Background

- Travel time reliability represents the level of consistency in travel times for the same trip for a time period. (Lomax et al. 2003)

- Most travel time reliability studies that apply GPS data are based on travel time observations retrieved from GPS data.
 - The major challenge to using GPS data is low reading frequency.

- A recently introduced GPS spot speed based reliability metric that uses speed distribution does not provide a numerical value which would allow for a quantitative evaluation.
Research Objectives

- Improve the current GPS spot speed distribution based approach to measure truck travel time reliability.
- Compare the improved measure with a number of commonly used reliability measures.
Truck Travel Time Reliability Measures

- Two types of truck travel time reliability measures (according to the data on which these approaches are based):
 - Travel time based reliability measures
 - GPS spot speed based reliability measures
Travel Time Based Reliability Measures

- Standard deviation and coefficient of variation (COV)
- Percentile method
 - The 95th percentile travel time (also called planning time) was recommended by USDOT.
 - The SHRP 2 (Second Strategic Highway Research Program) recommended using 80th percentile travel time since they found that events that contribute to the 80th percentile travel time are more common events and are more likely to be influenced by operation strategies.
- Buffer Time Index (BI)
 - Buffer time: the extra travel time must add to the mean travel time to allow for on-time arrival.
 - Buffer time index = buffer time/mean travel time
Travel Time Based Reliability Measures

- **Skew**
 - Depicts the “leaning” of travel time distribution to one side of the mean.

 \[Skew = \frac{T_{90} - T_{50}}{T_{50} - T_{10}} \]

- **Truck Reliability Index (RI_{80})**
 - Recommended by The American Association of State Highway and Transportation Officials (AASHTO) for the MAP-21 Program.
 - It is defined as the ratio of the total truck travel time needed to ensure on time arrival (e.g. 80\(^{th}\) percentile travel time) to the agency-determined congestion threshold travel time (e.g. 60\% of posted speed).
Limitations of Travel Time Based Methods

• Constraint of number of observations

 Sufficient travel time observations is required to ensure the estimated travel time can represent the link travel time with reasonable accuracy.

• The minimum number of travel time observations (NCHRP 2008)

\[
N = 4 \times \left[t_{(1-\alpha/2), N-1} \times \frac{S}{CI_{1-\alpha\%}} \right]^2
\]

\(CI_{1-\alpha\%} = \) confidence interval for the true mean with probability of \((1-\alpha)\%\),

\(t_{(1-\alpha/2), N-1} = \) the t statistic for the probability of two-sided error summing to alpha with \(N-1\) degrees of freedom,

\(S = \) the standard deviation in the measured travel times.
Limitations of Travel Time Based Methods

- Loss of data accuracy
- The conversion from GPS spot speed to travel time estimates for a particular segment involves data processing and therefore may cause a loss of data accuracy.
The bimodal approach (Zhao et al. 2013)

- Truck GPS spot speed distribution follows a mixture of two Gaussian distributions.
- Travel time is unreliable if a bimodal distribution is observed. Otherwise (a unimodal distribution), travel time is reliable.

Limitation
- It does not provide a numerical value which would allow for a more quantitative evaluation.
Improved Approach

- Coefficient of variation

\[\mu = \sum_{i=1}^{n} w_i \mu_i \]

\[\sigma^2 = \sum_{i=1}^{n} w_i ((\mu_i - \mu)^2 + \sigma_i^2) \]

Coefficient of Variation (COV) = \(\frac{\sigma}{\mu} \)

where \(\mu = \) mean of the mixture of Gaussian distributions,
\(w_i = \) weight of the \(i \)th Gaussian distribution,
\(\mu_i = \) mean of the \(i \)th Gaussian distribution,
\(\sigma = \) standard deviation of the mixture of Gaussian distributions,
\(\sigma_i = \) standard deviation of the \(i \)th Gaussian distribution,
\(n = \) number of Gaussian distributions, \(n = 2 \).
Case Study

- Four segments
 - Segment 1 and Segment 2: the stretch of 9 miles of eastbound and westbound of Interstate 90 (I-90) near Spokane, WA.
 - Segment 3 and Segment 4: the stretch of 3.5 miles of southbound and northbound of Interstate 5 (I-5) near downtown Seattle, WA.

- The distribution fitting was accomplished using the R software package “mixdist” (Du 2002)
Segment 1
- Reliably fast
- Mean: 62.43
- Standard deviation: 8.04
- COV: 0.13
- Reliability Ranking: 4

Segment 2
- Reliably fast
- Mean: 62.00
- Standard deviation: 8.48
- COV: 0.14
- Reliability Ranking: 3

Segment 3
- Unreliable
- Mean: 37.70
- Standard deviation: 17.97
- COV: 0.48
- Reliability Ranking: 2

Segment 4
- Unreliable
- Mean: 34.35
- Standard deviation: 18.95
- COV: 0.55
- Reliability Ranking: 1
Reliability Measures Comparison

- **Study area**
 - A stretch of 3.5 miles of southbound Interstate 5 (I-5) through downtown Seattle

- **Ranking results**

 Reliability Ranking Results during Off-peak Period (12:00 AM – 6:00 AM)

<table>
<thead>
<tr>
<th>Measures</th>
<th>Mon</th>
<th>Tue</th>
<th>Wed</th>
<th>Thu</th>
<th>Fri</th>
</tr>
</thead>
<tbody>
<tr>
<td>COV</td>
<td>2</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>BI</td>
<td>3</td>
<td>5</td>
<td>2</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>Skew</td>
<td>3</td>
<td>5</td>
<td>4</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>RI_{80}</td>
<td>3</td>
<td>5</td>
<td>2</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>Improved GPS spot speed based method</td>
<td>3</td>
<td>5</td>
<td>2</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Reliability Ranking Results during AM Peak Period (6:00 AM – 9:00 AM)

<table>
<thead>
<tr>
<th>Measures</th>
<th>Mon</th>
<th>Tue</th>
<th>Wed</th>
<th>Thu</th>
<th>Fri</th>
</tr>
</thead>
<tbody>
<tr>
<td>COV</td>
<td>1</td>
<td>4</td>
<td>2</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>BI</td>
<td>4</td>
<td>5</td>
<td>3</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Skew</td>
<td>1</td>
<td>4</td>
<td>5</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>RI_{80}</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>Improved GPS spot speed based method</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>5</td>
</tr>
</tbody>
</table>
Correlations among Travel Time Reliability Measures

Correlations among Reliability Measures during Off-peak Period

<table>
<thead>
<tr>
<th></th>
<th>COV</th>
<th>BI</th>
<th>Skew</th>
<th>RI_{80}</th>
<th>Improved GPS Spot Speed</th>
</tr>
</thead>
<tbody>
<tr>
<td>COV</td>
<td>1.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BI</td>
<td>0.639</td>
<td>1.000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Skew</td>
<td>0.666</td>
<td>0.408</td>
<td>1.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RI_{80}</td>
<td>0.695</td>
<td>0.735</td>
<td>0.446</td>
<td>1.000</td>
<td></td>
</tr>
<tr>
<td>Improved GPS spot speed</td>
<td>0.556</td>
<td>0.433</td>
<td>0.420</td>
<td>0.769</td>
<td>1.000</td>
</tr>
</tbody>
</table>

Correlations among Reliability Measures during AM Peak Period

<table>
<thead>
<tr>
<th></th>
<th>COV</th>
<th>BI</th>
<th>Skew</th>
<th>RI_{80}</th>
<th>Improved GPS Spot Speed</th>
</tr>
</thead>
<tbody>
<tr>
<td>COV</td>
<td>1.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BI</td>
<td>0.679</td>
<td>1.000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Skew</td>
<td>0.471</td>
<td>0.418</td>
<td>1.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RI_{80}</td>
<td>0.508</td>
<td>0.595</td>
<td>0.135</td>
<td>1.000</td>
<td></td>
</tr>
<tr>
<td>Improved GPS spot speed</td>
<td>0.322</td>
<td>0.196</td>
<td>-0.223</td>
<td>0.821</td>
<td>1.000</td>
</tr>
</tbody>
</table>
Findings

- The improved GPS spot speed based reliability measure is able to provide numerical values which allows for quantitative analyses.
- Ranking of travel time reliability bottlenecks varies depending on the reliability measures used. Different measures may get different conclusions for the same underlying data.
- There are large deviations among reliability measures.
Future Research

- Provide recommendations on which measures are most appropriate for different applications.