Human-Powered Cargo Cycle Operation and Impacts
Lessons from Paris and New York

ALISON CONWAY
ASSISTANT PROFESSOR OF CIVIL ENGINEERING
THE CITY COLLEGE OF NEW YORK

MARTIN KONING
RESEARCHER IN ECONOMICS
IFSTTAR

INTERNATIONAL URBAN FREIGHT CONFERENCE
OCTOBER 21, 2015, LONG BEACH, CA
What is a cargo cycle?

- Primarily human-powered bicycle or tricycle with cargo carrying capacity
Commodities/Sectors Served

- B2C retail/restaurant deliveries
- B2B food deliveries
- Last mile parcel / courier
- Other sectors
 - Office Supplies
 - Pharmaceuticals
 - Waste/Recycling

Dominant uses in North America; primarily small, local businesses

Increasingly prevalent in Europe (NOT in North America); both local and large international operators
Public Sector Involvement

EUROPE
- Funded pilot studies (EU and Local)
- Some operating subsidies
- Flexible use of dedicated infrastructure
- CV Access Restrictions
- Recognition schemes

NORTH AMERICA
- Limited research to date
- Limited financial investment
 - “Capital” grants
 - Government contract for recycling
- Ambiguous operating regulations
- Few access restrictions
- Limited formal recognition of “green” best practices
Recent Research

<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dablanc (2011)</td>
<td>Monitored the operations of La Petite Reine, a cargo cycle company performing deliveries from a consolidation platform in central Paris, France</td>
</tr>
<tr>
<td>Browne, Allen, and Leonardi (2011)</td>
<td>Conducted a before and after analysis of an office supply company replacing van deliveries with cargo cycle operations from a micro-consolidation center in central London, UK</td>
</tr>
<tr>
<td>Verlinde et al. (2014)</td>
<td>Conducted a before and after analysis of a major parcel company implementing a mobile depot utilizing cargo cycles to replace motor vehicles for last-mile delivery in Brussels</td>
</tr>
<tr>
<td>Gruber, Kihm, and Lenz (2014)</td>
<td>As part of ongoing “Ich ersetze ein Auto” project, studied the market potential for replacing motorized (car and van) courier operations with cargo cycle operations in Germany</td>
</tr>
<tr>
<td>Tipagornwong & Figliozzi (2013)</td>
<td>Modeled the cost competitiveness of cargo cycle vs. motor vehicle delivery operations in Portland, OR, USA</td>
</tr>
</tbody>
</table>

Primarily focused on costs to individual operators and market potential for use
Two Projects

- Traffic Performance Assessment: Freight Tricycle Operations in NYC
 - How does freight tricycle traffic performance compare to that of motorized vehicles?

- Citywide Externality Assessment: Cycling for Goods in Paris
 - How has the city-wide market for cargo cycles grown since 2001?
 - What are the associated transport externality savings?
NYC Project Summary

1. Conduct comprehensive state-of-the-practice review
2. Conduct original survey of North American operators
3. Collect GPS data from two local cargo cycle operators
4. Estimate traffic performance measures using combined GIS/Visual Basic analysis
5. Estimate externality savings for vehicle replacement scenarios (including sensitivity analysis)
NYC Case Studies

CITY BAKERY
- Local green bakery chain
- 7 locations - Midtown/ Downtown Manhattan
- 2 trikes / 5 total drivers
- Typical day: 7 AM – 7 PM
- Morning tour + on-demand deliveries

CITY HARVEST
- Local food rescue non-profit
- 120+ potential Manhattan locations (by all vehicle types)
- 19 trucks - Long Island City
- 3 trikes - Midtown and Upper East Side / 1 driver per trike
- Typical Day: 12 PM – 12 AM
- Donation pickups < 50 lbs
Performance Measures

- Corridor Moving Speeds
- Travel Time/Stopped Time Delay
- Stop Durations

- Air Pollutant and GHG Emissions
- Space Consumption
NYC Traffic Results

- Speed competitive vs. truck
 - Sensitive to trip length, load size, and trip urgency
 - Benefits greater on streets vs. ave

- Low stopped-time delay → high travel time reliability

- Short stops little influenced by regulations

- Trike trip distance often < motor vehicle trip distance
NYC Externality Results: City Bakery Cycle vs. Van

- **Sensitivity Analysis**
 - Relative space consumed by van = 2.8 to 8 times cargo cycle
 - Savings .7 to 2.3 x benchmark \(\rightarrow\) most sensitive to vehicle age

<table>
<thead>
<tr>
<th></th>
<th>Cargo Cycle</th>
<th>Direct Replacement</th>
<th>Combined Tour</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Road Space Consumed (\text{m}^2\text{hrs})</td>
<td>10.1</td>
<td>44.1</td>
<td>39.2</td>
</tr>
<tr>
<td>Total Parking Space Consumed (\text{m}^2\text{hrs})</td>
<td>15.2</td>
<td>55.7</td>
<td>50.3</td>
</tr>
<tr>
<td>Total Space Consumed (\text{m}^2\text{hrs})</td>
<td>25.3</td>
<td>99.8</td>
<td>89.6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>(\text{PM}_{2.5})</th>
<th>(\text{CO}_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rate (grams/km)</td>
<td>0.037</td>
<td>833.3</td>
</tr>
<tr>
<td>Estimated Annual Savings (kg) (metric tons)</td>
<td>0.5 (11.6)</td>
<td>0.45 (10.3)</td>
</tr>
</tbody>
</table>

For more detailed discussion see project report: http://www.utrc2.org/sites/default/files/pubs/Final-Freight-Tricycles-NYC.pdf
Paris Project Summary

- Conduct original survey of Paris cargo cycle operators
- Determine new cargo cycle freight activity since 2001
- Determine modal origin of cycle freight trips
- Estimate and monetize benchmark externality savings
- Conduct sensitivity analysis of estimates
Paris Project Results

- 2 firms moving 42 tkm (2001) → 15 moving about 147 tons per day over 980 tkm (2014)
- Operators rely heavily on electrically-assisted cargo cycles (70% of the tkm)

Savings
- Small vs. Paris total transport externalities
- Considerable vs. savings from city-wide passenger mode shifts

<table>
<thead>
<tr>
<th></th>
<th>Benchmark</th>
<th>CO₂</th>
<th>Congestion</th>
<th>Local Pol.</th>
<th>Noise</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>tkm/day</td>
<td>euro/tkm</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electric cargo</td>
<td>657</td>
<td>0.0001</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Old M2W</td>
<td>-180</td>
<td>0.161</td>
<td>0</td>
<td>2.548</td>
<td>0.093</td>
<td>-504</td>
</tr>
<tr>
<td>Old vans</td>
<td>-612</td>
<td>0.055</td>
<td>7.3</td>
<td>0.890</td>
<td>0.013</td>
<td>-1,703</td>
</tr>
<tr>
<td>Old trucks</td>
<td>-53</td>
<td>0.035</td>
<td>2.879</td>
<td>2.237</td>
<td>0.039</td>
<td>-161</td>
</tr>
<tr>
<td>Total</td>
<td>-</td>
<td>-64</td>
<td>-1,155</td>
<td>-1,122</td>
<td>-27</td>
<td>-2,368</td>
</tr>
</tbody>
</table>
Benefits of Cargo Cycles

FOR OPERATORS
- Reliable travel times in congested traffic (within limited radius)
- Infrastructure use flexibility
- Parking flexibility (and reduced fines)
- Lower vehicle maintenance and fuel costs
- Driver health benefits
- Demonstrated commitment to sustainability

FOR URBAN AREAS
- Reduced GHG and air pollutant emissions
- Some reduced noise impacts
- Reduced impacts on congestion / road and parking space consumption
- Reduced exposure to heavy vehicles (especially for non-motorized travelers)
- Not inherently incompatible with pedestrian/bicycle-friendly infrastructure
Challenges

OPERATIONAL

- Lower speeds in uncongested conditions
- Lower economies of scale vs. fully utilized larger vehicles
- High driver costs (#, worker’s compensation insurance)
- High cost for transloading
- Requires dense market within limited radius; usually located in expensive CBD
- Customer perception/fear of the unknown

REGULATORY

- Ambiguous vehicle classifications
- Inhospitable infrastructure (e.g. bridge security ballards)
- (Il)legality of electric assists
Acknowledgements

- **NYC Project:**
 - Funding Agencies: NYSERDA - Joe Tario, NYSDOT – Bob Ancar
 - Participating Carriers
 - Industry Participants: Revolution Rickshaws, City Bakery, City Harvest
 - Other Agency Supporters: NYC DOT - Stacey Hodge, Hayes Lord
 - CCNY Researchers: Dr. Camille Kamga, Jialei Cheng, Penny Eickemeyer, Abhishek Singhal, Quanquan Chen, Emmanuelle Lezais, Rianna Yuen

- **Paris Project:**
 - Funding Agency: Volvo Research and Education Foundations (VREF)
 - Industry Participants: Coursier.fr, La Petite Reine, Novea SAS, La Poste (the French postal service), Urban Cycle, SCS Dragonet, The Green Link, Team Distribution Logistique, and Vert Chez Vous
Questions?

Alison Conway
aconway@ccny.cuny.edu