METHODOLOGICAL FRAMEWORK DEVELOPMENT FOR EVALUATING HIGHWAY TRUCK PARKING LOCATION AND CAPACITY EXPANSION

Yun Bai, Chris Higgins, Yupo Chiu

Center for Advanced Infrastructure and Transportation (CAIT)

Rutgers, the State University of New Jersey
This research was funded by the US Department of Transportation National UTC Grant #436342 at the Center for Advanced Infrastructure and Transportation (CAIT) at Rutgers University, a USDOT-designated university transportation center (UTC).

We are grateful to our supporters for providing valuable inputs and comments during the development of this research. However, the views or content expressed in this research do not necessarily represent the views of supporters.
BACKGROUND

- Shortage of truck parking

In 2006, NJTPA found that parking lots are...
In 2011, DVRPC found that parking lots are...

- 80% Overcapacity
- 1,300 Additional spaces needed
- 1,400 Existing spaces
- 100% Over Utilization 7%
- 466 Spaces Dearth by 2035
BACKGROUND

- Shortage of truck parking: unbalanced demand
 - Growing demand, larger vessels
 - New federal legislation on HOS on July 1st, 2013
 - Narrow pick-up and delivery windows
 - “Truck parking dilemma”
MOTIVATION & OBJECTIVE

- Jason’s Law in 2012

- Strategic expansion at optimal locations
 - Fulfill maximal demand and facilitate freight operations
 - Improve compliance of HOS restriction and highway safety
 - Minimize negative environmental and social impacts and community resistance
 - Boost local economy with employment and revenue opportunities
Little research has focused on expanding parking capacity.

<table>
<thead>
<tr>
<th>Problem addressed</th>
<th>Year</th>
<th>Agency/Publisher</th>
<th>Location/Scope</th>
<th>Analysis/Approach</th>
</tr>
</thead>
<tbody>
<tr>
<td>Truck parking issue: estimate gap between demand and supply; identify demand bottleneck location</td>
<td>2008, 2009</td>
<td>NJTPA</td>
<td>Northern New Jersey</td>
<td>Identify potential sites</td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>DVRPC</td>
<td>Metropolitan Philadelphia</td>
<td>Identify potential sites</td>
</tr>
<tr>
<td></td>
<td>2001</td>
<td>Connecticut DOT</td>
<td>Connecticut</td>
<td>Discuss improving site condition and ITS technology</td>
</tr>
<tr>
<td></td>
<td>2010</td>
<td>Minnesota DOT</td>
<td>Minneapolis Metropolitan Area</td>
<td>Review previous attempts to reduce parking deficit</td>
</tr>
<tr>
<td></td>
<td>2006</td>
<td>Baltimore MC</td>
<td>Maryland</td>
<td>Advocating for ITS implementation</td>
</tr>
<tr>
<td></td>
<td>2009</td>
<td>NYMTC</td>
<td>Greater NYC Metropolitan Area</td>
<td>A origin-destination survey of truck drivers</td>
</tr>
<tr>
<td></td>
<td>2003</td>
<td>TRB</td>
<td>Countrywide</td>
<td>A national focus on the truck parking issue</td>
</tr>
<tr>
<td></td>
<td>2012</td>
<td>US DOT</td>
<td>Countrywide</td>
<td>Spatial analysis overlaying freight generators</td>
</tr>
<tr>
<td></td>
<td>2014</td>
<td>ATRI</td>
<td>Countrywide</td>
<td>Explains legislation drafted in SAFETEA-LU; identifies funding challenges</td>
</tr>
<tr>
<td></td>
<td>2014</td>
<td>ATRI</td>
<td>Countrywide</td>
<td>4000-participant survey of trucking industry stakeholders</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Identifying congestion levels, calculating time delay and cost</td>
</tr>
<tr>
<td>Parking Feasibility and Location</td>
<td>2008</td>
<td>Caltrans</td>
<td>Oakland & Greater Alameda County, California</td>
<td>Ranked potential truck parking sites based on a wide range of criteria with assigned weights</td>
</tr>
<tr>
<td>ITS</td>
<td>2009</td>
<td>I-95 Corridor Coalition</td>
<td>Interstate 95 Northeast Corridor</td>
<td>Plan for truck stop ITS development</td>
</tr>
<tr>
<td></td>
<td>2015</td>
<td></td>
<td></td>
<td>System architecture of ITS at truck stops</td>
</tr>
</tbody>
</table>
Little research has focused on expanding parking capacity.

Step further: methodological framework for evaluation of potential truck parking locations
- Comprehensive aspects and factors
- Utilize and integrate existing models
METHODOLOGY FRAMEWORK

- BCA based approach
- Quantification of losses and gains
- NJ Data → general areas

ECONOMY

(+) Employment size
(+) Payroll Volume, Sales Volume
(+) Economy multiplier effect
(+) Freight system improvement, travel cost and reliability improvement

ENVIRONMENTAL

(+) Reduction of GHG emission, tons of GHGs
(-) Increased noise pollution to the community
(-) Increased emission concentrations in and around truck stops

FISCAL

(+) Sales Tax
(+ Payroll Tax
(+ Property Tax
(- Land cost, investment, opportunity cost

SAFETY

(+ Better roadway safety resulting from reduced shoulder parking on high way or local road
(+ Better roadway safety resulting from reduced fatigued driving
(- Increased safety concern for the surrounding area

Rutgers Center for Advanced Infrastructure and Transportation
METHODOLOGY FRAMEWORK

Parking Demand Estimation: FHWA (2002)

- Estimate of peak-hour parking spaces demanded for a highway segment

Peak-hour SH parking demand:

\[PPD_{SH} = THT_{SH} \times \frac{D_{ST}}{D_{ST/stop}} \times PPF_{SH} \]

Peak-hour LH parking demand:

\[PPD_{LH} = THT_{LH} \times \frac{D_{LT}}{D_{LT/stop}} \times PPF_{LH} + THT_{LH} \times \frac{D_{ST}}{D_{ST/stop}} \times PPF_{SH} \]
METHODOLOGY FRAMEWORK

Economic & Fiscal Analysis: Reference USA & New Jersey Transparency Center Data

<table>
<thead>
<tr>
<th>Types of facilities</th>
<th>Total Parking Spaces</th>
<th>Total Acreage</th>
<th>Spaces per Acre</th>
<th>Aggregate Number of Employees Needed</th>
<th>Jobs per Acre</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single-Service</td>
<td>89</td>
<td>19.48</td>
<td>4.57</td>
<td>37-85</td>
<td>1.90-4.36</td>
</tr>
<tr>
<td>All Full-Service Truck Stops</td>
<td>2208</td>
<td>364.75</td>
<td>6.05</td>
<td>564-1298</td>
<td>1.55-3.56</td>
</tr>
<tr>
<td>Large Full-Service Truck Stops (15 + Acres)</td>
<td>1682</td>
<td>280.95</td>
<td>5.99</td>
<td>315-740</td>
<td>1.12-2.63</td>
</tr>
</tbody>
</table>
METHODOLOGY FRAMEWORK

Economic & Fiscal Analysis

<table>
<thead>
<tr>
<th></th>
<th>Single-Service</th>
<th>All Full-Service Truck Stops</th>
<th>Large Full-Service Truck Stops (15+ Acres)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Payroll Volume & Tax (1%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Payroll</td>
<td>$3,300,000 - $11,600,000</td>
<td>$23,250,000 - $61,250,010</td>
<td>$10,750,000 - $37,500,000</td>
</tr>
<tr>
<td>Total Payroll Tax</td>
<td>$33,000 - $116,000</td>
<td>$232,500 - $612,500</td>
<td>$107,500 - $375,000</td>
</tr>
<tr>
<td>Payroll per Acre</td>
<td>$169,405 - $595,483</td>
<td>$63,742 - $167,923</td>
<td>$38,263 - $133,475</td>
</tr>
<tr>
<td>Payroll Tax per Acre</td>
<td>$1,694 - $5,954</td>
<td>$363 - $1,679</td>
<td>$382 - $1,335</td>
</tr>
<tr>
<td>Sales Volume & Tax (7%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Sales</td>
<td>$30,000,000 - $70,000,000</td>
<td>$502,000,000 - $1,695,000,000</td>
<td>$213,000,000 - $745,000,000</td>
</tr>
<tr>
<td>Total Sales Tax</td>
<td>$2,070,000 - $4,900,000</td>
<td>$35,140,000 - $118,650,000</td>
<td>$14,880,000 - $521,500,000</td>
</tr>
<tr>
<td>Sales Volume per Acre</td>
<td>$1,510,000 - $3,590,000</td>
<td>$1,380,000 - $4,650,000</td>
<td>$760,000 - $2,650,000</td>
</tr>
<tr>
<td>Sales Tax per Acre</td>
<td>$110,000 - $250,000</td>
<td>$100,000 - $330,000</td>
<td>$50,000 - $190,000</td>
</tr>
<tr>
<td>Property Tax (Varies)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Net Property Value</td>
<td>$4,496,100</td>
<td>$91,494,700</td>
<td>$57,110,500</td>
</tr>
<tr>
<td>Total Prior Year Tax Amount (2014)</td>
<td>$111,104</td>
<td>$1,651,245</td>
<td>$836,793</td>
</tr>
<tr>
<td>Net Property Value per Acre</td>
<td>$230,806</td>
<td>$250,843</td>
<td>$203,276</td>
</tr>
<tr>
<td>Prior Year Net Tax Amount per Acre</td>
<td>$5,704</td>
<td>$4,428</td>
<td>$2,978</td>
</tr>
</tbody>
</table>

SINGLE-SERVICE
$169,405-$595,483 payroll/acre
$1.51 M-$3.59 M sales/acre
$5,704 property tax/acre

ALL
$63,742-$167,923 payroll/acre
$1.38 M-$4.65 M sales/acre
$4,428 property tax/acre

FULL-SERVICE
$38,263-$133,475 payroll/acre
$0.76 M-$2.65 M sales/acre
$2,978 property tax/acre
METHODOLOGY FRAMEWORK

Rest Stop Design and Construction Cost
(VTPI, 2013)

- Cost of parking area: $118,200 per acre
- Cost of building: $72.61 per square foot (small strip-mall style shopping center, including site work, hard construction and building design)

*All of numbers have been adjusted for inflation to 2015 dollars.
METHODOLOGY FRAMEWORK

Environmental Analysis

Air Pollution: (+) reduced emission from reduced VMT searching for parking
(-) increased emission concentrations in and around truck stops

Equation 2: Modeling of Truck Plume Emissions by Distance

\[C(X, Y, 0) = \frac{Q}{(\Pi u \sigma_y \sigma_z)} \exp \left[\left(-\frac{H^2}{2 \sigma_z^2} \right) \right] \exp \left[\left(-\frac{Y^2}{2 \sigma_y^2} \right) \right] \]

Where:
- \(C \) = Concentration at some specific point or receptor in g/m^3 (grams/meters cubed)
- \(Q \) = Source pollutant emission rate in g/s (grams/second)
- \(\Pi \) = Pi
- \(u \) = Horizontal wind velocity along plume centerline (meters/second)
- \(\sigma_y \) & \(\sigma_z \) = Horizontal & Vertical Dispersion Coefficients* (meters)
- \(H \) = Effective plume stack height* (meters)
- \(Y \) = Downwind perpendicular distance (meters)
- \(X \) = Downwind distance at which \(C \) is calculated (meters)
METHODOLOGY FRAMEWORK

Environmental Analysis

Sound Pollution: (-) negative effect on property values in proximity

A maximum cost of $55,000 per severely affected household or noise-sensitive land where dBA levels exceed 76 dBA or increase by 20 dBA over original totals

- Net Sound Pollution = Increase in Noise Level at Truck Stop – Noise Abatement Implementation
- Noise estimation models and impact on property values (Palmquist, 1980)

\[\Delta L = 10 \times \log_{10} n \]

Where: \(\Delta L \) = the decibel level increase
\(n \) = the number of equal sound sources

\[2 \times d = L - 6 \text{ dBA} \]

Where: \(d \) is the distance from the sound source
\(L \) is the decibel level in dBA
METHODOLOGY FRAMEWORK

Safety Analysis: New Jersey crash data 2003-2014 (NJDOT)

(+) Safety enhancement from reduced accidents (fatigue driving and illegal parking)
LOCATION ANALYSIS & CURRENT FREIGHT TRENDS

Retail Trade
- Supermarkets appear to be a strong indicator of freight flow

Manufacturing
- Manufacturing uses can be located in a wide range of areas

Warehousing & Distribution
- Important driver of truck traffic in New Jersey
LOCATION ANALYSIS & CURRENT FREIGHT TRENDS

2040 Largest Expected Truck Flow for Each NJTPA County

2040 Parking Deficit for each NJTPA County

Warehousing and Distribution Facilities by County

- Middlesex: 19%
- Bergen: 19%
- Hudson: 11%
- Essex: 13%
LOCATION ANALYSIS & CURRENT FREIGHT TRENDS

County level Analysis: NAICS Association Data

- Southern NJ: the most feasible opportunities for parking
- Northern NJ: mostly built up
- Northwestern NJ: some spaces are less populated areas, but such locations are far from ideal for truckers
CASE STUDY- NEWARK

- Identified by NJTPA as a site of interest.
- 44.9-acre parcel, a 30,000 square foot facility.
- Situated between Interstate 95 and US 1-9, which separate it from any residential or noise-sensitive sites, which is especially useful in noise pollution evaluations.
CASE STUDY

Economic and Fiscal Analysis

- **Annual Sales Volume Comparison**
 - Newark Site: 80 M
 - Annual Sales Volume: 479 M
 - Proposed Site: 16.7%

- **Annual Payroll Comparison**
 - Newark Site: 4 M
 - Annual Payroll: 17.87 M
 - Proposed Site: 22.3%

Rest Stop Design and Construction Cost

- **Building Construction Cost**
 - 2 million

- **Parking Lot Construction Cost**
 - 5.5 million

Annual Sales Tax
- Newark Site: 5.6 M
- Annual Payroll: 33.51 M
- Proposed Site: 16.7%

Annual Payroll Tax
- Newark Site: 0.04 M
- Annual Sales Volume: 0.17 M
- Proposed Site: 22.3%

Annual Property Tax
- Newark Site: 0.139 M
- Annual Payroll: 0.836 M
- Proposed Site: 16.6%

Total Jobs Created
- Newark Site: 88
- Total Jobs Created: 453
- Proposed Site: 19.4%

- Newark Site: 280
- Total Jobs Created: 1,682
- Proposed Site: 16.6%

Comparison is based on proposed site in Newark and nine selected Large Full-size Truck stops in New Jersey.

Apparently, proposed site will increase around 16% to 22% in each item.
CASE STUDY - NEWARK

Environmental Analysis

- 722.5 gram reduction in NOx per night of parking ~ 263.71 kg per Year
- 3% to over 4% reduction in nearby residential property values. (Combined with reduction from NOx emission and Noise Pollution)
- The median home value in Newark is $200,600 with 1.4% yearly growth. However, if we build up a truck stop in Newark, it may drop the home value by 3%~4% based on our research.

Safety Impact

- Reduce accidents and improving trucker safety.
FINDINGS & INSIGHTS

- Certain factors of a truck stop development or expansion are more impactful to society than others
 - Significant economic and safety benefits
 - Noise pollution to communities
- Truckers’ perspective: along major truck routes or near destination
- Challenges: community resistance, and long process of land development permits
- Possible solutions
 - Existing brownfields, especially those near the ports or industrial areas
 - Partnership with existing motels and hotels and large retail stores (such as Wal-Mart)
 - Dedicated freight land use, such as freight village
WEB-BASED ANALYSIS TOOL

- Truck stops visualization and interactive map
- More functions/info to incorporate
CONCLUSIONS

- **Methodology framework**
 - Could be perfected and applied to other regions
 - Estimate the gap in financial incentives for both public agencies, private investors, and community
 - Identify, recommend and prioritize best locations of parking facilities in a freight network perspective

- **Future research**
 - Data collection and fine-tune parameters
 - In-depth quantitative BCA
 - Location optimization
Yun Bai
Research Associate
Center for Advanced Infrastructure and Transportation
Rutgers University, Piscataway, NJ 08854, United States
Tel: 848-445-2904
Email: yunbai.ca@rutgers.edu