Transportation, Jobs, and Social Networks

Bruce Hartman, Chris Clott, Max Lyday

University of St. Francis Intermodal Transport Institute, SUNY Maritime

October 22, 2015
Where will the jobs be?

• Simple view - jobs in transportation and warehousing sector
• Story - Centerpoint Joliet
• Which sectors
 • show impact on jobs?
 • accelerate job growth?
 • in which other sectors?
Value creation drives jobs
Leontief IO matrix

- TR matrix $L \rightarrow$ network
- $\$value$ input by supply/$\$output$ by consumer
- $V = L \cdot O$
- $(P - MC) = (1/e) P$
- Prune the matrix!
- Recognition level .01
- Looks same 2012, 2014, 2022
Past SNA

- Facebook, Twitter, infection
- IO matrix models supply chains.
- Weighted directed network.
- Past - studied entire network
 - node measures - degree or betweenness centrality;
 - network measures - density, centralization
- Rule for excluding weak links.
 - Recognition level

Our study

- ‘Egocentric’ view of the network.
- **Egonet**.
- Individual sector (the ego).
- Personal network of neighbor sectors one hop away (the alters).
- Productivity-like measure to gauge ego sector effect (Leverage or Efficiency).
Steps in Process

Algorithm
- Input TR matrix
- Prune matrix
 - Recognition level .01 or 1%
- Create & image weighted network
- For each sector:
 - Find & image egonet
 - Calculate V, VA, E
- Plot measures E vs V, display E/V
Egonets – Where benefits flow
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Mining</td>
<td>5</td>
<td>9</td>
<td>1.375</td>
<td>0.759</td>
<td>0.250</td>
<td>0.450</td>
<td>0.196</td>
<td>22.00</td>
<td>0.571</td>
</tr>
<tr>
<td>Manufacturing</td>
<td>15</td>
<td>56</td>
<td>1.008</td>
<td>0.722</td>
<td>0.260</td>
<td>0.267</td>
<td>0.196</td>
<td>70.50</td>
<td>-1.000</td>
</tr>
<tr>
<td>Wholesale</td>
<td>5</td>
<td>12</td>
<td>1.583</td>
<td>0.509</td>
<td>0.281</td>
<td>0.600</td>
<td>0.290</td>
<td>22.67</td>
<td>0.107</td>
</tr>
<tr>
<td>Transportation</td>
<td>6</td>
<td>14</td>
<td>1.100</td>
<td>0.655</td>
<td>0.240</td>
<td>0.467</td>
<td>0.224</td>
<td>36.33</td>
<td>-1.607</td>
</tr>
<tr>
<td>Financial</td>
<td>13</td>
<td>47</td>
<td>1.004</td>
<td>0.711</td>
<td>0.236</td>
<td>0.301</td>
<td>-0.121</td>
<td>22.00</td>
<td>0.571</td>
</tr>
<tr>
<td>Professional</td>
<td>15</td>
<td>56</td>
<td>1.00</td>
<td>0.722</td>
<td>0.260</td>
<td>0.267</td>
<td>-0.009</td>
<td>22.83</td>
<td>0.571</td>
</tr>
</tbody>
</table>
Dense and sparse Egonet Measures

<table>
<thead>
<tr>
<th>Sector</th>
<th>Type</th>
<th>Value V</th>
<th>Efficiency E</th>
<th>E/V (x10^3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mining</td>
<td>Sparse</td>
<td>895.5412</td>
<td>1.1009</td>
<td>1.229</td>
</tr>
<tr>
<td>Manufacturing</td>
<td>Dense</td>
<td>2839.6400</td>
<td>2.4043</td>
<td>0.847</td>
</tr>
<tr>
<td>Wholesale</td>
<td>Sparse</td>
<td>508.7552</td>
<td>2.8266</td>
<td>5.556</td>
</tr>
<tr>
<td>Transportation</td>
<td>Sparse</td>
<td>432.8768</td>
<td>3.1300</td>
<td>7.231</td>
</tr>
<tr>
<td>Financial</td>
<td>Dense</td>
<td>1792.6792</td>
<td>4.6568</td>
<td>2.598</td>
</tr>
<tr>
<td>Professional</td>
<td>Dense</td>
<td>2800.0988</td>
<td>3.3723</td>
<td>1.204</td>
</tr>
</tbody>
</table>

\[V = \text{value(ego)} \quad \text{VA}=\text{value(alters)} \quad E = \frac{\text{VA}}{V} \]
Quadrants of Leverage

• Plot Efficiency vs Value put out by ego
• Best quadrant is III
• Sector takes low margin ...
• For bigger margins in alters