Evaluation of Traffic Light Priority for Trucks on Traffic

Presenter: Yanbo Zhao
Advisor: Petros Ioannou
Department of Electrical Engineering
University of Southern California
Why Priority for Trucks

- Why priority?
 - Slow dynamics and large size
 - Long intersection clearing time
 - Air pollution
Why Priority for Trucks

• Previous Work
 – Bus Priority Signal Control
 • Passive Priority vs Active Priority
 – Adaptive Signal Control Systems
 • LHOVRA
 • OPAC
 • RHODES
 – Model-based Approach Questions
 • Nonlinear and Non-explicit Traffic Flows
 • Difficult Cost Model (Delay, Environmental Emissions, …)
Why Priority for Trucks

• **Objective**
 • Propose a Co-Simulation, Optimization, Control Approach for traffic light priority system for trucks that benefits all vehicles involved

• **Methodology**
 – Take into account the differences between trucks and passenger cars
 – Simulation-based traffic state prediction
 – Multi-agent design for the scalability issue
Signal Priority System Architecture

- Traffic Flow Observer
- Passive Priority Module
 - Simulation-based Optimization
- Baseline Signal Plan
- Active Priority Module
 - Action Decision Process
- Signal Generation
Passive Priority Module

• Simulation Based Optimization

- Why use simulation
 - Nonlinear and non-explicit state predication
 - Easy to compute cost values

2015 METRANS International Urban Freight Conference
Passive Priority Module

- **Multi-Agent Simulation based Control**
 - **State Predication:**
 \[
 X_{t+1}^i = f^i \left(X_t^i, U_t^i, U_{t-1}^i, W_t \right)
 \]
 - **Optimal Input Decision:**
 \[
 U_t^i = \arg \min_{U_t^i} c^i \left(X_{t:t+p}^i, U_{t:t+p}^i \right)
 \]
 - **Cost Function:**
 \[
 c^i \left(X_{t:t+p}^i, U_{t:t+p}^i \right) = \omega^T P_{t:t+p}^i
 \]
 - **Performance Criteria**
 - Average vehicle delay and stop frequency
 - Environmental Emissions

2015 METRANS International Urban Freight Conference
Passive Priority Module

• **Optimizer Algorithms:**
 – Gradient-based family algorithms
 • Fast convergence but sensitive to discontinuities
 – Population-based family algorithms
 • Genetic algorithm, Evolutionary programming…
 • Not attracted by local optima but large number of simulations
 • Global minimum cannot be guaranteed
 – Trajectory search family algorithms
 • Simulated annealing, Tabu search, Pattern search…
 • Easy to implement but may be attracted by local optima
Active Priority Module

- Active Priority Scenario

- Priority Request
- Priority Response

- Priority Actions
 - Early Green
 - Green Extension
 - Phase Insertion
Active Priority Module

• Current Vehicle Queue: \(\theta_t = (\theta_1, \theta_2, \ldots, \theta_n) \)

• Action Decision (0 – No, 1 - Yes): \(a_t = \{a_1, a_2, a_3, \ldots, a_r\} \)

• Objective Function (weighted sum of future queues):

\[
R_a(\theta_t, a_t) = \frac{1}{T} \sum_{i} \int_{t}^{t+T} w_i \theta_i(\theta, a, \tau) d\tau
\]

\[
w_i = \frac{N_{icar} + wN_{itruck}}{N_{icar} + N_{itruck}}
\]

- \(n \) – No of directions
- \(r \) – No of approaching trucks that need priority
- \(w \) – Weight of a truck

• Optimal Decision Policy

\[
a_t = \arg \min_{a_t} R_a(\theta, a_t)
\]
Isolated Intersection Results

Average Delay (All)

Average # of Stops (All)

Average Delay (Cars)

Average # of Stops (Cars)

Average Delay (Trucks)

Average # of Stops (Trucks)
Isolated Intersection Results

- **Average Delay (All)**
 - No-Priority
 - Passive
 - Active
 - 20% / 300 / 20% / 500 / 20% / 800

- **Average # of Stops (All)**
 - No-Priority
 - Passive
 - Active
 - 20% / 300 / 20% / 500 / 20% / 800

- **Average Delay (Cars)**
 - No-Priority
 - Passive
 - Active
 - 20% / 300 / 20% / 500 / 20% / 800

- **Average # of Stops (Cars)**
 - No-Priority
 - Passive
 - Active
 - 20% / 300 / 20% / 500 / 20% / 800

- **Average Delay (Trucks)**
 - No-Priority
 - Passive
 - Active
 - 20% / 300 / 20% / 500 / 20% / 800

- **Average # of Stops (Trucks)**
 - No-Priority
 - Passive
 - Active
 - 20% / 300 / 20% / 500 / 20% / 800

2015 METRANS International Urban Freight Conference
Networked Intersections

Road Network

VISSIM Network

2015 METRANS International Urban Freight Conference
Networked Intersections (3% Truck)

<table>
<thead>
<tr>
<th></th>
<th>Controller</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Fixed Time</td>
</tr>
<tr>
<td>Avg. Delay/Veh (sec)</td>
<td>85.4</td>
</tr>
<tr>
<td>Avg. Delay/Car (sec)</td>
<td>85.1</td>
</tr>
<tr>
<td>Avg. Delay/Truck (sec)</td>
<td>88.1</td>
</tr>
<tr>
<td>Avg. Stops/Veh</td>
<td>3.84</td>
</tr>
<tr>
<td>Avg. Stops/Car</td>
<td>3.93</td>
</tr>
<tr>
<td>Avg. Stops/Truck</td>
<td>3.8</td>
</tr>
<tr>
<td>Fuel Trucks (g/km)</td>
<td>452.0</td>
</tr>
<tr>
<td>Fuel cars (g/km)</td>
<td>137.8</td>
</tr>
<tr>
<td>Fuel all veh. (g/km)</td>
<td>163.6</td>
</tr>
<tr>
<td>CO2 Emis. All (g/km)</td>
<td>427.9</td>
</tr>
<tr>
<td>NOx Emis. All (g/km)</td>
<td>1.01</td>
</tr>
</tbody>
</table>
Networked Intersections (20% Truck)

<table>
<thead>
<tr>
<th></th>
<th>Controller</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Fixed Time</td>
<td>W/out Priority</td>
<td>W/ Priority</td>
</tr>
<tr>
<td>Avg. Delay/Veh (sec)</td>
<td>93.4</td>
<td>53.8</td>
<td>50.3</td>
</tr>
<tr>
<td>Avg. Delay/Car (sec)</td>
<td>93.1</td>
<td>51.8</td>
<td>48.8</td>
</tr>
<tr>
<td>Avg. Delay/Truck (sec)</td>
<td>96.3</td>
<td>62.5</td>
<td>56.8</td>
</tr>
<tr>
<td>Avg. Stops/Veh</td>
<td>4.22</td>
<td>2.73</td>
<td>2.65</td>
</tr>
<tr>
<td>Avg. Stops/Car</td>
<td>4.31</td>
<td>2.68</td>
<td>2.66</td>
</tr>
<tr>
<td>Avg. Stops/Truck</td>
<td>3.96</td>
<td>2.95</td>
<td>2.62</td>
</tr>
<tr>
<td>Fuel Trucks (g/km)</td>
<td>494.4</td>
<td>396.1</td>
<td>387.9</td>
</tr>
<tr>
<td>Fuel cars (g/km)</td>
<td>150.7</td>
<td>104.5</td>
<td>101.9</td>
</tr>
<tr>
<td>Fuel all veh. (g/km)</td>
<td>179.0</td>
<td>128.3</td>
<td>125.7</td>
</tr>
<tr>
<td>CO2 Emis. All (g/km)</td>
<td>468.0</td>
<td>356.0</td>
<td>346.6</td>
</tr>
<tr>
<td>NOx Emis. All (g/km)</td>
<td>1.11</td>
<td>0.88</td>
<td>0.84</td>
</tr>
</tbody>
</table>
Conclusion

• Contributions:
 – Proposed A truck signal priority system integrating passive and active priority strategies
 – Improved network performance and environmental impacts by evaluation of microscopic simulation

• Future work
 – Study more powerful searching algorithm
Thanks