success)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H1 (Middle class, white, suburban dominance)</td>
<td>Disconfirmed</td>
<td>Disconfirmed confirmed influence but not dominance</td>
</tr>
<tr>
<td>H2c (Place-linked coalitions dependent on both urban and suburban communities)</td>
<td>Confirmed</td>
<td>Homeowners-, Density+, CBD Distance+, New Hsg-, Transit+</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CBD Distance+, Hwy Distance+, Commuters+, New Hsg++, Transit+ SES++, Latinos++, Over 60+, Under 18+*</td>
</tr>
<tr>
<td></td>
<td>Confirmed</td>
<td>Homeowners-, CBD Distance-(CA only), Commuters-, New Hsg-</td>
</tr>
<tr>
<td>H3c (Race, class, ethnic, age coalitions dependent on both privileged and underprivileged communities)</td>
<td>Confirmed</td>
<td>Hardship+, Latinos+</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Democratic+</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Democratic+*</td>
</tr>
<tr>
<td>H4a/b (Cross-partisan coalitions dependent on both Democratic and Republican communities)</td>
<td>Partly confirmed (Democratic communities decisive)</td>
<td>Democratic+</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Democratic+</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Democratic+</td>
</tr>
<tr>
<td>H5A (Infrastructure needs)</td>
<td>Partly confirmed</td>
<td>Not applicable</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Partly confirmed</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Not applicable</td>
</tr>
<tr>
<td>H5B (Joint direct pro-transit interests)</td>
<td>Disconfirmed</td>
<td>Disconfirmed</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Disconfirmed</td>
</tr>
<tr>
<td>H7 (Supermajoritarian effects)</td>
<td>Not applicable</td>
<td>Not applicable</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Not applicable</td>
</tr>
</tbody>
</table>

NOTE: Correlations listed include either simple bivariate correlations or partial correlations controlling for partisanship.
*Significant variable throughout tests; other variables significant in at least one test.

logic, direct democracy has in fact furnished the basis for building coalitions between cities and suburbs, and between advantaged and underprivileged communities.

This result is consistent with a kind of electoral log-roll. Measures that combine specific benefits for different kinds of communities can piece together diverse interests into a majority or even a supermajority. In some instances, however, voting for successful referenda actually correlates more strongly with characteristics that do not correspond to specific local interests. This has occurred most clearly, as Hypothesis 6 posited, when a ballot measure frames the choice for voters not in allocational but in regulatory terms. In these cases, best exemplified by the ballot measures that protected state Transportation Funds in California, coalition-building has taken place around
collective goods rather than locally specific ones. The Washington ballot measures that opposed transportation spending evinced elements of this, as did measures to fund transit in the San Francisco-and Seattle metropolitan areas.

The presence of collective interests throughout a metropolitan area, as Hypothesis 5 posited, helps to account for some of these dynamics. High, dramatically increasing congestion generally made it easier to assemble a coalition around ballot measures to fund new infrastructure. Congestion has been especially effective in mobilizing suburban middle class constituencies to support ballot box funding. Similarly, a more extensive existing public transit system created more extensive joint goods for voters across a metropolitan area. This helped to explain how it was possible for the effective coalitions for transit and even for more general infrastructure funding to form in the San Francisco and Seattle metropolitan regions.

The analysis has more equivocal conclusions for the effects of supermajoritarian requirements (Hypothesis 7). In such counties as Fresno and Sonoma, this higher ballot threshold probably did lend additional impetus to efforts addressing the needs of diverse communities in the framing of ballot measures. The resulting ballot measures helped reinforced coalition-building. But in campaigns for majoritarian ballot measures like California Proposition 1B, the dynamics appear quite similar. How much of a difference the additional threshold made is thus unclear.

Conclusion and Recommendations

Increasingly, through the coalition-building that is clearly documented in these results, transportation ballots measures have succeeded in winning electoral support for infrastructure funding. If impediments to effective coalition-building remain, local officials have increasingly found ways to surmount them. By requiring local goods for diverse constituencies, ballot measures may even have helped to open up the policymaking process to groups that have historically been marginalized in transportation policymaking. Minorities and lower income urban residents number among these groups that are potentially empowered. Even the mixed measures here provided only a minority of funding for transit and other measures targeted at these groups. But as increasingly decisive constituencies for the success of transportation ballot measures, these groups retain a voice in policy that will be more difficult to ignore.

Direct democracy in transportation policy has encouraged a search for common ground between the interests of central city residents and the suburbanites in outlying areas. It has helped promote the development of transportation policies that balance the divergent interests of both constituencies. Successful referenda have framed questions about transportation infrastructure either as collective benefits to both urban and suburban residents, or as packages of local goods that link particular interests of different communities together. The approaches to funding that have resulted represent a significant effort to balance the interests of minority and majority constituencies, and to bridge metropolitan political divides.

Several caveats to these conclusions must be kept in mind. First, broad coalition-building among metropolitan interests in election results need not extend to the specifics of ballot measures themselves. Even though mixed modes help build electoral coalitions,
for instance, it remains unclear whether different proportional mixes had any effect on voter preferences. As the comparison between California Propositions 1B and 53 demonstrates, there is no consistent relation between proportions of transit funding and levels of urban support.

Second, the legislative and administrative allocation of funds from ballot measures need not correspond to the framing of the actual measure. Especially in Washington State, many ballot box measures have amounted to challenges to legislative decisions. In other instances, such as California Proposition 1B, the allocations carried out later under a measure have borne a limited relation at best to the patterns in expression of voter preferences. The ultimate consequences of ballot box measures need to be understood in terms of its effects on the entire policymaking process.

Finally, the factors that make a ballot-box funding measure more saleable for voters need not make for a better transportation policy in operational terms. The mixture of modes and the geographic parity that help to win a majority or a supermajority for a funding measure may undermine other aims of policy. Local goods to bring middle class and affluent groups into an electoral coalition, for instance, may produce a transportation infrastructure with fewer capacities to serve the interests of the most disadvantaged.

The need remains for more in-depth inquiry into the spatial and social bases of voter support for transportation measures. When ballot measures center tightly around specific projects and places, the most recent studies by Hannay and Wachs (2007) and Peterson et al. (2008) demonstrate that voters sometimes make decisions on the basis of fine-grained choices about the consequences for their neighborhood as well as their larger community. A better understanding of how different types of projects affect these decisions, or how different types of communities approach the same types of projects, awaits further inquiry along these lines. More sophisticated techniques, such as geographically weighted regression and procedures for ecological inference about individual voters (e.g. Peterson 2008; King, Rosen and Tanner 2004) should help to elaborate and confirm the patterns. The wide variations among regions in this study furnish insights that have yet to be incorporated in more detailed, micro-level accounts. A full understanding of ballot-box funding measures will require further scrutiny of both regional and neighborhood-level influences, and the interaction between them.

Implementation

The implications from this study do not lend themselves to specific recommendations for implementation. The findings do have significant implications for efforts to craft successful transportation policy where ballot measures are crucial to the process. In the electoral process, support from a range of different constituencies is crucial to securing approval. The confirmed hypotheses suggest which kind of coalitions are most successful for which type of measure. As the Conclusion and Recommendations section indicates, however, strategies for success at the ballot box need to be weighed in light of other policy considerations.
Appendix 1

Summary and Background Information on Referenda

(prepared by Maria Armoudian, Nathaniel Go, Doreen Grosvirt-Dramen and Lilyanne Ohanesian)

OHIO

State Issue One (2005)

Background:
State Issue #1 was an amendment to authorize the state of Ohio to issue $2 billion in bonds to improve local government infrastructure, provide financial assistance for research, and prepare economic development sites and facilities for industry, commerce, and industrialization, all for public purposes. The proposal authorized that $1.35 billion of the bonds be issued to pay for roads and bridges, wastewater treatment systems, water supply systems, solid waste disposal facilities, storm water and sanitary collection, and storage and treatment facilities. In doing so, State Issue #1 was in part a renewal of a popular public works program. The program has funded more than 10,200 local government projects in Ohio since it was approved by Ohio voters in 1987 and renewed in 1995 (Downing 2005). This transportation-related portion of the initiative had no political opposition.

The portion of the initiative that designated $500 million in bonds as the final funding component of the state’s $1.6 billion Third Frontier program for high-tech job creation and product innovation did face significant opposition. The amendment proposed to use the bonds to invest in research and development in support of Ohio industry, commerce, and business, including research and product innovation, development, and commercialization, and authorize state-supported institutions of higher education to issue obligations to pay costs of research and development purposes (Ohio Ballot Board 2005). Between the time that the program was started in 2002 and the initiative appeared on the ballot in 2005, $325 million of grants had been awarded, and 1500 jobs had been created or retained (Siegel 2005). The reason this part of the initiative faced opposition was that Ohio voters had narrowly rejected a similar bond proposal just two years before. The Columbus Dispatch reported that “Taft and Republican lawmakers resurrected the issue and repackaged it with infrastructure improvements in hopes of improving its chance of passage” (Johnson 2005 10B). The final part of this initiative authorized $150 million to prepare industrial sites for new businesses.

The campaign:
A bipartisan coalition of state leaders endorsed State Issue #1, including the Republican Governor Taft, Lieutenant Governor Bruce Johnson, State Attorney General
and State Auditor, as well as the Democratic former U.S. Senator John Glenn and current Senate Minority Leader. The diverse group of supporters included business and university leaders, chambers of commerce, farm groups, and labor unions. The issue was endorsed by 52 Ohio mayors, 48 city councils and township trustee boards and 18 county commissioners (Downing 2005). Senator Glenn’s co-chairs of the “Jobs for Ohio” campaign for State Issue #1 were AFL-CIO President William Burga, Plastic Trim Inc. CEO William Mercurio, and Trotwood clerk of council and president of the Ohio Municipal League Lois Singleton (Hershey 2005a B2).

According to Ohio Secretary of State finance reports, the Jobs for Ohio campaign raised nearly $3 million to persuade voters to pass State Issue 1. Major contributors included the “Ohioans for the Third Frontier” committee, Key Bank, American Electric Power, Limited Brands, Carl Lindner, Timken, National City Bank, and The Western & Southern Life Insurance Company. Some of the companies that contributed to the campaign had applied for state Third Frontier grants in 2005 and in 2006 (Hershey 2005b B1).

In contrast to 2003, when the Third Frontier program previously appeared on the ballot, its principal architect Governor Taft was for the most part absent in the campaign for State Issue #1. Between the time that the initiative lost 51 to 49 percent and the time that the Third Frontier re-appeared on the ballot, the Taft administration was embroiled in scandal, and the popularity ratings for the governor were consequently at a new low. Avoiding Taft and the Third Frontier program, the Issue #1 campaign focused on the idea of job creation, using the word “jobs” 10 times in one 30 second commercial (Siegel 2005b 08D). Meanwhile the campaign against the initiative used Taft in their ads to question whether voters should trust the Republican governor (Hershey 2005b).

Arguments for and against:

As reflected by the name of the campaign to pass State Issue #1, the main argument for the initiative’s passage was that the local road, bridge and water projects, industrial site preparation, and high-tech research it funded would create jobs, and without raising taxes. The proposed Third Frontier-related research was for such areas as alternative fuel, medicine, and biotechnology, areas that supporters argued would benefit all Ohioans. Another argument for the initiative was that it was a renewal of Ohio’s local government road and bridge building program. In addition, supporters argued that Issue #1 had strong bipartisan support in the Ohio legislature.

The main argument against State Issue #1 was that it would increase Ohio’s debt and eliminate taxpayer protections in the state constitution. One of these protections is the ban on government investment in private companies. Democratic critics argued that the amendment would lead to the Republican administration giving preference to Republican campaign contributors in distributing grant money. There was a general bipartisan concern that conflicts of interest could occur in the relationship between corporation and government such that the government would be unable to effectively regulate the companies with which it had built a business relationship.

Another argument against State Issue #1 was that the public works program that it proposed to provide funding for was not yet due for renewal and that there still existed bonds to pay the program regardless of whether the initiative passed. Critics contended that State Issue #1 combined several issues that had little in common, thus preventing
Ohioans from voting separately on various bond proposals. In particular they claimed that the popular public works program was being exploited in order to pass bonds for the Third Frontier program. Carlo LoParo, the spokesman of then Secretary of State Ken Blackwell, said “It was added to make it more attractive” (Craig 2005). Conservative groups such as the Christian Coalition of Ohio opposed the initiative because it did not include a ban on funding embryonic stem-cell research.

Butler County Measures 1 (2001) and 6 (2002)

In 1999, the Butler County Regional Transit Authority (BCRTA) began a series of fixed bus routes that enabled passengers to take express buses to county stops and park-and-ride lots for the Metro bus, which serves greater Cincinnati. Passengers could take an express bus to the Metro stop, then transfer to the bus for downtown Cincinnati. At its height, the BCRTA provided 1800 rides daily (Kamme 2002).

With cuts to state and federal funds for the service, the BCRTA went before the voters of Butler County in 2001 to request a quarter-cent sales tax increase to fund continued service. This measure lost with 44.8 percent of the vote. Local officials acknowledged the limited support for the measure, especially in the outlying suburbs of the county. “The real problem is the people who depend on this service make up about 5 percent of the county’s population,” said a councilman on the transit authority board. “People in the richer suburbs. . . don’t realize the heartbreak and tragedy of people who are essentially locked in their homes because they can’t get to a job or doctor or social life or anything else” (Edwards 2001).

After the defeat of the first measure, several local governments agreed to provide interim funding to keep BCRTA in operation as an interim measure. A second measure was then presented to voters the following year. Butler County Measure 1 in the November 2002 general election would have levied a five-year quarter-cent sales tax increase. The Transit Authority warned that unless this measure was approved, it would face the need to shut down all bus service and go out of business. Measure 1 failed by an even greater margin than before.

Hamilton County Issue Seven (2002)

Background:

This proposal was the first time since 1980 that the Southwest Ohio Regional Transit Authority has gone to the public for more money. If it had passed, it would have been the first major renovation and improvement to Metro, the county bus service, since it was created in 1972 (Pilcher 2002a). Like the last proposal to the federal government for a light-rail line, this did not receive local funding. Without local funding, it was not recommended by the FTA and so it was never taken to Congress (Pilcher 2002b). The local funding contribution towards the $2.7 billion MetroMoves plan would have been provided by a county sales-tax increase of a half-cent. Transit officials said they expected that the sales-tax would have raised $61 million towards construction and operations (Pilcher 2002a). In addition to local funding, Metro officials had expected to obtain half of the total cost from federal funds, and the other 25% of the cost from state funds (Pilcher 2002a).
The main component of the plan was a 60 mile $2.6 billion light-rail system that would have included 5 lines throughout the county. Also included in the proposal was a $100 million expansion to the city bus system. It would have created more east-west lines, cross-town routes, and transit hubs in the city and county. The complete system was expected to take 30 years to complete and attract 40 million rail riders a year (Dempsey 2002a).

The campaign:

Endorsers included Ohio Department of State Director Gordon Proctor, Metro general manager and CEO Paul Jablonski, the Ohio Rail Passengers Association, and local Democratic politician Greg Harris. Though advocates of the proposal spent more than $500,000, they were far outspent by anti-transit forces (Pilcher 2002c).

Arguments for and against:

Supporters argued that the plan would connect 95% of the people who lack access—the elderly, people with disabilities, and those households without an automobile—to all of the major destinations in Hamilton County. Furthermore, it would make 300,000 jobs in the north of the region easily accessible, create 36,000 new jobs, and add $5 billion to the local economy over the next three decades (Horstman 2002). Environmentalists in particular claimed that the sales tax only amounted to $1.30 a week, making it a relatively inexpensive way to relieve improve air quality (Horstman 2002). Supporters like Ken Pendergast, the former President of the Ohio Rail Passengers Association also believed that the proposal, and rail travel in general, would be a solution to the problem of overburdened interstates and inconvenient air travel (Dempsey 2002b).

The Ohio-Kentucky-Indiana Regional Council of Governments, which is in charge of the area’s transportation planning, argued that the cost of a rapid transit system like light rail—estimated at $2.6 billion—was too high for light rail to be a priority (No Money for Light Rail 2007). An advocacy group called Alternatives to Light Rail Transit (ALRT) argued that taxpayers would be obliged to pay even more should the cost outstrip the original budget (Alternatives to Light Rail Transit Position Paper 2007). Opponents also criticized the financing plan of the proposal because 75% of it was dependent on the annual budget battles in the state and national government. In fact, Ohio Governor Taft stated during the campaign that the state’s deficit and other budget priorities would make it difficult to pay its share towards the project (Horstman 2002). ALRT committee co-chairman and U.S. Representative Steve Chabot declared, “this is a huge chunk of federal money that could go toward more viable transportation projects than this plan, which I am convinced does not have the benefits that we are being told” (Congressmen among opponents of funding light rail 2002). Indeed, the ALRT argued that light-rail would not reduce traffic congestion but instead would increase downtown gridlock, that light-rail systems are too slow, and that they divide neighborhoods.

CALIFORNIA

State Proposition 2 (1998)

Background:
This proposition was presented to California voters in November of 1998 and passed by a margin of 75.4% to 24.6%. It involved the already existing Transportation Fund, having voters decide whether California’s Constitution should be amended to place restrictions on the lending of funds to the State General Fund from the Transportation Fund. Officially, the question was: Should the state Constitution impose conditions on the repayment of loans of transportation revenues to the General Fund and local entities? Fiscally, there would be no additional costs to the State.

The text that Proposition 2 sought to change stated: This article (Article XIX) shall not prevent the designated tax revenues from being temporarily loaned to the State General Fund upon condition that amounts loaned be repaid to the funds from which they were borrowed. The proposed amendment to this article would place limits on loaning tax revenues (from the gas and sales tax) to the General Fund. In order to lend money to the General Fund, one of three conditions must be met. The first option is that the loan must be repaid in full within the same fiscal year, “except that repayment may be delayed until a date not more than 30 days after the date of enactment of the budget bill for the subsequent fiscal year” (Proposition 2 – Full Text 1998). A second option, valid only under certain conditions, is that the loan must be repaid in full within three fiscal years. This is allowable only if: (1) a state of emergency has been declared by the Governor and this emergency “will result in a significant negative fiscal impact to the General Fund”; or (2) the “amount of General Fund revenues for the current fiscal year, as projected by the Governor in a report to the Legislature in May of the current fiscal year, is less than the aggregate amount of General Fund revenues for the previous fiscal year” (Proposition 2 – Full Text 1998). Finally, the third condition that can be met is for the Legislature to authorize “loans to local transportation agencies, cities, counties, or cities and counties” (Proposition 2 – Full Text 1998) for transportation purposes. These loans must be repaid, with interest, within four years of the date of borrowing. A further addition of Proposition 2 to the State Constitution calls for the establishment of local transportation funds, which are designated as trust funds.

The campaign:

The campaign for Proposition 2 had no organized opposition. This meant that not only was there no Official Argument Proposition 2 submitted, but there was also no financial campaign. This campaign was absolutely one-sided, with proponents seeking to convince voters rather than argue against an opposition. Financially, $201,201 was reported to the Secretary of State as raised in support of Proposition 2. A significant amount of the contributors were construction companies, or companies that would benefit from increased infrastructure contracting by the state.

Arguments for:

On the public stage, the central theme of the campaign in favor of Proposition 2 was “addressing real needs now and for the future” (Yes on Proposition 2 1998 B6). California’s transportation needs had been ignored for far too long. Furthermore, the fact that the State Government had the ability to take money intended for transportation for other purposes has prevented any meaningful improvements. “Proposition 2 will make sure your fuel tax dollars go where you voted for them to go” (Murray, Zaremberg, and Doser 1998). Fiscal responsibility was being called for. Also, emphasis was placed on
improved highway safety and maintenance as well as traffic congestion relief. To appeal to economically aware Californians, supporters further argued that “California's transportation system is the backbone of our state's economy. We depend on highways to get us to our jobs, our homes, our schools and for our fire, police, and other emergency service vehicles. Traffic congestion and bad roads hurt our economy by wasting our time, delaying freight, damaging our vehicles, and increasing pollution” (Murray, Zaremberg, and Doser 1998).

The Official Ballot Argument in Favor of the proposition was signed by: Kevin Murray, the Assembly Transportation Committee Chair; Allan Zaremberg, the California Chamber of Commerce President; and Donald R. Doser, the AFL-CIO Operating Engineers Business Manager. Additionally, the following organizations also supported the proposition: California Taxpayers' Association, State Federation of Labor, California Alliance for Jobs, League of California Cities, California Chamber of Commerce, California Manufacturers Association, California State Association of Counties, California Transit Association, Amalgamated Transit Union--AFL-CIO, and the California Trucking Association.

State Proposition 42 (2002)

Background:
On March 7, 2002, California voters passed Proposition 42 with a margin of 69% to 31%. This proposition/referendum amended the California Constitution to mandate that existing revenues from gasoline and diesel fuel sales taxes would be used for mass transportation, public transit and street and highway improvements beginning in the year 2008. It further imposed a 2/3 vote of the Legislature to suspend or modify the percentage allocation of the revenues. (Proposition 42 2002). Prop 42 was projected to deliver $36 billion over a 20-year period for highways, streets and transit, $7.7 billion of it in L.A. County (Skelton 2002 B6).

The campaign:

Supporters of the proposition included Governor Davis, the California Chamber of Commerce, transportation organizations and tax watchdog groups (Tamaki 2002 B6) such as California Taxpayers (McCarthy 2002 B11). Sponsors of the measure --basically road builders—spent roughly 3.5 million for TV ads by February 25 (Skelton 2002 B6). Governor Davis, in particular, lent his support to the measure after he suspended (due to the recession) the $6.8 billion Transportation Congestion Relief Program, which he had signed in 2000 (Skelton 2002 B6).

The opposition appeared late in the campaign season. On February 27, 2002, the Los Angeles Times reported that two large unions – the California Teachers Association (CTA) and the Service Employees International Union (SEIU) -- decided to oppose the measure following a number of bad newspaper editorials (Tamaki 2002 B6). Later, the firefighters joined in opposing the referendum (Tamaki 2002 B6). They argued that Prop 42 would both elevate transportation above other services by amending the Constitution and that it earmarked funds solely for transportation, thereby preventing schools and
other state services from accessing those revenues (Tamaki 2002 B6). Together, they contributed more than $2 million for their campaign to defeat Prop 42 (Lucas 2002 A4).

State Proposition 51 (2002)

Background:

This ballot measure, an initiative that appeared on the November general ballot, permanently allocated 30% of sales and use taxes raised from the sale or lease of motor vehicles to specific transportation projects, including highway expansion, specific freeway interchange improvements, mass transit improvements, bus purchases and expanding light and commuter rail. It also provided funds for environmental enhancement, transportation impact mitigation programs, and transportation safety programs (Proposition 51 2002). Voters rejected this proposition by a margin of 41% to 59% in the November General Election.

The campaign:

Supporters of Prop 51 appeared to be large land developers, such as the Irvine Company, the Crow Winthrop Development, Colton Properties, and William Lyon Homes (Pasco 2002 B3) along with some Native American Tribes, which would benefit from a rail being built to its casino. The initiative was written by the Sacramento-based nonprofit Planning and Conservation League (Vogel 2002 B6) and was mired in considerable fighting and accusations of wrong-doing. Some legislators accused the authors of the initiative of “pay to play” tactics (Vogel 2002 B6). Senate Budget Committee Chair Steve Peace called it called it “a car tax hike in disguise” because lawmakers would be forced to increase vehicle license fees to fill the hole created by the initiative when those funds were reallocated to transportation (Vogel 202 B6).

State Proposition 53 (2003)

Background:

Californian voters, in the special [recall] election of October 2003, voted against Proposition 53 by a margin of 63.7% (5.16 million) to 36.3% (2.94 million). This proposition involved redirection of California’s budget to fund infrastructure related projects. This would have involved no new sources of funding, but dealt solely with existing revenues.

The official question posed to voters was: “Should the California Constitution be amended to require specified percentages of General Fund revenues to be committed to pay-as-you-go infrastructure projects for state and local governments?” This would entail the creation of the California Twenty-First Century Infrastructure Investment Fund in the State Treasury. Into this, from 2006 until 2014, there would be regular transfers allocated as follows: 50% for improvements to infrastructure owned by the state; and 50% for improvements to infrastructure owned by local governments. This is what is meant by a ‘pay-as-you-go’ system. The official language of the proposition defines improvements as the “acquisition, construction, rehabilitation, modernization, or renovation of infrastructure” (Proposition 53 - Text). While transfers are expected each
year, there are revenue triggers “that would reduce or eliminate the transfer to the Infrastructure Fund when General Fund revenue performance is poor or less than estimated” (Proposition 53 - Text). However, the estimation for 2006-2007 was $850 million, which would grow into the billions of dollars in future years.

The campaign:

Taking place during the recall election, Proposition 53 did not get much attention from the Californian voters, overshadowed significantly by the recall itself. There were two main campaigns for Proposition 53: “No on Proposition 53, Taxpayers Against Runaway Deficits” and “Yes on Californian’s Infrastructure, Yes on 53.” The former reported total expenditures of $51,714.22 while the latter reported total expenditures of $124,797.13, nearly 1.5 times as much (Campaign Finance: No on Proposition 53). Only one other organization is listed on the California Secretary of State website as supporting Proposition 53; First Americans for a Better California IEC Sponsored by Pechanga Band of Mission Indians and Sycuan Band of the Kumeyaay Nation reported $1,502,663.00 for television ads. These ads, featuring gubernatorial candidate Lt. Gov. Cruz Bustamante appeared close to election day as a last-minute attempt to win votes. No organization that opposed Prop 53 reported anywhere near that amount, however, there were significantly more organizations opposed listed (27 versus 2). Of those, only eight organizations reported more than $10,000.

Proposition 53 “was unable to attract the funding needed for a full-blown campaign” (Mendel 2003 A11). Indeed, “backers stopped raising money for the proposition after a statewide poll by the Public Policy Institute of California showed the measure headed toward defeat, with 49 percent against to 21 percent in favor, in mid-September” (Mendel 2003). For both opponents and proponents it was difficult to garner any media attention while the recall dominated the scene. Moreover, “ballot summary that said schools and community colleges would be excluded from the money that would be set aside” (Mendel 2003) hurt the way Prop 53 was viewed by the public.

At a time when voters were choosing to get rid of a governor due to fiscal irresponsibility, it is no surprise that Prop 53 failed to pass, even though it involved transportation and infrastructure improvements. Indeed, the New York Times wrote: “Over the summer, confronted with a $38.2 billion deficit and a Republican legislative caucus refusing tax increases, Mr. Davis was forced to make unpopular cuts in spending while also papering over much of the crisis until next year” (Murphy 2003). What is interesting, however, is that, according to Edward L. Lascher, Professor of Public Policy at CSU Sacramento, “Most initiatives lose, but most of these initiatives to lock up money have passed” (Murphy 2003). What Lascher refers to is also known as ballot-box-budgeting. Californians have repeatedly voted to set aside parts of the state budget for issues such as transportation and public education.

Interestingly enough, the Republicans were the reason that Prop 53 was on the budget even though the State Legislature voted against it the previous year. Indeed, two major gubernatorial candidates, Arnold Schwarzenegger and State Senator Tom McClintock, “openly embraced the measure during the debate” even though both “made fiscal conservatism and tax restraint pillars of their campaigns” (Murphy 2003). The deeper irony lies in the fact that Governor Davis was deeply criticized for how he handled California’s fiscal situation, yet Prop 53 “would amount to another spending
obligation without any new way to pay for it, a fact that inevitably brings up the question of new taxes” (Murphy 2003).

In the end, however, the fiscal crisis that California was in led to Proposition 53’s failure to pass. Even the trigger mechanisms that would have been in place were flawed: “by linking spending merely to revenue estimates, [it] could trigger the infrastructure-spending transfers even in years when the state was facing ‘a significant shortfall’” (Why Prop. 53 Is not the Answer 2003 A20). Ballot Box budgeting was simply not what California needed in 2003.

Arguments for and against:

Noteworthy supporters who penned the official argument in favor of the proposition were: Jon Coupal, President of the Howard Jarvis Taxpayers Association; Allan Zaremberg, President of the California Chamber of Commerce; Caprice Young, Past President of the Los Angeles Unified School District; Dr. Peter Mehas, Superintendent of the Fresno County Office of Education; and Dan Pellissier, from ‘Yes on California’s Future, Yes on Prop. 53.’ Their central argument was that California had critical infrastructure needs that needed to be addressed immediately without raising taxes: “It will assure that your EXISTING tax dollars go where they are most needed, while fully protecting our commitment to schools and minimizing impacts on other important state programs” (Coupal, Zaremberg, and Craig).

Noteworthy opponents of Prop 53 were: Jack O’Connell, State Superintendent of Public Instruction; Lenny Goldberg, Executive Director of the California Tax Reform Association; and William Powers, Legislative Director of the Congress of California Seniors Association. Opponents emphasized that Prop 53 would aggravate California’s serious existing debt problem; the state, they argued, already has limited revenues with which to work with. Proposition 53 “creates a multi-billion dollar BLANK CHECK for political pork at a time when California is cutting funds for our schools, cutting health care programs, raising college tuition fees and cutting public safety programs” (Powers and Goldberg). Opponents also argued that education should be California’s top priority, which would not be the case if Prop 53 were to pass. The lack of accountability for the Legislature was also a point of contention, with no requirement that the Legislature actually follow the money spending plan. State Treasurer Phil Angelides “said these mandates-without-funding add to the difficulty of balancing the budget or bringing much-needed structural reform to the state's finances” (Why Prop. 53 Is not the Answer).

State Proposition 1A (2006)

Background:

In the November 2006 General Election, Californian voters passed Proposition 1A. Making up seventy-seven percent of the votes, 6.4 million voted for the proposition while 1.9 million voted against it. The question posed to voters was: “Should the California Constitution be amended to further protect the state sales tax revenues for transportation purposes from general-purpose use and require any funds borrowed to be repaid to the transportation fund?” Transportation funding, according to the State Attorney General, means funding primarily towards traffic congestion relief projects, safety improvements, and improvements to local streets and roads (Proposition 1A 2006).
This proposition builds on the constitutional amendment approved by voters with Proposition 42 in 2002. Proposition 42 mandated that revenues from the state sales tax and gas tax would go towards funding transportation improvements.

According to the Legislative Analyst’s Office, “California spends about $20 billion a year to maintain, operate, and improve its highways, streets and roads, passenger rail, and transit systems” (Proposition 1A 2006). Revenues from gasoline and diesel fuel taxes provide a significant portion of this funding. These taxes are the gas tax, which is “an excise tax of 18 cents per gallon on gasoline and diesel fuel,” and the sales tax, which is “a statewide six percent tax on the sale of gasoline and diesel fuel” (Proposition 1A 2006). The State Constitution already mandated that revenues from the gas tax go towards transportation purposes, specifically “constructing, maintaining, and operating public streets and highways, acquiring right of way and constructing public transit systems, as well as mitigating the environmental effects of these facilities” (Proposition 1A 2006). Proposition 42 further restricted most of the revenue from the sales tax towards transportation purposes as well as establish the Transportation Investment Fund.

The key issue with Prop 42, and the reason for Prop 1A, was that transfers could “be suspended when the state faces fiscal difficulties,” (Proposition 1A 2006) and it was not mentioned whether or not these borrowed transferred would be repaid. Using the constitutional amendment enacted by Prop 42 as its foundation, Prop 1A imposes additional safeguards to ensure that the revenues from the state sales tax go towards transportation purposes and borrowed revenues are repaid. The main points of the text of the proposition are as follows:

1. State sales tax revenues can be used only for transportation improvements.
2. If the transfers are suspended due to a state financial crisis, this is treated as a loan that must be repaid in full plus interest within three fiscal years.
3. In order to suspend the transfer of funds to the Transportation Fund, the Governor must issue a statement that suspension is necessary due to a fiscal crisis; AND the Legislature must enact a statute for the suspension of funds without adding any unrelated measures; AND a separate statute must be enacted to ensure that the suspended funds are repaid in full with interest within three fiscal years.
4. There can be a maximum of two suspensions in ten consecutive fiscal years AND no suspensions can be made if borrowed transfers have not been repaid to the Transportation Fund.

There is no direct fiscal impact from this proposition as it involves only the use of existing revenues. Indirectly, however, the more stringent regulations of suspending transfers can impact the state when facing a financial crisis.

The campaign:

Probably because this proposition built so heavily on Prop 42, which passed by a large margin in 2002, the campaign, fiscally, for Prop 1A was highly one-sided. Indeed, no significant opposition to the proposition was organized; only Jackie Goldberg, the Chair of the Assembly Education Committee signed the official arguments against Prop 1A.

Noteworthy proponents were: Thomas V. McKernan, President of the Automobile Club of Southern California (AAA); Michael Brown, Commissioner of the California
Highway Patrol; Marian Bergeson, Chair of the California Transportation Commission; Steve Krull, President of the California Police Chiefs Association; Mark Watts, Interim Executive Director of Transportation California; and Allan Zaremberg, President of the California Chamber of Commerce. The most prominent monetary supporters were California Alliance for Jobs Rebuild California Committee ($1,800,000), Let’s Rebuild California ($1,650,000) and Granite Construction Inc ($700,000) (Proposition 1A 2006).

Arguments for and against:

Primary arguments against the proposition involved the danger of having too much of California’s budget on “automatic pilot,” preventing the Governor and Legislature from being able to get the state out of fiscal hardship as their hands would be tied (Proposition 1A 2006). Moreover, such legislation would prevent the Governor and Legislature from setting priorities during fiscal hardship. Goldberg argues that “education, healthcare, public safety, or childcare funds” (Proposition 1A 2006) will suffer during a recession if transportation funds are unavailable to use. Goldberg also cites the $20 billion that Proposition 1B will provide towards transportation improvements. Essentially, the argument against Prop 1A comes down to the fear that public education is not a top priority; transportation improves at the expense of education.

Those in favor of Prop 1A argued that transportation needs to be a priority and that Californian voters had already made their voices heard with Prop 42. The problem with the existing legislation was that a loophole existed in the law. It was too easy for politicians to use funds set aside for transportation purposes for other, unrelated purposes, which brought “critical safety and congestion relief projects to a halt” (Proposition 1A 2006). Transportation funding had to be ensured; Californians were already paying the gas taxes and the supporters of Prop 1A believed that the revenues from this should go strictly towards transportation improvements that will benefit the drivers of California. The economic argument used for the importance of transportation projects was that California needs strong and stable infrastructure to “move people and goods throughout the state” (Proposition 1A 2006). Indeed, this is why the Rebuild California Plan tied together Proposition 1A with Propositions 1B, 1C, 1D, and 1E; all involved measures that would improve and maintain California’s infrastructure.

State Proposition 1B (2006)

Background:

Like Proposition 1A, Prop 1B passed by a large margin in the November 2006 general election: 61.2% (4.4 million) to 38.8% (2.8 million). It involved, however, additional funding for transportation purposes through the selling of bonds by the state. Specifically, these funds would go towards improvements in highway safety, traffic reduction, air quality, and port security over the next decade.

This proposition provides for additional funding of transportation projects through the selling of bonds; the proceeds of the bonds are deposited in the Highway Safety, Traffic Reduction, Air Quality, and Port Security Fund of 2006 that is created in the State Treasury by this proposition. Bonds, to the total amount of $19,925,000,000, can be sold by the state in order to carry out the purposes laid out by the text of the proposition. The
following accounts (Proposition 1A 2006) that are created in the Fund indicate these purposes:

1) Corridor Mobility Improvement Account
a. This account involves improvements in the state’s highway system, particularly regarding congestion relief.

2) California Ports Infrastructure, Security, and Air Quality Improvement Account

3) Trade Corridors Improvement Fund
a. This account involves improving: traffic congestion along major trade routes; freight rail system; ports; truck corridors; border access; and surface transportation involving the state’s airports.

4) Transportation Facilities Account

5) Public Transportation Modernization, Improvement, and Service Enhancement Account

6) State- Local Partnership Program Account

7) Transit System Safety, Security, and Disaster Response Account

8) Local Bridge Seismic Retrofit Account

9) Highway-Railroad Crossing Safety Account

10) Highway Safety, Rehabilitation, and Preservation Account

The Legislative Analyst’s Office (Proposition 1B 2006) of California offers the following breakdown of the proceeds from the bonds:

1) Congestion Reduction, Highway and Local Road Improvements: $11.3 billion

2) Public Transportation: $4 billion

3) Good Movement and Air Quality: $3.2 billion

4) Safety and Security: $1.5 billion.

Because the funds come from selling bonds, the state will be obligated to pay interest to the bond-holders. The cost that the state incurs depends on the interest rates at the time the bonds are sold as well as the maturity (time period) of the bonds. According to the LAO: “The state would likely make principal and interest payments from the state’s General Fund over a period of about 30 years. If the bonds are sold at an average interest rate of 5 percent, the cost would be about $38.9 billion to pay off both the principal ($19.9 billion) and interest ($19.0 billion). The average repayment for principal and interest would be about $1.3 billion per year” (Proposition 1B 2006).

The campaign:

The 1B campaign was touted (and funded) heavily by businesses and related organizations that would benefit from increased transportation projects: “Hoping to motivate the state's voters and their own bottom lines, construction and engineering companies throughout California and the United States plan to help raise $15 million to campaign for the bonds. The same is true for organized labor. Alongside business groups such as the California Chamber of Commerce, unions representing heavy equipment operators, surveyors and concrete pourers represent another deep-pockets player in a campaign force dubbed the ‘Let's Rebuild California Committee’” (Wasserman 2006 A1).
Ultimately, however, the notion of urgency to address the transportation needs of California found a receptive public that was desirous to relieve traffic congestion and improve the state of roads and highways. Interestingly, when compared with the significant number of supporter contributors, the lack of opposition points towards a highly one-sided public campaign. Supporter contributions significantly exceeded opponent contributions. Indeed there was no major organized financial opposition. It is not as surprising, then, that 1B was passed by the voters. Those who contributed the most to support Prop 1B were primarily construction firms and organizations that support infrastructure improvements in California:

- California Alliance for Jobs Rebuild California Committee | $1,800,000
- Let's Rebuild California | $1,650,000
- Granite Construction Inc. | $700,000
- Northern California Carpenters Regional Council Issues PAC | $550,000
- Consulting Engineers and Land Surveyors Issues Fund | $455,000
- A. Teichert & Son Inc. | $400,000
- Operating Engineers Local Union No. 3 | $325,000
- California State Council of Laborers Issues PAC | $300,000
- Associated General Contractors Issues PAC of California | $265,000
- Automobile Club of Southern California | $263,000
- First American Title Insurance Company | $250,000
- DaSilva Gates Construction | $200,000
- Peter Kiewit & Sons | $190,000
- Caterpillar Inc. | $175,000
- FCI Constructors Inc. | $150,000
- Hanson Aggregates | $125,000
- California Republican Party | $115,000
- Alex Spanos | $100,000
- Engineering and Utility Contractors Association | $100,000
- Herzog Contracting Corporation | $100,000
- Northern California District Council of Laborers Issues PAC | $100,000

Arguments for and against:

Official arguments in favor of Prop 1B are given by: Marian Bergeson, Chair of the California Transportation Commission; Alan C. Lloyd, Former Chair of the California Air Resources Board; and Allan Zaremberg, President and CEO of the California Chamber of Commerce. Their central argument is that transportation improvements cannot wait but must happen now rather than later. This proposition “provides funding now to jump-start repairs of our aging highways and to start building the transportation projects we know we’ll need in the future” (Official Argument in Favor of Proposition 1B 2006).

Proponents also emphasize that these critically needed transportation improvements are not going to be funded by new taxes but by an alternative of selling
bonds. Another key point that is used to appeal to Californian voters is that this proposition includes accountability measures to ensure that transportation improvements occur without political interference. The San Diego Union Tribune (Bonds, Pro and Con 1A, 1B, and 1E 2006) wrote that “the single biggest chunk of money -- $4.5 billion -- would go toward congestion relief, which is music to commuters' ears…[and] $2 billion … to make it easier to move goods via ports, highways and rail. For years, California's economy has suffered because of transportation woes. It's time the problem finally got some specific attention” (Bonds, Pro and Con 1A, 1B, and 1E 2006). Beyond improving transportation, this proposition also would create more jobs in California: “state's transportation investment becomes $86.8 billion across 10 years -- fueling more than 2.2 million jobs” (Wasserman 2006).

The official counterargument was written by Michael N. Villines, California State Assemblyman for the 29th District. Another noteworthy opponent was the California Bicycle Coalition, “a non-profit education and lobbying organization working to improve bicycling conditions throughout the State of California” (About CBC). The central argument against 1B was the cost that the State of California will incur by selling bonds will mean even more debt for the state; the funding for transportation and infrastructure improvements is not free money. Villines writes: “We support dedicating every dollar you pay in gas taxes to our highways. And, we support building for California’s future wisely. However, this measure fails to achieve these important goals in a fiscally responsible manner” (Official Argument against Proposition 1B 2006). In the public eye, this last point was the one most emphasized: “Jean Ross of the liberal California Budget Project said the state will eventually face the challenge of handling these new debt-service payments at a time when its budget is already heading into the red” (Abate 2006 D1). This will have to be dealt with at some point in the future, either by reducing spending or increasing taxes, neither of which is appealing.

Background:

Originally passed in 1986, Alameda’s Measure B was set to expire in 2002. A half-cent sales tax, Measure B provided crucial funding for transportation purposes such as highway widening and improvements, BART extensions, maintenance of local streets and roads, and AC Transit and local paratransit services. Both the 1998 and 2000 versions of Measure B sought to extend this existing sales tax, though it took two years after the failure of the 1998 Measure B to put together a comprehensive package that ultimately won over 81.5% of voters. The 1998 version received only 58% of the votes, below the required 2/3 of votes needed to be passed.

In 1998, voters were presented with the question: Should the half-cent increase in sales tax authorized for 15 years by voters in 1986 to provide funding for local transportation projects and programs be extended for another 15 years, that is, from 2002 to 2017? The distribution of funds would be divided among four programs and 26 capital projects.
Table A-1. Comparison of 1998 and 2000 Measure B

<table>
<thead>
<tr>
<th></th>
<th>1998 Percentage Allocation</th>
<th>2000 Percentage Allocation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capital Projects</td>
<td>46%</td>
<td>40%</td>
</tr>
<tr>
<td>Local Roads</td>
<td>22%</td>
<td>22%</td>
</tr>
<tr>
<td>Transit Operations</td>
<td>19%</td>
<td>22%</td>
</tr>
<tr>
<td>Paratransit</td>
<td>9%</td>
<td>11%</td>
</tr>
<tr>
<td>Bicycle Routes</td>
<td>4%</td>
<td>5%</td>
</tr>
</tbody>
</table>

In 2000, voters were presented with a slightly different question: Shall Alameda County voters authorize implementing the Alameda County 20 year Transportation Expenditure Plan…Approval of this Measure authorizes continuing the 1/2 cent transportation sales tax during the Plan's implementation.

The 1998 campaign:
Strong opposition by various groups and some fundamental shortcomings led to the downfall of the 1998 Measure B. Relative to other campaigns, supporters raised a significantly lower amount of money, only approximately $120,000. Notable supporters included: Oakland Metropolitan Chamber of Commerce, which represents 1,300 East Bay businesses; BART; AC Traansit; bicyclists; and many southern Alameda County civic leaders.

Arguments for and against in 1998:
Supporters of the measure emphasized that it was a balanced measure “which can improve mobility for all segments of society including the elderly and disabled” (Alameda County Measure B 1998). Further, a key point made by supporters was that the needs of pedestrians, bicyclists, transit and auto users would be addressed by the measure. The most emphasized argument, however, was the critical need to continue addressing transportation needs in order to relieve congestion and improve the states of the roads and highways.

The opposition was composed of community-based organizations and environmental groups that objected to the speed with which the measure was drawn up, as well as to the inadequate funding for public transit and other community-oriented transportation services that they wanted for seniors and people with disabilities in particular. Their primary message to voters was that this Measure B needed to be improved before it was adopted by the county. For example, opponents said that the “BART projects are too costly; there are less expensive alternatives which were not considered” (League of Women Voters of Berkley). Moreover, opponents were greatly concerned about sprawl, saying that little consideration was given to the effects of the chosen projects on regional growth patterns. Environmental groups were some of the strongest opponents to the measure, led primarily by the Sierra Club and the
Environmental Defense Fund. Too much money, they believed, went to highway construction and not enough to transit operations.

The 2000 campaign:

Learning from the mistakes of the 1998 campaign, the 2000 version of Measure B sought to build a strong foundation of support. A diverse group of organizations were brought to the negotiating table, putting together a truly comprehensive and effective transportation package: “supporters focused their efforts on developing a multimodal transportation package that would appeal to business, labor, and environmental organizations, as well as to each geographic segment within the County” (Hass and Werbel 2001). The various groups were drawn together by the “realization…that transportation was a significant problem in the County that would worsen significantly without additional funding, and the perception that it would be significantly more difficult to obtain support from two-thirds of voters once they were voting to reinstate a tax that had expired” (Hass and Werbel 2001). In order to help address the concern of reductions in the funding allocated to capital expenditures (by business and labor groups) and funding to basic transit improvements (by environmental groups), the expiration date of the extension was extended from fifteen to twenty years. This then allowed for additional funding to go towards transit operations, paratransit for seniors and the disabled, and expansion and improvement of bicycle routes.

This time around, supporters raised almost $900,000. The leader of the fundraising efforts was actually a local politician who strongly opposed the 1998 Measure B. “Television was the primary medium used for advertising with some use of direct mail and outdoor ads. Their main message was that the transportation package was balanced and comprehensive and was supported by a diverse group of politicians and private organizations” (Hass and Werbel 2001). Notable supporters were: Keith Carson, Alameda County Supervisor; Scott Haggerty, Alameda County Supervisor; Helen Burke, Sierra Club; Jon Shahoian, Alameda County Taxpayers Association; Tom C. Goff, California Alliance for Jobs; Thomas M. Blalock, P.E., President, BART Bd. of Directors; Jerry Brown, Mayor of Oakland; Cathie Brown, Mayor, City of Livermore; and Shelia Young, Mayor of San Leandro.

“Largely as a result of the dedicated effort and pragmatic perspectives that prevailed with key stakeholder groups, no organized opposition existed in the 2000 campaign” (Hass and Werbel 2001). Notable opponents, however, were: Mark Ross, Voters Against Special Taxes; Wayne R. Nygren, Infrastructure Management Consultant; Peter Kavaler, Software Engineer; and David Grappo, Attorney at law, Voters Against Special Taxes.

Bay Area Regional Measure 2 (2004)

Background:

By a total margin of 57% to 43%, Regional Measure 2 (RM2) passed in the Bay Area in March of 2004. Voters in seven counties were presented with the following question:

Shall voters authorize a Regional Traffic Relief Plan that does the following: (1) Directs revenues generated through the collection of bridge tolls to provide the
following projects: (A) Expand and extend BART. (B) New transbay rail crossing south of the San Francisco-Oakland Bay Bridge. (C) Comprehensive Regional Express bus network. (D) New expanded ferry service. (E) Better connections between BART, buses, ferries, and rail. (2) Approves a one dollar ($1) toll increase effective July 1, 2004, on all toll bridges in the bay area, except the Golden Gate Bridge?

The counties in which this measure appeared were Alameda, Contra Costa, Marin, San Francisco, San Mateo, Santa Clara, and Solano. In Alameda, RM2 passed by a margin of 56% to 44%; in Contra Costa, 51% to 49%; in Marin, 64% to 36%; in San Francisco, 69% to 31%; in San Mateo, 55% to 45%; in Santa Clara, 60% to 40%; and in Solano, RM2 failed to pass, with 41% voting for it and 59% voting against it.

The Regional Traffic Relief Plan involved three major goals: (1) new public transit in bridge corridors, (2) seamless and safe transit connections, and (3) traffic bottleneck relief in the bridge corridors (Regional Measure 2: Questions and Answers 2004). The plan would provide $1.5 billion in capital investments such as the following:

- Seismic strengthening of the transbay BART tube, which carries about 100,000 riders per day: $143 million
- BART extensions and commuter rail improvements: $484 million
- Express bus infrastructure: $302 million
- San Francisco Transbay Terminal, which will serve as a key regional hub for an estimated 27 million transit riders annually in 2020: $150 million
- Freeway bottleneck/carpool-lane improvements: $110 million
- Solano County Interstate 80/Interstate 680 corridor improvements: $100 million
- Fourth bore for the Caldecott Tunnel: $50.5 million
- Ferry service enhancements: $84 million
- Safe routes to transit/bicycle and pedestrian improvements: $20 million.

Additionally, the plan included operating funds for commuter rail, express and enhanced bus and ferry service...[dedicating] up to 38 percent of total annual revenues to transit operations, an amount expected to reach approximately $48 million annually by 2016 and thereafter” (Regional Measure 2: Questions and Answers 2004). Details on the projects included in the Plan are organized into four sections: region-wide improvements, and improvements in three major bridge groupings: Central Bay (the San Francisco-Oakland Bay Bridge), North Bay (the Antioch, Benicia-Martinez, Carquinez and Richmond-San Rafael bridges), and South Bay (the Dumbarton and San Mateo-Hayward bridges) (Regional Measure 2: Regional Traffic Relief Plan 2004).

The campaign:

Financially, the opponents of RM2, primarily taxpayer organizations, did not “mount an organized campaign” (Cabanatuan 2004 A1). On the other side, the “Yes on 2 campaign, Bay Area Commuters for Transportation Solutions, has raised about $55,000, with the largest contributions coming from developers and organized labor. As of mid-January, the campaign had spent $110, 395, almost all of it on campaign consultants” (Cabanatuan 2004). Supporters of RM2 included thoroughly diverse groups: commuters and transportation advocates, environmental groups, business groups, organized labor, Bay Area elected officials, and civic and community organizations.
Arguments for and against:

The main argument used by supporters was that RM2 was a critically needed, balanced measure that would address the region’s needs effectively and efficiently. It would relieve traffic and congestion as well as fix local streets and roads. Opponents of RM2 heavily emphasized the point that “Taxes are high enough now to accommodate reasonable needs, including transportation projects” (Official Argument against Regional Measure 2). The primary argument against RM2 was that it was an unnecessary new tax. The measure was also referred to as “A reckless, last-minute measure to hike Bay Area bridge tolls by $1… throws around enough pork to stir up the region's most notorious shark-infested waters” Official Argument against Regional Measure 2). The measure would not be as effective as it was made out to be, spending funds on insignificant and wasteful projects.

In addition to general arguments against RM2, there were also county specific arguments. In Alameda County, voters were presented with the message that “RM2 provides nothing for Alameda County’s worst traffic bottlenecks, including the 580/238/880 and 92/880 corridors” (Official Argument against Regional Measure 2). Similarly, Contra Costa County residents were told that RM2 was simply a bad deal for the county, with “only 11.5% affect[ing] roads and bridges” (Official Argument against Regional Measure 2). In Marin County, the main emphasis was on improving congestion and bottlenecks as well as the need to improve the ferry system. In San Francisco, the futility of RM2 was emphasized: “Despite billions more in transit subsidies, transit ridership will rise only from 5.6% of Bay Area daily trips to 6.2% by 2025” (Official Argument against Regional Measure 2). As with the other counties, in San Mateo County, the main argument was that “RM2 provides nothing for San Mateo County’s worst remaining traffic problems, including Route 92 and Devil’s Slide” (Official Argument against Regional Measure 2). In Santa Clara County, the main argument also emphasized the futility of RM2: “RM2 mostly underwrites extravagant transit projects — and enormous new operational subsidies for limited-ridership transportation” (Official Argument against Regional Measure 2). Finally, in Solano County, the main arguments were similar to those presented in the other counties.

Fresno County Measure C (2002 & 2006)

Background:

Measure C was first passed in Fresno County in 1986 by slightly more than half of Fresno County voters, establishing a half-cent sales tax to generate more than $680 million for transportation projects. This original Measure C involved primarily the construction of a reliable and thorough highway system. Because it was set to expire in 2007, a Measure C extension was placed on the November 2002 ballot and then again on the November 2006 ballot when the 2002 measure failed to be passed.

Though receiving about 54% of the votes, the 2002 Measure failed to garner the 2/3 votes needed to pass. The question appearing on the ballot was: Shall Fresno County voters authorize an extension of up to thirty years of the current one-half percent sales tax to be used in accordance with the Expenditure Plan adopted by the Authority to provide countywide transportation improvements which will contribute to increased
mobility, less traffic congestion, improved air quality and increased safety? The Authority is authorized to issue bonds payable from the proceeds of that tax and establishes the appropriations limit of the Authority in the amount of 482 million dollars ($482,000,000). This 2002 measure would have established the following breakdown of the distribution of funds:

Measure C would pay for Fresno County transportation needs for the next three decades. Each dollar would be broken down as follows:

13 cents for public transportation
3 1/2 cents for making the county compliant with the Americans with Disabilities Act and building trails and bike paths
8 3/4 cents for filling potholes and reconstructing roads
22 3/4 cents for discretionary funds including, but not limited to, road and sidewalk maintenance, traffic signals and landscaping
1 cent for Fresno Yosemite International Airport
5 cents for rail consolidation or consolidating the Burlington Northern Santa Fe's rail traffic with the Union Pacific's traffic along a corridor in the largely industrial part of Fresno
24 cents for building roads and adding capacity in the urban area
21 cents for building roads and adding capacity in rural areas
1 cent for administrative costs (Davis 2002a B1).

In 2006, voters were again presented with the question of whether or not to extend Measure C: To repair potholes, improve/construct local streets/highways; Reduce air pollution through new clean fuel school buses, including child safety seatbelts; Support regional economy; Reduce emergency response times; Improve highways 99, 41, 168, 180; Reduce congestion; Improve public safety; Improve transit, senior/disabled services, transportation choices; match state/federal funds; Provide citizen oversight/annual audits, shall Fresno County Transportation Authority continue, but not increase, existing half-cent sales tax for 20 years, per locally adopted Expenditure Plan? With 77% of the votes, more than the required 2/3 needed to pass, this 2006 measure passed. Distribution of funds was altered as follows:

- Almost 25% of the expected Measure funds are directed to public transit services and other transit-related activities and programs.
- Just under 35% of the funds are directed to local street and highway maintenance, ADA improvements, pedestrian, trail, and bicycle facilities improvements, and as "flexible" funding to each of the cities and Fresno County so that they can address their own individual transportation needs over the 20-year period
- Roughly 30% of the Measure funding is directed to capacity enhancing street and highway improvements in the Urban (Clovis and Fresno Spheres of Influence) and Rural (remaining County and rural cities) areas
- 6% of the funds are available to achieve Rail Consolidation within the Fresno urban area, although if rail consolidation is not able to be achieved within 15 years the funds revert to grade separation that are to be coordinated with transit improvements to achieve air quality and congestion relief benefits
The remaining Measure "C" funds are programmed for other transportation modes and programs such as transit oriented development, school bus replacement, and program administration and planning activities.

The 2002 campaign:

Interestingly enough, the campaign supporting Measure C raised almost $105,000 by October 8. “The top contributor in support of the Measure C campaign is the Bechtel Infrastructure Corp., which is part of Bechtel Group, the multinational engineering, construction and project management firm in San Francisco. Bechtel gave $20,000, according to the Measure C campaign report. The California Alliance for Jobs Rebuild California Committee gave $15,000. The organization is an advocate for the heavy construction industry. Clovis-based companies Pelco, which makes surveillance equipment, and Agree Construction, gave $10,000 each. Other local companies such as Howe Electric, which gave $5,000, and Summit Electrical Construction, which gave $4,000, are supporting the measure” (Clemings 2002 B1). The Fresno County Transportation Authority, with the use of mailers and advertisements, “conducted a public education program on Measure C and the proposed extension” (Davis 2002b B1).

Opponents fought hard to prevent the 2002 Measure C from passing. They strongly believed that the measure presented to voters was deficient and flawed, needing to be improved before adopted by the county. Noteworthy opponents were the League of Women Voters, the local chapter of the Sierra Club, and the San Joaquin Valley Taxpayers Association. Opponents raised a total of “just $8,197 [by October 8]… $5,000 came from the Sierra Club Tehipite Chapter. An additional $1,000 came from Clovis resident Radley Reep, and $500 was donated by the League of Women Voters. Besides those, no contributions exceeded $200, and most were less than $100” (Clemings 2002).

Arguments for and against in 2002:

Proponents argued that Measure C was “needed for the long-term vitality of the county” (Davis 2002b). Moreover, it was “far more balanced than in the past [and] needed to ease congestion as the county's population grows from 800,000 to an estimated 1,582,000 in 2037” (Davis 2002b). Economically, Measure C would also provide many jobs for the county.

The main argument made by opponents against Measure C was that the measure was not balanced enough: “They call it a "$3 billion mistake" that won't do enough to discourage urban sprawl and promote cleaner alternatives to the automobile” (Clemings 2002). The League of Women voters stated that the measure “puts too much money on new roads and not enough into fixing roads and supporting transit” (Davis 2002b). Ultimately, this worry about sprawl and pollution prevented the passage of Measure C.

The 2006 campaign:

This story of Measure C is one of cooperation and bipartisanship. Where in 2002 there were clear divisions between proponents and opponents, these divisions all but disappeared in 2006, resulting in a unified front in the campaign. The success of this 2006 Measure C is credited to “the committee's exhaustive effort to build consensus across a wide range of interest groups -- from business leaders to environmentalists” (Clemings 2006 A1). The environmentalists were won over with more funds dedicated to
improving bus and van pool services. Gail Marshall writes, “If you listen to the critics, you'll hear a common thread -- more, more, more. But this much the Measure C group knew for sure: Unless we join together, we will get exactly zero” (Marshall 2006 B9). The different groups worked together to come up with a compromise that could satisfy virtually everyone. Indeed, there was an “amazingly diverse list of supporters including all the 15 cities in Fresno County, Republicans, Democrats, chambers of commerce, business and labor, nurses, firefighters, state politicians and regular folks” (Marshall 2006) working together.

With a strong public campaign, supporters made use of “heavy advertising [and] …raised and spent $600,000” (Clemings 2006). Significant support came from builders and a $100,000 contribution from the Indian tribe that operates Table Mountain Casino. “The biggest single contributor is Fresno's Granville Homes and a related firm, which have contributed $35,000. Next is another homebuilder, Robert McCaffrey, at $25,000. Other major contributors include agricultural giant Harris Farms, cotton broker Dunavant Enterprises, engineering firm Quad Knopf and fruit processor Lyons Magnus. Former California Secretary of State Bill Jones, now chairman of Fresno-based Pacific Ethanol, gave $10,000 (Clemings 2006).

Only two groups officially opposed Measure C: the Clovis Chamber of Commerce and the Valley Taxpayers Coalition. “The Clovis chamber spent about $8,000 on advertisements, fliers, stickers and a mailing to 30,000 Clovis voters” (Benjamin and Clemings 2006 A1). Further, no committees were formed to officially oppose Measure C.

Arguments for and against in 2006:

Central to the arguments made by supporters was the fact that the original Measure C was set to expire in 2007, meaning that there was an urgency to extend the sales tax. “Without Measure C, traffic will become more congested, the local economy will suffer, and our roads could become unsafe and dangerous” (Measure C 2006). Other key points made were the need for Measure C in order to ensure a vibrant and successful economy, the establishment of a Citizen Oversight Committee, and the balanced disbursement of funds to issues that are important to the county. Supporters also emphasized that Measure C extended an existing tax rather than create a new tax.

Opponents argued that “Measure C is a bad proposal that doesn't address important transportation issues” (Measure C 2006). They also cited urban sprawl, increased congestion, and air pollution as reasons to vote against Measure C. It is interesting that the opponents of the 2002 Measure C complained of too little funding for public transportation while the opponents of the 2006 Measure C worried that there would be too much funding (30%). Another point made was that the “original Measure C plan was developed by transportation experts. This extension was developed by a tightly selected group of special interests + environmentalists, political groups, unions and developers”(Measure C 2006). Because supporters for Measure C covered a wide range of the political spectrum, opponents were fighting an uphill battle, ultimately failing in their attempt to prevent the passage of Measure C.

Those who signed the Official Argument in Favor were: Randy R. Bruegman, Fire Chief/Fresno Resident; Tracy Pepper League of Women Voters Fresno President; Bill Jones, Former Assemblyman and Secretary of State; Juan Arambula,
Los Angeles County Proposition A (1998)

Background:

Los Angeles County voters passed this anti-subway measure by a margin of 62% to 38%. Set into motion by Supervisor Zev Yaroslavsky, the proposition asked voters: Shall the ordinance be adopted to require an annual independent audit of Metropolitan Transportation Authority spending of transportation sales tax revenues, to establish an independent citizens’ oversight committee to monitor such spending, and to prohibit the use of transportation sales tax revenues for future subway construction?

The issue at hand involved the exceedingly expensive subway construction in Los Angeles. Proposition A would prohibit the use of sales-tax revenues to go towards subway construction. Already, the Metro Rail had cost the city $6 billion for only 6 miles of completed subway and 11 miles under construction.

The purpose of this measure was threefold. First, it was to “restore the confidence of the citizens of Los Angeles County in the ability of their government to provide a safe, efficient and cost-effective public transportation system” (MTA Reform and Accountability Act of 1998). Second, the measure was meant to “provide accountability in the expenditure of transportation sales tax revenues through an annual independent audit, and through creation of an Independent Citizens’ Advisory Oversight Committee to review transportation sales tax expenditures, hold public hearings and issue reports thereon” (MTA Reform and Accountability Act of 1998). Finally, Proposition A was intended to “prohibit the use of any transportation sales tax revenues for planning, designing, constructing or operating any new subway” (MTA Reform and Accountability Act of 1998).

The campaign:

Initially, the campaign was primarily one sided, with no official opposition filed. However, as election day approached, opposition grew, consisting primarily of the Southern California Transit Advocates, a nonprofit community-based organization, the Sierra Club, and East Los Angeles politicians. “Opponents contended Measure A would go too far by removing an important option as the MTA struggles to meet the transportation needs of a densely populated and growing region that needs to reduce traffic congestion and pollution” (Haberman 1998).

Arguments for:

The key argument touted by proponents of this measure was that sales tax revenues should go towards relevant and significant transportation improvements; the subway unnecessarily took away much needed funding for highway improvements and
traffic decongestion, among other things. Zev Yaroslavsky, the one who originally proposed this measure, was at the forefront of the campaign in favor of Prop A. By stopping subway construction, tax money is freed “to build cheaper light-rail lines…[and] can also be spent on the starved bus system” (Kasindorf 1998 4A). The Valley Village Homeowners Association and the Bus Riders Union also supported Prop A. By supporters, the subway is seen as a waste of tax revenues, exemplifying the corruption and bureaucracy of the MTA. The MTA should focus, they argue, on other mass-transit alternatives. Another central argument made in support of Prop A was the enormous debt of the MTA because of subway construction.

Orange County Measure M (2006)

Background:
Orange County voters were presented with the question of whether to authorize the Orange County Transportation Authority to construct specific transportation improvement and traffic congestion relief projects in Orange County by continuing the existing of one percent retail transaction and use tax for thirty years from the expiration of the current Measure M on April 1, 2011. This measure would ensure that Orange County’s transportation needs are addressed and given the necessary financial support. By a margin of 68.5% to 31.5%, the measure passed.

Measure M has seven main points:
- First, it consists of the Renewed Measure M Transportation Investment Plan that requires Measure M revenues be spent only in Orange County for freeway projects, street and road improvements, transit projects and environmental cleanup.
- Second, it establishes a special fund to be used solely for the identified transportation improvements.
- Third, it requires that the Plan be reviewed at least every ten years and requires that any change to the funding categories be approved by the voters of Orange County.
- Fourth, it establishes an independent Taxpayers Oversight Committee for the purpose of overseeing Measure M compliance and reviewing annual audits of the revenues to ensure that voter mandates have been met.
- Fifth, it requires the Authority to annually publish a written report detailing how the revenues have been spent and the progress in implementing the transportation improvement projects in the Plan.
- Sixth, "pay-as-you-go" is the preferred method of financing projects.
- Finally, it requires that the $11.86 billion in transportation revenues that are estimated to be generated during the 30 year continuation of Measure M must be used to add to and not replace existing public and private funding for transportation improvements in Orange County.

The campaign:
Financially, the Measure M campaign had virtually no opposition and no official opposition was filed. Supporters for Measure M raised over $400,000. This came significantly from residential developers, anti-tax groups, and various business
organizations. Indeed, “proponents of Measure M include[d] everyone from real estate
developers, the Orange County Transportation Agency, mass transit advocates and the
Huntington Beach Police Officers Association” (Schou 2006).

Supporters aimed their campaign towards the commuters of Orange County,
citing the need to improve traffic flow, grid lock, and the condition of the roads.
Furthermore, businesses lent their support to this measure because, as Lucy Dunn, the
Business Council's president, said: the “roads' ability to move people and goods and the
quality of life are major concerns of the business community” (Radcliffe 2006). Measure
M would ensure that tax-payers’ dollars were being spent on crucial transportation needs;
the measure was described as having accountability, reliability, and efficiency.
Ultimately, Orange County voters responded to these arguments, desiring to see
improvements in roads, highways, and traffic congestion.

Arguments for and against:
The Official Argument in Favor of Measure M was signed by: Thomas V.
McKernan, President and CEO, Automobile Club of Southern California (AAA); Reed
Royalty, President, Orange County Taxpayers Association; Marian Bergeson, Chair,
California Transportation Commission and former Orange County State Senator; Lucy
Dunn, Chief Executive Officer, Orange County Business Council; Jim Adams, Council
Representative, LA/ Orange County Building and Construction Trades Council; Tom
Anderson, President, Amigos de Bolsa Chica; and Garry Brown Orange County
Coastkeepers.

The Official Argument Against Measure M was signed by: David L. Mootchnik
Member Southern California Commuters Forum; Albert J. Mallinckrodt Principal AJM
Engineering; Steve White Committees of Correspondence; Mark Leyes Garden Grove
City Councilmember; Sandra L. Genis Former Costa Mesa Mayor/Land Planner; and
Chris E. Ema, PE CA Registered Transp Engr #42.

As Measure M did not propose anything fundamentally new, extended existing
legislation instead, supporters’ main argument was to continue something that has proven
itself valuable. Right in the middle of Southern California, Orange County had
transportation needs that the community was obligated to address, it was argued. That
Measure M would not introduce new taxes was touted a lot by proponents: “relieve
congestion, improve traffic safety and fix local roads -- without raising taxes” (Measure
M 2006)!

Opponents to Measure M did not argue against the urgency of transportation
needs but rather against the soundness and effectiveness of the measure. It was said to be
“poorly designed and inefficient” (Measure M 2006). For example, while supporters
repeatedly cited improvements to highways and traffic congestion, much of Measure M
revenues would go towards improving Metrolink and other mass transit options. Other
improvements planned would be short-term fixes that would not effectively address the
issues at hand. Measure M “dabbles in transportation rather than focusing on congestion
fixes”(Measure M 2006).

San Bernardino County Measure I (2004)

Background:
San Bernardino’s Measure I passed by a margin of 79.44% to 20.56%, extending the county’s half-cent sales tax by another 30 years. Revenues from the sales tax are used solely for local transportation purposes. This issue was greatly relevant because: “The California Transportation Commission in August was forced to stop allocating funds for transportation projects statewide, at least through the end of 2004, due to the state budget crisis” (Biane 2004 B07). The plan totaled $6 billion dollars, “apportioned among the county's regions according to amount of tax raised there” (Ghori 2004a B01).

Key priorities of Measure I were listed as follows (Santos 2004):

- Freeway Projects: $1.3 billion
- Freeway Ramps Projects: $497 million
- Major Street Projects: $814 million
- Local Street Projects: $904 million
- Metrolink: $362 million
- Bus and Rapid Transit: $180 million

The campaign:

As a local measure, Measure I enjoyed a relatively lively and active campaign, with proponents and opponents actively seeking to win over voters. San Bernardino Associated Governments (SANBAG), while forbidden to directly campaign for or against Measure I, “budgeted $ 500,000 for informational mailers it is sending to voters, outlining projects that will be built in their communities” (Ghori 2004a). Other key supporters of Measure I were: Paul Biane, San Bernardino County supervisor; League of Women Voters of San Bernardino; and Norm King, executive director of San Bernardino Associated Governments. The San Bernardino County Taxpayers for Traffic Relief, a campaign committee, raised $896,330 for their campaigning, with most of the money going towards direct mailers (Ghori 2004a). Las Vegas casinos, construction companies, developers, and engineering firms were the major donors supporting Measure I. Officially, no opposition formed campaign committees against Measure I. However, with the Sierra Club in the lead, unofficial opposition arose strong and ready to fight against the measure.

Arguments for and against:

Key arguments of proponents of Measure I revolved around the vital and imperative transportation needs of San Bernardino County. With the state in a fiscal crisis, without local funding, these transportation needs would not get addressed, severely hurting San Bernardino’s economy and infrastructure. As Norm King, the executive director of SANBAG said: “This is all we have under our control. The state can't take this (money) away from us” (Santos 2004). Proponents emphasized that if Measure I was the "only guaranteed source of transportation funds … [to] provide funding for a series of transportation projects that reduce traffic, provide better access for emergency responders, improve road safety and expand transportation options for us to get to work, school and other destinations” (Biane 2004). With a continuously growing population, San Bernardino, it was argued, needed to maintain and improve the state of its roads and streets. “Without it, progress would come to a screeching halt” (Measure I is Crucial to keep county moving).
Opponents emphasized environmental issues, claiming that Measure I would lead to “urban sprawl” (Ghori 2004b B03). Growth, they argue, is not inherently good and beneficial. SANBAG would “spend most of the funds on freeway and street projects that the Sierra Club believes only fuel more growth and benefit developers” (Ghori 2004b). Measure I, with its emphasis on freeway expansion, is part of an “endless cycle of traffic and development” (Ghori 2004b). Opponents also “criticized SANBAG for spending the bulk of the money on road projects. They say more freeways only encourage more sprawl… ‘It's a vicious cycle of induced traffic,’ said Allan Bartleman, chairman of the San Gorgonio chapter of the Sierra Club” (Ghori 2004a).

Santa Clara County Measures A and B (1996)

Background:

In 1976, a half-cent sales tax, open-ended, with no expiration date, for transit projects was passed in Santa Clara County. In 1984, another transportation tax initiative with a 10-year life span, Measure A, was placed on the county ballot, authorizing an additional half cent sales tax that would be used to improve key local highways. Measures A and B were again presented to Santa Clara voters in 1996, with the former describing the non-binding plan for spending increased tax revenues and the latter including the general sales tax increase itself (Haas 2000). Sixty percent of the tax revenues would go towards transit and 40 percent towards highway construction. Measure A was passed by a margin of 76% and the actual tax, measure B, was passed by a margin of 52%. Measure A needed a 2/3 majority while Measure B only needed a simple 50% majority.

Specifically, Measure A stated: “This measure is NOT a tax. It is an advisory measure that states Santa Clara County voters' intent that any new sales tax funds be spent on” (Complete Ballot Text of Measure A 1996) specific transportation improvements. These improvements were:

- Maintaining Streets and Filling Potholes
- Santa Clara County connection to BART
- Traffic Signal Synchronization
- Tasman East Light Rail Line
- Highway 880
- Interchange Improvements
- Transit Service for Seniors and the Disabled
- Safety Improvements
- CalTrain Improvements from San Jose North
- Highway 101
- CalTrain Improvements between Gilroy and San Jose
- Highway 17
- Capitol Light Rail Line
- Highway 87
- Bicycle Facilities

Measure B then proposed the tax that would provide revenues to fund the projects listed under Measure A: “This measure authorizes the enactment of a 1/2 cent retail
transaction and use (sales) tax for general county purposes” (Complete Ballot Text of Measure B 1996). This tax would have a lifespan of nine years. Also included in the text of Measure B was the enactment of an independent Citizens Watchdog Committee that would review all expenditures to ensure that the tax funds are spent appropriately.

The campaign:

The 1996 campaign faced minimal opposition, with no organized coalition being formed against the measures. In total, the “campaign to pass these measures cost $1 million, of which 80 percent came from the Silicon Valley Manufacturers Group (SVMG)” (Haas 2000). Because of the significant leadership role adopted by SVMG regarding this campaign, it is important to note that “SVMG represents 130 Silicon Valley employers, almost exclusively in the private sector, as well as 250,000 jobs, or one-third of employment in the Silicon Valley” (Haas 2000). “In addition to Silicon Valley employers, A and B supporters included environmentalists, seniors, commuters, disabled-rights activists, health workers and unions” (Guara 1996 A18).

Regarding money raised for the campaign: “Although many contributions came from individuals, environmental groups such as the Greenbelt Alliance and the League of Conservation Voters also made donations. Funds from large, high-tech companies, which comprised nearly 90 percent of the donations and 18 of the top 20 donors, were critical to the success of the fundraising effort” (Haas 2000). The campaign itself consisted of a Speaker’s Bureau, an Editorial Board, marketing within companies, and mass marketing. Mass marketing included ‘free media’ as well as direct mailers, television, and radio ads. The message emphasized “the ‘carrot’ (improvements) and not the ‘stick’ (higher taxes)” (Haas 2000).

Opposition to the two measures consisted primarily of taxpayer groups: the Santa Clara County Taxpayers’ Association and the Howard Jarvis Taxpayers Association. Yet even this was weak and poorly funded. In effect, “supporters of the tax measure were operating largely in a vacuum where their viewpoint would not receive a serious challenge” (Haas 2000).

Santa Clara County Measure A (2000)

Background:

By a margin of 70.4% to 29.6%, above the required 2/3 majority needed to pass, Santa Clara County voters passed Measure A. The measure proposed a 30-year ½ cent sales tax, leading to approximately $6 billion towards the following transit projects:

• Connect BART to Milpitas, San Jose, Santa Clara;
• Build rail connection from San Jose International Airport to BART, Caltrain, light rail;
• Purchase vehicles for disabled access, senior safety, clean air buses;
• Provide light rail throughout Santa Clara County;
• Expand, electrify Caltrain;
• Increase rail, bus service.

Because Measure A would only fund transit projects, this enables approximately $2 billion in future state and federal funds to be directed to roadway, bicycle and pedestrian projects. The measure also sets up an independent citizen watchdog committee.
consisting of private citizens who would review the program and how the funds were being spent.

The campaign:
Measure A enjoyed a heated campaign, though ultimately, supporters convinced voters to pass the sales tax measure. Support for Measure A came primarily from area businesses: “The pro-Measure A forces, led by the Silicon Valley Manufacturing Group (SVMP), an industry group that includes dot-com powerhouse companies such as Hewlett-Packard, Adobe and Sun Microsystems, poured approximately $2 million to the campaign” (Hoban).
Opposition to Measure A was fairly strong, with Santa Clara County Supervisors Blanca Alvarado and Jim Beall leading an organized opposition campaign. With “about $50,000 to spend,” (Hoban) the opposition argued that the measure was too flawed to be passed.

Arguments for and against:
Kimberly Strickland, Silicon Valley coordinator for the Bay Area Transportation and Land Use Coalition, which led the No on A campaign, said, “Our goal is for Measure A not to pass because we do believe that as a community we can put a better plan together” (Guido 2000). Supervisor Alvarado further stated that: “There is no priority list for Measure A. Whoever is in political power will be able to determine how 30 years worth of sales taxes will be spent” (Gathright and Gaura 2000 A21). The central and most emphasized argument of supporters was that transportation issues, especially traffic and congestion, had to be addressed immediately, “no matter how flawed the initiative.” (Hoban).

Santa Clara County Measure A (2006)

A successor to the 2000 Measure, placed by the County Supervisors on the ballot in the June 2006 gubernatorial primary election, would have raised an additional half-cent general sales tax to fund transportation projects along with a host of other improvements to local hospitals and clinics. The measure was defeated by 58% to 42%.

Both the text of the measure and the circumstances surrounding transportation finance differed from six years earlier. The measure itself did not specify particular transportation projects. It included funding for an array of general purposes including transportation finance. As listed in the voter information pamphlet, these included:

* The County hospital and clinics;
* Trauma and emergency services;
* Affordable homes for families and seniors;
* Health insurance for uninsured children;
* Prevention programs for at-risk youth, families and seniors;
* Transportation improvements approved in city and countywide transportation plans;
* Services for abused and neglected children (Measure A Sales Tax 2006).
Sonoma County Measure M (2004)

Background:
By a margin of 67.2% to 32.8%, just barely exceeding the required 2/3 votes needed to pass, Measure M was passed by Sonoma County voters. Before this, Sonoma County voters had failed to pass three other transportation measures over the preceding 14 years. The question on the 2004 ballot asked: To maintain local streets, fix potholes, accelerate widening Highway 101, improve interchanges, restore and enhance transit, support development of passenger rail, and build safe bike/pedestrian routes, shall the Sonoma County Transportation Authority be authorized to levy a 1/4 cent retail transactions and use tax for a period not to exceed 20 years, spend money raised by the tax on the projects proposed, and issue bonds to finance the projects?

The breakdown of funds was described as follows:
* $188 million, or 40 percent, would be used to widen Highway 101 from Petaluma to Windsor.
* $116 million, or 25 percent, would be spent on local road projects throughout the county and its nine cities.
* $72 million, or 15 percent, would be allocated to improve or add five new interchanges along Highway 101.
* $47 million, 10 percent, would go toward bus service.
* $23 million, or 5 percent, would be used to keep Sonoma-Marin Area Rail Transit operations afloat until 2006, when backers have pledged to put a rail tax measure on the ballot in both counties.
* $19 million, or 4 percent, would be divided between bicycle and pedestrian projects.
* $5 million, or 1 percent, would be spent on administrative costs (McCoy 2004 B1).

The campaign:
Support for Measure M came from the League of Women Voters, North Bay Council, North Bay Labor Council, North Coast Builders Exchange, Santa Rosa Chamber of Commerce, Sonoma County Board of Realtors, Sonoma County Transportation and Land Use Coalition, and Sonoma, Lake and Mendocino County Building Trades. Opposition for Measure M came primarily from the Redwood Empire Tax Committee and the Sonoma County Taxpayer’s Association.

Arguments for and against:
Their central argument from proponents was to “get Sonoma County moving” (Measure M 2004). There were seven main points that supporters emphasized. First was to emphasize local street repairs and the importance of addressing these local needs. Second was to emphasize the widening of Highway 101, which would reduce congestion and shorten traveling time. A third point made by supporters involved “new passenger rail development, safe new bicycle and pedestrian routes, new freeway interchanges, [and] improved local bus services” (Measure M 2004). Fourth was to emphasize the
accountability involved with Measure M: the funds from Measure M could only be used toward the transportation purposes outlined in the text of the measure. Fifth, supporters raised the point that most counties levied a ½ cent sales tax, double what Measure M proposed. Further, Measure M, they argued, would be twice as efficient. Sixth and most controversial, supporters claimed that increasing local funding would lead to matching state and federal funds. Finally, the argument that tied all these points together was that “A better local economy needs a better transportation system” (Measure M 2004).

One of the key arguments made by opponents was that Measure M showed “poor judgment” (Measure M 2004). Spending sales tax revenues on the rail project and on buses would be a waste of money as so few people actually make use of these. Another point made by opponents was that Measure M would, in effect, “subsidize growth by paying for infrastructure expansions necessary to accelerate growth” (Measure M 2004). This did not mean that opponents were against improving the transportation situation. Rather, they believed that the gas tax served this purpose and “Raising taxes at the local level is not an appropriate response” (Measure M 2004). Finally, opponents stated that there was no way to guarantee state and federal funding. Saying that Measure M would do so was nothing more than “a lie intended to deceive the voting public” (Measure M 2004).

Sonoma County Measures B and C (2000)

Background:
In November 2000, voters were presented with two questions on the ballot:

1) In order to (1) widen and improve Highway 101 from Windsor to the Sonoma-Marin border; (2) improve or construct major Highway 101 interchanges; and (3) improve sections of Highway 116, shall a 1/2 cent sales tax be levied for a period not to exceed eight (8) years?

2) In order to (1) repair and improve local streets and roads; (2) implement passenger rail service through Sonoma and Marin counties; (3) expand transit service by increasing bus frequencies and establishing broader service; (4) enhance transit service for seniors and the disabled; and (5) build and improve bicycle and pedestrian paths, shall a 1/4 cent sales tax be levied for a period not to exceed sixteen (16) years?

The first question, Measure B, received 58.4% of the votes while the second question, Measure C, received 60.2% of the votes. Because neither received the 2/3 of votes required to pass, neither was adopted by the county.

Specifically, Measure B was written to “improve, expand and construct certain highways, interchanges, bridges and over crossings within Sonoma County as set forth below:

1. Improve Highway 101 to three (3) lanes in each direction from Windsor to the Sonoma/Marin County line including the Petaluma River Bridge and all overcrossings;
2. Improve or construct the following Highway 101 interchanges: River Road; Steele Lane; Hearn Avenue; Bellevue Avenue; Todd Road; Wilfred Avenue; Old
Redwood Highway; Rainier Avenue or alternative Petaluma location; and E. Washington Street;
3. Improve Highway 116-Cotati to Sebastopol and;
4. Improve Highway 116-Sonoma to Petaluma” (Measure B 2000).

The text of Measure C was meant to complement Measure B by providing “funding for the following public improvements:
1. Improve Streets/Roads and Fill Potholes. Improve local streets/roads and fill potholes in all nine cities and on county roads by increasing funding for street maintenance and repairs. Anticipated improvements would include storm repair and protection, and safety and congestion relief on various roads in the west and north county.
2. Implement Passenger Rail Service Through Sonoma and Marin Counties on the Northwestern Pacific Railroad. The service would ultimately run from Cloverdale to Larkspur. Allocate a proportionate share of sales tax revenues to rail to be spent on an ongoing basis ensuring the earliest implementation of the rail system. Additionally, provide financial incentives to encourage transit-friendly infrastructure projects.
3. Expand Transit Services. Increase bus frequencies and provide feeder bus routes to meet rail connections.
4. Enhance Transit Service for Seniors and the Disabled. Improve transit accessibility and services to the elderly and the disabled.
5. Build and Improve Bicycle and Pedestrian Facilities. Develop and construct key bicycle and pedestrian paths, including (a) the Northwestern Pacific Rail Trail; (b) the Central Sonoma Valley Trail; (c) the Santa Rosa Creek Trail; and (d) the West County Trail from Santa Rosa to Forestville” (Measure C 2000).

The campaign:
The Measure B and Measure C campaigns served as a clash between business groups and environmentalists, though Measure B enjoyed the more contentious fight. While there was no organized financial support for Measure C, Measure B supporters raised “more than $800,000 which is a considerable amount of money in a county with a population of less than 500,000 people” (Haas and Werbel 2001). This money came primarily from paving companies, construction firms, contractors and realtors. Television and direct mail served as the primary media to get across the pro-Measure B message. Furthermore, while there was little organized opposition to Measure C, the Greenbelt Alliance was a notable opponent. A taxpayers association, “which opposed the 1998 measure largely because of the rail component, chose not to oppose the 2000 passenger rail measure,” (Haas and Werbel 2001) focusing their efforts on supporting the highway measure. On the other side, some environmental organizations campaigned against the highway measure, using a low cost grass roots campaign. The opposition to Measure B raised a total of $17,171. Even less than this, supporters of Measure C raised only $11,000 (Fimrite 2000a A22). Interestingly enough, the Sonoma County Transportation Authority did not support either measure.

Of the Measure B supporters, “North Bay Construction Inc. of Petaluma contributed $20,000; Ghilotti Construction Co., one of the largest road builders in the
North Bay, contributed nearly $67,000, although company officials say most of the money was in the form of loans, $30,000 of which has been paid back...[; and the] biggest net contributor to the Measure B campaign was Agilent Technologies, a Hewlett Packard spin-off and the largest employer in Sonoma County... [which] contributed $50,000” (Fimrite 2000b A14).

Arguments for and against:
The key arguments made by supporters of Measure B were that the measure would “get traffic moving again, increase the safety of traveling on 101 for us and our loved ones, decrease air pollution, speed up the delivery of goods and services and improve our overall quality of life in Sonoma County” (Measure B 2000). Supporters also emphasized the idea of getting “traffic sprawl out of our neighborhoods and back on to the highway where it belongs” (Measure B 2000). Because state and federal funding could not be guaranteed, the county, supporters argued, needed to take its transportation needs into its own hands. Further, “Measure B guarantees a source of funds for Highway 101’s traffic nightmare - and quickly” (Measure B 2000).

Opponents to Measure B claimed that it would be “unfair, a waste of taxpayers' money and will encourage unwanted growth” (Measure B 2000). They argued that funding for highway improvements should come from the gas tax rather than the sales tax. The most emphasized argument, however, was that Sonoma County needed to avoid unwanted growth and sprawl: “A wider freeway will help developers justify greater growth and sprawl in what is already one of the fastest growing counties in the Bay Area. We face water shortages and inadequate wastewater disposal. Why encourage more growth when we can't properly accommodate our present population” (Measure B 2000)? Additionally, widening the freeway did not guarantee reduced congestion.

Supporters of Measure C presented it to voters along with Measure B as “a balanced transportation program” that would improve the transportation situation. They argued that by passing both measures, the County could “get more transportation matching funds from the State and Federal government” (Measure C 2000). Specific to Measure C, supporters claimed that the measure would “provide badly needed funds for rail transit, local streets and roads, bus service and bicycle and pedestrian trails” (Measure C 2000). By addressing these needs now, Sonoma County could avoid higher expenses in the future, financially and otherwise.

As with Measure B, opponents of Measure C argued that it was simply a waste of money. The main message sent to voters was: “Let's concentrate on improving our roads and highways, using the fuel taxes we are already paying. Let's send our politicians and bureaucrats a message: ‘Stop spending irresponsibly, then you won't have to keep coming to the taxpayer to ask for more'” (Measure C 2000)! More taxes would not solve the problem, they argued, and thus voters should not pass this measure. It was not denied that transportation needs had to be addressed. Rather, how these needs should be addressed was the main debate.

A successor to the 2000 Measure, placed by the County Supervisors on the ballot in the June 2006 gubernatorial primary election, would have raised an additional half-cent general sales tax to fund transportation projects along with a host of other improvements to local hospitals and clinics. The measure was defeated by 58% to 42%.
Ventura County Measure B (2004)

Background:
In the General Election of 2004, Ventura County voters were presented with the question: “Shall the ordinance establishing a one half percent (0.5%) countywide sales tax increase and spending limit in Ventura County to: maintain local streets and fix potholes; reduce traffic congestion, widen and improve safety on highways 101, 118, 126 and 23; expand Metrolink and upgrade railroad crossings; expand bus services and lower senior and disabled fares; improve access to CSUCI; and construct bicycle paths become effective and operative?” This measure would be in effect for 30 years. By a margin of 58.3% to 41.7%, voters shot down Measure B.

Measure B sought a way to ensure funding for transportation projects in Ventura County. Revenues from the sales tax “may only be used for transportation purposes in Ventura County including the administration of Division 25, including legal actions related thereto, the construction, capital, acquisition, maintenance and operation of streets, roads, highways, including state highways and public transit and for related purposes. These purposes include expenditures for the planning, environmental reviews, engineering, design and related right-of-way acquisition” (Measure B 2004). The measure would also allow the Transportation Commission to issue bonds to raise funds for transportation purposes. Of the revenues: 40% would be allocated to Road and Highway projects; 20% to Transit, Rail, Bicycle and Pedestrian projects; and 40% returned to the cities and the county for local street purposes. This latter 40% would then be divided on a per capita basis.

The campaign:
Though holding the support of the county government and major businesses, Measure B failed to win over county voters. Indeed, it was “supported by Ventura County and all of its cities, the Automobile Club of Southern California, and the Ventura County Economic Development Association, which helped lead the campaign…[and it is] even supported by the Ventura County Taxpayers Association, a group that often opposes new taxes” (Leah 2004 SV1). The Ventura County Transportation Committee, rather than campaigning in support of Measure B, set out to inform voters about the transportation measure. The resources dedicated to this were as follows: “Specifically, VCTC spent $35,000 in public funds to conduct a voter poll in December 2003. In the spring of 2004, VCTC paid $50,000 to a political consulting firm to assist in developing a public education plan for the proposal, and $163,380 to print and mail approximately 575,150 postcards to registered voters. VCTC spent $25,000 in pubic funds to conduct a second poll in April 2004” (Totten 2005).

Arguments for and against:
A central argument made by supporters was the lack of alternative funding for transportation. In the text itself of the measure it was written that: “Maintenance and repair of existing roadways in Ventura County and improvements to relieve congestion cannot be accomplished with available funds. Without additional funds, the system will bog down and pavement will continue to crumble into permanent disrepair” (Measure B 2004). With the state in a financial crisis, the only way to guarantee funding for local
transportation purposes would be through a local sales tax. Tied in with this argument was the urgency to address congestion and other such transportation issues. Simi Valley Mayor Pro Tem Lindsey Paul Miller said, “We need to do something effective. It’s the state’s job to do this, but because they failed to do their job and they use the gas tax for other things, we have to tax ourselves in order to relieve traffic congestion” (Belmond 2004).

“We feel strongly there shouldn't even be a need for a half-cent sales tax if the state was doing its job, but it's not,” said Don Facciano, president of the Ventura County Taxpayers Association. “We already pay taxes for roads. But traffic is one of the most serious problems in Ventura County, and we're the largest county that does not have a one-half cent sales tax. We can't wait until 2030 to address these problems” (Leah 2004). The key argument made by opponents, and what ultimately convinced voters to vote against Measure B, was the tax involved with the measure. Analyzing the election result, Herbert Gooch, chairman of the political science department at California Lutheran University, stated: “The fact that both Measure A (sales tax increase for open space) and B were on the ballot, I think it hurt both. I think it helped drag them both down. With two measures, it reminded people they were going to get taxed twice” (Leah 2004). Another important and influential argument made by opponents was the likely growth that Measure B would lead to. Opponents “who include some environmentalists, say Measure B will raise more money than is needed and wind up supporting development, which would then create more congestion on the roads” (Leah 2004). All in all, voters simply felt that Measure B was not what the county needed, most likely leading to unwanted growth and thus even more congestion and transportation issues.

WASHINGTON

State Referendum 49 (1998)

Background:

Shall motor vehicle excise taxes be reduced and state revenues reallocated; $1.9 billion in bonds for state and local highways approved; and spending limits modified? Ref. 49 was approved by 57.14% of voters to 42.86%.

After the election, the Democrats gained majority control of the State Legislature. Ironically, the Democrats seemed to have embraced Ref. 49 after its passage, creating their own version of transportation projects using the funds. Locke proposed a $2.4 billion, 6-year transportation plan, calling it “a strategic and sensible approach to getting the most value from our transportation dollars” (Lynch 1998a B1). Addressing the apparent reversal in attitude, Locke said, “I disagreed with the methods of paying for it, but I've never disagreed with the tenet that we need to improve our roadways in this state for both commuters and goods” (Lynch 1998a).

The campaign:

One theme that came out of this referendum is that of regionalism. Even some of those who supported Ref. 49 were worried that the money for transportation would not directly benefit them. City of Vancouver Mayor Royce Pollard asked to meet with Gov.
Locke before the election to complain that his transportation plans were too Puget Sound-centric and neglects Southwest Washington. Pollard said, "We comprise 12 to 13 percent of the population. I would be happy with just our small piece. But it appears based on our analysis that it is not an equitable distribution of available funds" (Church 1999).

Ref. 49, the Republican-submitted proposal, was the clearest example of the existence of a partisan conflict. Occurring in an election year, Ref. 49 was sold as a “creative” approach to solving the transportation problem (Lynch 1998b), while Gov. Locke led the Democrats in opposing the measure as “credit card spending at its worst” (Lynch 1998a).

Arguments for and against:

Democrats warned that the tax cuts on the MVET and the debt may result in a money squeeze, which may impair services from schools, the poor, and essential state services (Lynch 1998b). But referendum supporters, such as House Appropriations Chairman Tom Gruff, R-Gig Harbor, accused Locke of using scaring tactics (Lynch 1998b).

The concerns that Locke brought up happen to be traditional Democratic platforms. It was perhaps no surprise that the main opponents of Ref. 49 also happened to be traditional Democratic allies. These included the PTA, Sierra Club, AARP, League of Women Voters, Children’s Alliance (Lynch 1998b), as well as the main Seattle broadsheet Seattle Times (Times Endorsement – Ref 49).

On the other hand, the main supporters of Ref. 49 also happened to be traditional Republican allies. These were big corporations and business interests such as Boeing (Lynch 1998b), Weyerhaeuser (Lynch 1998b), gasoline and construction interests from Texas and Oregon (Lynch 1998b), the Seattle Port Commission, railroads, shipping and trucking industries (Mongelluzzo 1998).

State Initiative 695 (1999)

Background:

This initiative proposed the following (Municipal League of King County 1999):

• To establish a flat state vehicle license fee of $30 per year, regardless of the year, the make, or the model of the vehicle, effective 30 days after the November General Election.
• To repeal all existing taxes and fees relating to motor vehicles.
• To require voter approval for any new tax or tax increase enacted by the state or any city, county, or special district.
• To exempt increases in higher education tuition fees and any emergency measure from the requirement for voter approval if passed by a two-thirds majority voter of each house of the state legislature. In order to be exempt, the emergency measure would have to expire within twelve months of the effective emergency legislation date.
• To repeal a state law that exempted vehicles from personal property taxes.
Initiative 695 passed overwhelmingly with 56.16% of the votes, while only 43.84% voted “no.”

Even some pollsters were surprised at the outcome, according to Seattle Times, which concluded that in the end, voters asked only one question: “How often does John Q. Public get a chance to reduce his or her taxes by hundreds, even thousands of dollars a year? The answer: hardly ever” (Nelson and Gilmore 1999 A21). Even in Seattle, one of only five counties that defeated the initiative, the race was close—48 percent in favor, 52 opposed (Nelson and Gilmore 1999).

The campaign:

With Initiative 695, Mukilteo watch salesman Tim Eyman would start a series of initiative-crafting for his self-proclaimed fight against the elites and the bureaucracy. Riding on voters’ frustration on taxes and increases, Eyman sold himself as the “average voter’s voice” (Lynch 1999a A17). He continually framed the issues as a rebellion against the rich, reveling in being hated by many of the “elites” (Lynch 1999a). Eyman said that businesses have had their tax breaks, so that it was now “the little guy’s” turn (Lynch 1999b). He further said his campaign will be run on a “pauper’s budget” (Lynch 1999b) reiterating his theme of haves and have-nots.

David Olson, a University of Washington political scientist had said that I-695 pits “mass society against elites” (McMahon 1999 4A). Indeed, a look at the opponents and supporters of I-695 seemed to confirm this view. The opponents of I-695 were a mishmash of sorts, such that the Seattle Times call them “strange bedfellows” (Lynch 1999b). Proponents of Initiative 695 framed the question as a fight between the elites and the masses, while the opponents framed it as a fight between short-sighted people and people who think long-term.

Those who were against I-695 often criticize the supporters as acting out of greed and failing to see the longer-term consequences. Seattle Times columnist Joan Balter considered I-695 as “a reckless bit of proposed public policy aimed at the selfish part of our civic heart” (Balter 1999 B6). If education were indeed to be correlated with knowledge of long-term consequences, some polls might suggest a bit of truth to the opposition’s claims. An Elway poll conducted August 1999 found 59 percent favored the measure while 32 percent opposed it. Of those against it, only Seattle voters and voters with graduate degrees opposed it in majority numbers at 57 percent and 58 percent, respectively (Burkitt 1999 A12).

On the other hand, the coalition for I-695 was not as organized, composed mostly of individual citizens, and the Libertarian party, (Lynch 1999b) with some Republicans, (Environmentalists to Battle I-695 1999 B2) although other Republicans were also neutral (Lynch 1999c). The discrepancy in the two campaigns’ funding is staggering, based on Washington’s Public Disclosure Commission. The 30 Dollar Car Tab Initiative
(Eyman’s group) only had about $440,000 in funds, while the No on 695 campaign had almost $2,300,000—or five times that amount.

State Initiative 745 (2000)

Background:
Shall 90% of transportation funds, including transit taxes, be spent for roads; transportation agency performance audits required; and road construction and maintenance be sales tax-exempt? Initiative 745 was defeated by voters about 60% to 40%.

The campaign:
Opponents of the measure outspent the proponents $1.3M to $800,000. Supporters of the initiative include asphalt pavers, oil companies and construction firms (Garber 2000a B2). The opponents include business groups such as the Seattle Chamber of Commerce, (Garber 2000a) Boeing and the Association of Washington Business, (Church 2000 B01) and advocacy groups such as Puget Sound Council of Senior Citizens (Garber 2000a) and the environmentalist group 1000 Friends of Washington (Garber 2000a).

Arguments for and against:
Initiative 745 was a referendum that clearly meant to pit the issue of road transportation vs. mass transit. Author Tim Eyman argued that too much emphasis had been placed on mass transit as the solution to traffic. However, he said that most people in Washington travel through their own cars rather than take public transportation (Church 2000). Another argument raised by proponents was that no matter how many busses the state buys, it would be no use if they got stuck in congested roads (Garber 2000b A9).

Opponents, on the other hand, argued that a more balanced approach that mixes road construction with public transportation is a better plan. They said the initiative would worsen traffic because it would take money away from busses, forcing people who rely on them to drive (Garber 2000a). They also alleged that I-745 discriminates against the elderly and those who don’t drive, calling the proposal “mean-spirited” (Garber 2000a).

Aside from the issue of road construction vs. mass transit, arguments of regionalism and attitudes to government also surfaced. Because the initiative would also apply to local transportation taxes, some argued that it would take away discretion of local government to spend their own funds (Seattle Times 2000). Mass transit is also more prominent in urban areas than rural areas. One columnist wrote “Road building may help Eastern Washington and parts of Western Washington, but the Puget Sound area needs a mix” (Balter 2000 F2). Groups that opposed I-745 also tended to be from Seattle, such as the chamber of commerce.

Eyman also argued that the initiative would teach government bureaucrats a lesson. So far, state leaders have done a poor job dealing with traffic congestion, he said. “If you vote 'No' (on I-745), you'll just get more of it” (Garber 2000b).
State Referendum 51 (2002)

Background:

The Legislature has passed House Bill No. 2969, financing transportation improvements through transportation fees and taxes. This bill would increase highway capacity, public transportation, passenger and freight rail, and transportation financing accountability through increased fuel excise taxes, sales taxes on vehicles, and weight fees on trucks and large vehicles.

Fifty-seven percent of the funds from the measure would have gone to roads and highways, and 28 percent to a combination of rail, ferries and transit.

Referendum 51 was a proposition that came from the legislature, prompted after Gov. Locke was unable to pass a transportation-funding package through the Republican-controlled assembly. Thus, by default, Referendum 51 ran the risk of becoming a partisan issue.

The result of the elections was an overwhelming defeat of R-51. Only 38.42% of voters supported it, while 61.58% rejected it. Again, like I-695, this is another instance where the discrepancy in the two campaigns’ funding did not translate to the polls. While the pro-R-51 camp had total contributions of over $4 million, the anti-R-51 camp only had about $170,000.

The campaign:

The State Republican Party remained neutral on this issue (Pryne 2002 A1). The main opposition came from a traditional group of democratic allies—the environmentalists. Opponents of the referendum were mostly led by environmentalists and anti-tax organizations—including 1,000 Friends of Washington, the Sierra Club (Lindblorn 2002 B1), National Wildlife Federation (Garber 2002), WashPIRG (Pregulman 2002 B5), and Transportation Choices Coalition (which is Tim Eyman’s group) (Linblorn 2002). They framed the issue as a fight between building more roads and building more mass transit.

Proponents of the bill included many of the same coalition from Initiative 695 (1999)—minus the environmentalists. These include Gov. Locke (Church 2002), State Democratic Party (Garber 2002 A1), Greater Vancouver Chamber of Commerce (Church 2002), The Seattle Times (Yes to R-51 2002 C2), and Boeing and Microsoft (both of whom donated about $300,000 each).

Arguments for and against:

The supporters of R-51 stressed the importance to fix the state’s transportation woes, and businesses in general have supported it as they would greatly benefit from the infrastructure (Pryne 2002). The environmentalists contend that they are not necessarily against road-building, but they are against road-building without also building public transportation (Pregulman 2002). A Seattle Times Washington Poll conducted before the election suggested that this message had some impact on voters. About 1 in 11 voters who opposed R-51 said they were influenced by the environmentalists’ position (Gilmore 2002a A1). However, a more prominent reason that R-51 opponents cited, according to an Elway research, is mistrust of government. Among opponents, three quarters were said to question the ability of the state government to spend the money well (Gilmore 2002a).
State Initiative 776 (2002)

Background:
Initiative Measure No. 776 concerns state and local government charges on motor vehicles. This measure would require license tab fees to be $30 per year for motor vehicles, including light trucks. Certain local-option vehicle excise taxes and fees used for roads and transit would be repealed. Should this measure be enacted into law? I-776 was approved by voters 51.47% against 48.53%.

The campaign:
The third of Eyman’s transportation initiatives, I-776 was framed as a fight against the elites and bureaucracy who take advantage of the “little people.” However, it also touched upon the issue of mass transportation vs. roads as much of the local-option vehicle excise taxes were to be used for public transit funding in Pierce, Snohomish and King counties. Also as a result of this effect, the issue of regionalism surfaced: what right do counties have on voting for or against other counties’ taxes?

As expected, proponents of I-776 came from individuals through Eyman’s grassroots mobilization. This can be seen in the fact that no one particular organization stood out as a main contributor for the initiative. In all, total cash contributions for this campaign only amounted to less than $300,000. On the other hand, opponents of I-776 were represented by big businesses and newspapers including Boeing, Microsoft, Washington Asphalt Pavement Association, and the Seattle Times (Northwest Voices 2005 B7). They have total cash contributions of over $3 million.

Although state political parties did not come up with official stances on this issue, polls showed that voters against I-776 were more likely to be Democrats and richer, while those for I-776 tends to be more Republican and hate taxes (Gilmore 2002b B1). This seemed to go in line with Eyman’s general assertion of rich vs. poor.

In addition, proponents of I-776 also campaigned that the initiative was a referendum against light rail (Ramsey 2002 B6). This sounds like a direct opposition to some of the sentiments of those against R-51 the same year, in which opponents complained that mass transit was being forsaken for more road constructions. However, R-51 was rejected by voters but I-776 passed. This might suggest that fewer people against R-51 were against it for the mass transportation reason.

Finally, I-776 brought about the question of whether other counties could decide over the fate of transportation projects in urban areas such as King County, Snohomish and Pierce. This issue tends to pit the rural voters against the urban dwellers. Indeed, some political analysts have noted a rise that year in regionalism, particularly in the political parties (Postman 2002 A1).

State Initiative 912 (2005)

Background:
This measure would repeal motor vehicle fuel tax increases of 3 cents in 2005 and 2006, 2 cents in 2007, and 1.5 cents per gallon in 2008, enacted in 2005 for transportation purposes. In the end, I-912 was defeated 45.38 percent to 54.62 percent. Some
commentators suggest that it is brought about by renewed confidence in the government through a new governor, and voters witnessing Hurricane Katrina and forcing them to think more long-term (Garber 2005a B1).

The campaign:

Initiative 912 was framed as a referendum on the people’s mistrust on the government and its inefficiency. Opponents, on the other hand, argue that those for I-912 were acting out of greed and short-sightedness—the same issues with I-695 (1999).

One of the main differences, however, is in the coalition members. Though I-912 was again a grassroots campaign led by Eyman’s organization, Eyman himself has been distanced following a scandal back in 2002. Those against I-912 were also significantly decimated from the expected members in the past. This was because organizations and businesses were now reluctant to fund it, owing to past failures (Garber 2005a). Boeing was the biggest single contributor, followed by the League of Conservation Voters Ed Fund. The Seattle Times was also against it (I-912 is backward policy 2005 B8).

Opponents’ coalition members dwindled in contrast to the No I-695 campaign, and as a consequence, their total named cash contributions were only hovering above $300,000. A more effective campaign was what they vowed to achieve. They planned to use more localized campaigns, showing county voters the transportation projects that would be impacted in their area if I-912 passes (Garber 2005b B1). They also planned to dissociate themselves with high-profile politicians, such as recently elected Gov. Christine Gregoire. Polls were said to show that voters are turned off by commercials featuring politicians, (Garber 2005b) which ties in with some earlier voter sentiments on the inefficiency and arrogance of governments.

Arguments for and against:

Proponents for I-912 criticized the government as inefficient and unaccountable. A KING-TV poll before the election found 70 percent of those surveyed said the state won’t spend the gas tax wisely (Gilmore 2005 B1). Additionally, an Elway research found 12 percent cited mistrust of the State Department of Transportation as the main reason for backing I-912 (Gilmore 2005). A disgruntled letter to the editor said that the legislature, “instead of working within the funds available, dig deeper into the pockets of the working stiffs who are hard-pressed to make a living as it is” (I-912 is a backward policy 2005).

However, the same Elway poll also showed that more proponents may have been for I-912 simply for the reason of cost. Forty-four percent of those backing I-912 cited rising pump prices as the main reason. This has justified some of the opponents’ criticisms that voters’ selfishness, short-sightedness, frustration and ambition are the ones pushing I-912 (Balter 2005 B6).

King, Kitsap, Snohomish, Pierce, and Thurston Counties Proposition 1

Background:

Sales tax increase propositions were introduced in all four counties following the passage of statewide I-695 (1999) which limited MVETs to $30 per year and significantly affected local transportation agencies’ budgets. In September 2000, Kitsap
County voted on Proposition 1 (“Tax Increase for Public Transit”), and King County voted on Proposition 1 (“Transit and Traffic Congestion Relief”). In September 2001, Snohomish County voted on Proposition 1 (“Sales Tax Increase”). In February 2002, Pierce County voted on Proposition 1 (“Preservation of Public Transportation, 0.3% Sales and Use Tax Increase”). Finally, in September 2002, Thurston County voted on Proposition 1 (“Intercity Transit Sales and Use Tax”).

Except for Kitsap County, all of the sales tax increase referenda were passed in these counties. In Kitsap, the “No” votes were 55.07 percent against 44.93 percent “Yes.” In King, meanwhile, the simultaneous referendum won easily with 61 percent of the vote. In Snohomish, the “Yes” votes were 80,129 against 60,988 “No” (percentage figures were unavailable). In Pierce, the “Yes” votes were 54.11 percent against 45.89 percent “No.” Finally, in Thurston, the “Yes” votes were 57.15 percent against 42.85 percent “No.”

At a cursory glance, the timing of the elections seemed to have a relationship with the votes, such that earlier years tend to have a negative effect while later years tend to be more positive. A similar observation was made in the statewide transportation referenda elections where the atmosphere for and against public transportation seemed to have changed possibly as a result of Washington’s economic state, political atmosphere (especially change of governorship), Tim Eyman and Hurricane Katrina.

Although the King County referendum authorized a tax increase of up to .2 percent, the other four counties proposed sales tax increases of 0.30 percent. However, as a result of the sales tax increase in Snohomish, the county’s sales tax became the highest in the state at 8.9 percent. Partly for this reason, this analysis will use Snohomish as an example for all four counties’ sales tax increase referenda.

Snohomish County Proposition 1 (2001)

Background:

Snohomish’s Proposition 1 (2001) passed, making it the county with the highest sales tax in the state. The time element also seemed to have an effect here, such that earlier years saw hostility towards transportation referenda than later years. Earlier in 1998, the county tried to pass two propositions: one to finance local highway, street and road improvements through a bond; the other to fund local highway, street and road improvements through an increase in motor vehicle fuel taxes. It is important to note that both propositions failed overwhelmingly: the first by a vote of 135,268 “No” to 44,590 “Yes,” while the other proposition similarly by a vote of 75.54 percent “No” to only 24.46 percent “Yes.”

The campaign:

Proponents included city officials, activists for senior citizens and the disabled, the Everett and South Snohomish County chambers of commerce, the Snohomish County Economic Development Council, the Snohomish Labor Council, and city councils in Edmonds, Mukilteo, and Mountlake Terrace (Burkitt 2001 A14).
An opposition group called “Washington Citizens for a Sound Economy” rose up against Proposition 1. The group is a chapter of a national organization promoting free-market solutions to public policy issues (Brooks 2001 B5).

Arguments for and against:

The opposition essentially blamed Community Transit, suggesting that it could save money by being more efficient. Also, the group implies that transit unions were “coming after our wallets” by being behind the proposition (Brooks 2001).

Proponents of Snohomish’s Proposition 1 claimed that people who would be most affected by cuts in transportation are the poor and senior citizens, who rely mostly on public transportation. They argued that senior citizens, low-income citizens and the disabled were already affected as a result of cuts in bus routes and schedules, following I-695 (Fisher 2001). In addition, they also pointed out that 7.2 million passengers now use the bus system, down from 8.6 million in 1999. County Executive Bob Drewel said the system provides for a “staggering number of cars taken off the road” (Fisher 2001). Thus, passage of proposition 1, according to them, would not only affect people who use the bus system, but also those who use the freeways. Proponents also noted that other counties already raised their taxes in response to I-695. They pointed out that voters in Clallam, Grays Harbor, Island and Jefferson counties already approved 0.30 percent increases (Fisher 2001).
Appendix 2

Independent Variables Used in Correlations and Regressions

<table>
<thead>
<tr>
<th>Variable</th>
<th>Calculation method</th>
<th>Source</th>
<th>Min.</th>
<th>Max.</th>
<th>Mean</th>
<th>S.D.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Republican margin in 2000 Presidential election (%)</td>
<td>Republican percent minus Democratic percent</td>
<td>Compiled from elections offices</td>
<td>-0.91</td>
<td>0.62</td>
<td>-0.05</td>
<td>0.30</td>
</tr>
<tr>
<td>Republican margin in 2004 Presidential election (%)</td>
<td>Republican percent minus Democratic percent</td>
<td>Compiled from elections offices</td>
<td>-0.87</td>
<td>0.58</td>
<td>-0.03</td>
<td>0.32</td>
</tr>
<tr>
<td>Socio-economic Status (SES)</td>
<td>Standardized index of adults with bachelors degree and median per capita income</td>
<td>2000 census STF3 files</td>
<td>0.03</td>
<td>1.01</td>
<td>0.27</td>
<td>0.16</td>
</tr>
<tr>
<td>Hardship indicator</td>
<td>Standardized index of households in poverty, unemployment rate and percent with less than high school education</td>
<td>2000 census STF3 files</td>
<td>0.00</td>
<td>1.00</td>
<td>0.13</td>
<td>0.10</td>
</tr>
<tr>
<td>% Afro-American residents</td>
<td>2000 census STF3 files</td>
<td></td>
<td>0.00</td>
<td>0.98</td>
<td>0.04</td>
<td>0.08</td>
</tr>
<tr>
<td>% Latino residents</td>
<td>2000 census STF3 files</td>
<td></td>
<td>0.00</td>
<td>0.98</td>
<td>0.18</td>
<td>0.23</td>
</tr>
<tr>
<td>% residents under 18</td>
<td>2000 census STF3 files</td>
<td></td>
<td>0.00</td>
<td>0.44</td>
<td>0.27</td>
<td>0.06</td>
</tr>
<tr>
<td>% of residents aged 60 or older</td>
<td>2000 census STF3 files</td>
<td></td>
<td>0.00</td>
<td>0.92</td>
<td>0.15</td>
<td>0.07</td>
</tr>
<tr>
<td>% of residents who are homeowners</td>
<td>2000 census STF3 files</td>
<td></td>
<td>0.00</td>
<td>1.00</td>
<td>0.70</td>
<td>0.17</td>
</tr>
<tr>
<td>Index for population density (persons per acre/100)</td>
<td>2000 census STF3 files</td>
<td></td>
<td>0.00</td>
<td>0.93</td>
<td>0.11</td>
<td>0.13</td>
</tr>
<tr>
<td>Distance to central city</td>
<td>Distance from metropolitan central business district to center of place polygon</td>
<td>Created in ArcInfo</td>
<td>0.02</td>
<td>6.10</td>
<td>1.46</td>
<td>1.49</td>
</tr>
<tr>
<td>Distance to nearest highway</td>
<td>Distance from nearest interstate highway to center of place polygon</td>
<td>Created in ArcInfo</td>
<td>0.00</td>
<td>0.39</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>% workers who commute to a different city from where they live</td>
<td>2000 census STF3 files</td>
<td></td>
<td>0.00</td>
<td>1.00</td>
<td>0.65</td>
<td>0.36</td>
</tr>
<tr>
<td>% of housing built since 1980</td>
<td>2000 census STF3 files</td>
<td></td>
<td>0.00</td>
<td>0.99</td>
<td>0.34</td>
<td>0.20</td>
</tr>
<tr>
<td>% workers who take public transit</td>
<td>2000 census STF3 files</td>
<td></td>
<td>0.00</td>
<td>0.37</td>
<td>0.03</td>
<td>0.04</td>
</tr>
<tr>
<td>Simpson index (of economic diversity)</td>
<td>$1 - \sum p_i^2$, where p_i is the number of persons in a category; categories by occupation for managers and professionals, blue collar jobs, and other service jobs</td>
<td>2000 census STF3 files</td>
<td>1.00</td>
<td>3.00</td>
<td>2.57</td>
<td>0.33</td>
</tr>
</tbody>
</table>
Sources Cited

Bonds, pro and con 1A, 1B and 1E deliver, but others disappoint. The San Diego Union Tribune September 29, 2006: B-8.

Fimrite, Peter. 2000a. $800,000 Campaign Failed to Sway Hwy. 101 Widening Foes; Sonoma County backers at a loss to explain why voters snubbed measure. *San Francisco Chronicle* March 9, final ed.: A22.

Garber, Andrew. 2002. Road fixes: An extra $10 billion, 15 years; Pending tax packages aren't enough; big projects may have to be phased in. *The Seattle Times*. September 27: A1. Lexis-Nexis (retrieved October 18, 2006).

Guara, Maria Alicia. 1996. Voters Divided on Highway Plans; Most would spend tax boost on roads, but snub the raise. *The San Francisco Chronicle* November 6, Final ed.: A18

Kasindorf, Martin. 1998. L.A. subway system stopped in its tracks. *USA Today*. November 6, Friday First ed.: 4A.

Pasco, Jean O. 2002. Developers Back Prop. 51 With Eye on Irvine; Measure would divert vehicle-tax revenue to projects like the Great Park. One group that got donations funded pro-Agran mailers. *The Los Angeles Times*. October 26: B3

Tamaki, Julie. 2002. Two Unions Jump Into Fight Against Prop. 42; Politics: Teachers and service employees launch a late ad campaign to thwart widely supported effort to dedicate state gas tax transportation. *The Los Angeles Times*. February 27: B7.

Wachs, Martin. 2005. A Quiet Revolution in Transportation Finance. Talk given at School of Policy, Planning and Development, University of Southern California.

Werbel, Richard and Peter J. Haas. 2001. Factors Influencing Voting Results of Local Transportation Funding Initiatives with a Substantial Rail Transit Component: Case Studies of Ballot Measures in Eleven Communities. Mineta Transportation Institute Report 01-17, College of Business, San José State University. San Jose, CA: Mineta Transportation Institute.

Yes on Proposition 2; Transportation taxes and fees should be used for transportation projects. 1998. The Fresno Bee, October 19. Home Edition: B6.