Planning Level
Industrial Warehouse Space Modeling for Southern California

presented at

2015 METRANS International Urban Freight Conference
Track 4-4 Logistics Model

presented by

Chiranjivi (Chiru) S Bhamidipati, Cambridge Systematics, Inc.

other contributors:
Ramesh Thammiraju, Monica Isbell, and Michael J Fischer, Cambridge Systematics, Inc.
Gill V Hicks, Gill V Hicks and Associates, Inc.
Annie Nam and Akiko Yamagami, Southern California Association of Governments

October 22, 2015
Presentation Outline

- Introduction
- Study Objectives
- Data Used
- Warehouse Space Model
- Results
- Conclusions
- Ongoing and Future Works
Introduction

Planning Needs for Warehousing in SCAG Region

» Population growth from 18 million (2014) to 22 million (2035)

» Freight dependent industries contribute 35% of Gross Regional Product, and contribution (in $) to double between 2014-2040

» Container ports handle more than 15 million TEUs (2014), and expected to reach 36 million TEUs by 2040

Planning Challenges for Warehousing in SCAG Region

» Limited supply of suitably-zoned land

» Ability to adequately service warehouses in the region given existing and future roadway congestion

» Competing interests of different land uses for a limited land supply
Study Objectives

- Understand supply chain trends impacting Southern California’s warehousing supply and demand
- Develop a warehouse space model to forecast regional warehouse space and allocate space to submarket areas.
- Identify alternate scenarios based on key logistics trends and stakeholder inputs and evaluate them using warehouse space model.
- Develop and evaluate warehousing related policies and associated effects on the transportation system for the SCAG region
Data Used

- CoStar Property® data product for SCAG Region
- REMI based National Gross Domestic Product forecasts
- Developable lands for future industrial warehousing information in the 2013 SCAG Comprehensive Regional Goods Movement Plan and Implementation Strategy
- San Pedro Bay Ports TEU forecasts
- Regional and Local Study Reports, and Real-Estate Market Reports
<table>
<thead>
<tr>
<th>Submarket</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>01 Long Beach Area Ind</td>
<td>43 Submarket Areas, 8 Cargo Markets</td>
</tr>
<tr>
<td>02 Carlsbad/Rancho Bernardo Ind</td>
<td>Port-related cargo markets</td>
</tr>
<tr>
<td>03 Lynwood/Paramount Ind</td>
<td>1 Import loads to cross-dock facilities</td>
</tr>
<tr>
<td>04 Nrd County-LA Ind</td>
<td>2 Import loads to import warehouses</td>
</tr>
<tr>
<td>05 Vernon Area Ind</td>
<td>3 Import loads to smaller DCs (< 750,000 sq. ft.)</td>
</tr>
<tr>
<td>06 Commerce Area Ind</td>
<td>4 Import loads to larger DCs (>= 750,000 sq. ft.)</td>
</tr>
<tr>
<td>07 Southwest SDG Ind</td>
<td>5 Local export loads</td>
</tr>
<tr>
<td>08 Lemon SDG Ind</td>
<td>Non-port related cargo markets (as Difference between total inventory and port-related)</td>
</tr>
<tr>
<td>09 Southeast SDV Ind</td>
<td>6 Non-port loads to warehouses</td>
</tr>
<tr>
<td>10 East San Bernardino County Ind</td>
<td>7 Non-port loads to smaller DCs (< 750,000 sq. ft.)</td>
</tr>
<tr>
<td>11 Ontario Airport Area Ind</td>
<td>8 Non-port loads to larger DCs (>= 750,000 sq. ft.)</td>
</tr>
<tr>
<td>12 East San Bernardino County Ind</td>
<td>Source: CoStar Property® Data Product</td>
</tr>
<tr>
<td>13 Garden Grove-Costa Mesa Ind</td>
<td>CAMBRIDGE SYSTEMATICS</td>
</tr>
<tr>
<td>14 Central LA Ind</td>
<td>SOUTHERN CALIFORNIA ASSOCIATION OF GOVERNMENTS</td>
</tr>
<tr>
<td>15 El Segundo-Hermosa Ind</td>
<td></td>
</tr>
</tbody>
</table>
Warehouse Space Model

Overview

Source: Cambridge Systematics and GVH & Associates’ Analysis
Warehouse Space Model
Relationship of National GDP & Occupied Space

Future demand for warehouse space is “driven” by REMI model forecast of GDP growth.

Source: CoStar Property® Data Product, and REMI TranSight
SCAG, CA, US v3.6.5
In SCAG Region, each import load that requires warehousing, on average, stops 1.33 warehouse stops per load.
Warehouse Space Model

Regional Level Calculations for Unconstrained Occupied Space

Avison-Young Formula:

\[
W = L \times f \times r \times d \times e \times \left(\frac{1}{u_1 \times u_2 \times t \times h} \right)
\]

where,

<table>
<thead>
<tr>
<th>(W) = Warehouse space (sq. ft.) needed</th>
<th>(e) = Percentage of container filled with cargo</th>
</tr>
</thead>
<tbody>
<tr>
<td>(L) = Equivalent loaded local TEUs per year</td>
<td>(u_1) = Warehouse cubic space utilization percentage at full capacity (i.e., percentage of cubic space available for storage)</td>
</tr>
<tr>
<td>(f) = Percent of cargo needing warehouse space</td>
<td>(u_2) = Average percentage capacity utilization</td>
</tr>
<tr>
<td>(r) = Percent of cargo with origin or destination</td>
<td>(t) = Turnover rate of cargo per year</td>
</tr>
<tr>
<td>(d) = Weighted average cargo capacity of a TEU in cu. ft.</td>
<td>(h) = Ceiling height in feet</td>
</tr>
</tbody>
</table>
Year 2014 Warehouse Inventory Locations of Existing Buildings

Legend
- Existing Industrial Warehouse Building
- Submarket
- Major Hays

Source: CoStar Property® Data Product, and ESRI’s GIS data layers.
Year 2014 Warehouse Inventory
Warehouse Space by Submarket Area and Region

Source: CoStar Property® Data Product
Year 2014 Warehouse Inventory
Regional Existing Occupied Space by Cargo Market

Source: CoStar Property® Data Product
Year 2014 Warehouse Inventory
Illustrative Submarket Area Existing Occupied Space Allocation by Cargo Market

Zone 2: Carson/Rancho Dominguez

<table>
<thead>
<tr>
<th>Occupied</th>
<th>Vacant</th>
<th>Developable</th>
</tr>
</thead>
<tbody>
<tr>
<td>58.1</td>
<td>1.5</td>
<td>0.9</td>
</tr>
</tbody>
</table>

Port Export Loads
- 4.9% Port Export
- 0.0% Port to Mega RDCs
- 3.7% Port to Small RDCs
- 31.1% Port to Warehouses
- 3.1% Port to Crossdock Facilities

Green = port related
Blue = non-port related

Non-port to Small RDCs 21.4%
Non-port to Mega RDCs 0.0%
Non-port to Warehouses 35.8%

Source: Cambridge Systematics and GVH & Associates’ Analysis
2015-2040 Preliminary Baseline Scenario
Warehouse Space Forecasts
Projected Regional **Constrained** and **Unconstrained** Occupied Space

![Graph showing warehouse space forecasts from 2015 to 2040 with unconstrained and constrained space projections.]

This gap represents unmet demand

Source: Cambridge Systematics and GVH & Associates’ Analysis
2015-2040 Preliminary Baseline Scenario
Warehouse Space Forecasts
Illustrative Projected Submarket Area **Constrained** Occupied Space

Zone 2: Carson/Rancho Dominguez

Source: Cambridge Systematics and GVH & Associates’ Analysis
Identified Alternate Planning Scenarios

1. **Baseline Scenario with Replacement of Obsolescent Warehouses**
2. **Increased mega RDCs share.**
3. **Increased cross-docking share.**
4. **Increased e-commerce and fulfillment centers (distribution centers) share.**
5. **Shift in port related market to near-shoring or reshoring markets.**
6. **Increased developable industrial use land available.**
Conclusions

- Los Angeles and Inland Empire are and will remain important warehousing markets in the U.S. with growing challenges to supply-demand balance.

- Preliminary baseline scenario model results indicate
 - SCAG Region could have a shortfall in warehouse space as early as 2020, when:
 - There are no efficiency gains in warehousing operations;
 - There is no new land identified as developable for future industrial warehousing; and
 - The cargo market mix and cargo turnover rates remain as is today.
Conclusions

Preliminary baseline scenario model results indicate (contd.)

» Submarket areas that are in highly urbanized parts of the SCAG Region and with low vacancy and limited land supply may experience the shortfall sooner than 2020.

» Warehouse space developments will sprawl eastwards and northwards

Private sector and public policy makers in this region need to act now in a collaborative manner while leveraging the cargo market and submarket area level detail and scenario analysis capabilities of the model.
Ongoing and Future Works

Ongoing Works

- Evaluation of alternate scenarios
- A transportation system impact analysis under baseline and alternate scenarios
- Development of preliminary policies that would balance warehousing space supply and demand, and their impacts to the regional transportation system

Future Works

- Integrate results of warehouse space model into travel demand model to conduct a more robust transportation system impact analysis
Questions?