Urban Freight in a Multi-Modal City: Curb Space Demand and Usage in New York

ALISON CONWAY
ASSISTANT PROFESSOR OF CIVIL ENGINEERING, THE CITY COLLEGE OF NEW YORK

DAVID KING
ASSISTANT PROFESSOR OF ARCHITECTURE, PLANNING, AND PRESERVATION, COLUMBIA UNIVERSITY

INTERNATIONAL URBAN FREIGHT CONFERENCE
OCTOBER 21, 2015, LONG BEACH, CA
Outline

- Motivation
- Case Study Location Selection
- Results
- Next Steps
Commercial Vehicle Parking in NYC

- Parking already inadequate for CV demand in many parts of the city (Jaller, Holguin-Veras, and Hodge, 2013)
- Carriers face very high parking fines (Holguin-Veras, 2011)
- Zoning requirements have not been updated to keep up with growth in freight demand (Morris, 2009)
- Alternative management strategies have been tried with mixed success
 - Implementation of commercial metered parking in midtown (Schaller et al., 2010)
 - Dedicated delivery windows (Hodge, 2015)
Supply vs. Demand

- Freight demand in NYC is growing and becoming increasingly complex
- Urban streets are becoming increasingly multimodal
- Understanding of urban freight demands is lacking in much published street design guidance

- Just-in time commercial deliveries
- Omni-channel retailing
- e-Commerce
- 400 mi bike lanes since 2007
- 60+ Complete Streets projects
- 8 SelectBus corridors since 2008

Demand ↑ while road and parking capacity ↓
Research Approach

- Analysis conducted as part of a larger research project examining the impacts of growing multimodal infrastructure on freight operations

- Goals:
 - To characterize commercial vehicle demands and parking behavior in mixed use areas
 - To improve understanding of the relationship between parking regulations and parking behavior for different carrier types
Research Approach

- Identify critical areas for detailed analysis
 - Map NYC DOF Parking Violations to NYC DCP LION Street Map
 - Evaluate violation types related to multimodal conflict (Bicycle Lane, Bus Lane, Bus Stop)
 - Examine land uses on critical blocks using NYC DCP MapPluto Data

- Conduct field observation

- Evaluate basic measures to characterize parking behavior
 - Availability of Parking Options
 - By Location/Regulations
 - Chosen Parking Locations
 - By Vehicle Type
 - Parking Duration
 - By Delivery Type
Parking Violation Data

- Bicycle Lane Violations
 - 4,452 violations over 3 mo.
 - 23 blocks with 20 + violations
 - Critical blocks dispersed across four NYC boroughs
 - Land uses ranging from heavily commercial to primarily residential

- Bus Lane/Bus Stop Violations
 - 154 stop violations; 31 lane violations over 3 mo.
 - Only one route with 5+ lane violations
Case Study Locations

<table>
<thead>
<tr>
<th>Primary Street</th>
<th>East Broadway</th>
<th>Grand Concourse</th>
<th>W 34th St</th>
<th>W 77th St</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cross Streets</td>
<td>Catherine St. and Market St.</td>
<td>184th St and Fordham Road</td>
<td>5th Ave to 6th Ave</td>
<td>Columbus Ave and Central Park West</td>
</tr>
<tr>
<td>Primary Land Use</td>
<td>Chinatown Commercial District</td>
<td>Bronx Commercial Corridor</td>
<td>Midtown Manhattan Commercial Corridor</td>
<td>Museum on north side; Residential on south side</td>
</tr>
<tr>
<td>Motor Vehicle Travel Lanes</td>
<td>Local street with single travel lane in each direction</td>
<td>Separated arterial with single local lane in each direction</td>
<td>Crosstown arterial with 2 WB and one EB travel lane, plus dedicated bus lane in each direction</td>
<td>Local street with single travel lane in each direction</td>
</tr>
<tr>
<td>Bicycle Infrastructure</td>
<td>Standard bicycle lanes in both directions</td>
<td>Buffered bicycle lanes in both directions</td>
<td>None</td>
<td>Buffered bicycle lanes in both directions</td>
</tr>
<tr>
<td>Parking Regulations</td>
<td>Primarily 1-hr metered parking, including dedicated commercial</td>
<td>Primarily 1-hr metered parking</td>
<td>No parking permitted 7 AM to 7 PM</td>
<td>Primarily open parking</td>
</tr>
</tbody>
</table>
Summary of Commercial Vehicles Observed

<table>
<thead>
<tr>
<th></th>
<th>East Broadway</th>
<th>Grand Concourse</th>
<th>W 34th St</th>
<th>W 77th St</th>
<th>All</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Trucks</td>
<td>70</td>
<td>25</td>
<td>21</td>
<td>67</td>
<td>183</td>
</tr>
<tr>
<td>Avg Trucks/Hr</td>
<td>17.5</td>
<td>6.25</td>
<td>5.25</td>
<td>8.38</td>
<td>9.15</td>
</tr>
<tr>
<td>Min Trucks/Hr</td>
<td>11</td>
<td>1</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Max Trucks/Hr</td>
<td>26</td>
<td>12</td>
<td>9</td>
<td>21</td>
<td>26</td>
</tr>
<tr>
<td>Vehicle Type</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Single Unit Truck</td>
<td>65.7</td>
<td>52</td>
<td>52.4</td>
<td>35.8</td>
<td>51.4</td>
</tr>
<tr>
<td>RefrigerTruck</td>
<td>2.9</td>
<td>0</td>
<td>0</td>
<td>1.5</td>
<td>1.6</td>
</tr>
<tr>
<td>Semi-trailer</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>1.1</td>
</tr>
<tr>
<td>Van</td>
<td>28.6</td>
<td>40</td>
<td>47.6</td>
<td>52.2</td>
<td>41</td>
</tr>
<tr>
<td>Other</td>
<td>2.9</td>
<td>8</td>
<td>0</td>
<td>7.5</td>
<td>4.9</td>
</tr>
<tr>
<td>Delivery Type</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grocery</td>
<td>8.6</td>
<td>0</td>
<td>4.8</td>
<td>7.5</td>
<td>6.6</td>
</tr>
<tr>
<td>Other Food</td>
<td>38.6</td>
<td>4</td>
<td>4.8</td>
<td>6</td>
<td>18</td>
</tr>
<tr>
<td>Major Parcel</td>
<td>21.4</td>
<td>32</td>
<td>42.9</td>
<td>20.9</td>
<td>25.1</td>
</tr>
<tr>
<td>Other Parcel</td>
<td>1.4</td>
<td>8</td>
<td>9.5</td>
<td>10.4</td>
<td>6.6</td>
</tr>
<tr>
<td>Moving Truck</td>
<td>0</td>
<td>12</td>
<td>0</td>
<td>4.5</td>
<td>3.3</td>
</tr>
<tr>
<td>Service Vehicle</td>
<td>10</td>
<td>24</td>
<td>23.8</td>
<td>25.4</td>
<td>19.1</td>
</tr>
<tr>
<td>Other</td>
<td>10</td>
<td>16</td>
<td>14.3</td>
<td>25.4</td>
<td>16.9</td>
</tr>
<tr>
<td>Unknown</td>
<td>10</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4.4</td>
</tr>
</tbody>
</table>
Parking Choices by Sector

<table>
<thead>
<tr>
<th></th>
<th>Observed</th>
<th>Legal Parking at Location</th>
<th>Legal Parking on Block</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total</td>
<td>Available</td>
<td>Percent</td>
</tr>
<tr>
<td>Food and Beverage</td>
<td>43</td>
<td>22</td>
<td>51</td>
</tr>
<tr>
<td>Parcel</td>
<td>58</td>
<td>7</td>
<td>12</td>
</tr>
<tr>
<td>Moving Truck</td>
<td>6</td>
<td>1</td>
<td>17</td>
</tr>
<tr>
<td>Service Vehicle</td>
<td>35</td>
<td>5</td>
<td>14</td>
</tr>
</tbody>
</table>
Lessons Learned

- Demands by sector are highly variable by location/land use
- Commercial vehicles frequently have no legal parking options; seems to be worst in residential areas
 - No parking controls
 - No land use requirements
- Parking durations and choice of parking location vary by sector
 - Food/grocery → higher likelihood of legal parking available, used
 - Parcels → short durations, unlikely to spend extra time to park legally
 - Service → long durations, will park elsewhere on block
Other Observations

- Enforcement rates vary for different locations and carriers
- Obstructed lanes can lead to dangerous operator behavior for other modes
- Few trucks observed on 34th St despite high demands due to required service entrances on 33rd and 35th Streets
Conclusions and Next Steps

- Parking regulations and street designs need to consider specific commercial vehicle demands and likely driver parking choices

- Ongoing research
 - Improving understanding of demands generated by e-commerce
 - Identifying relevant curb management strategies for freight in residential areas
 - Identifying urban street designs that accommodate adequate freight access for delivery
Acknowledgements

◦ Funding Agency: Volvo Research and Education Foundations (VREF)
◦ Student Researchers
 ◦ Quanquan Chen
 ◦ Nathan Tavernier (ENTPE)
 ◦ Medwin Chiu
 ◦ Lisa Chauvet
 ◦ Maurice Diong
 ◦ Victor Leal-Tavares (Brazilian Scientific Mobility Program)
 ◦ Xue Bing Yeap
Questions?

Alison Conway
aconway@ccny.cuny.edu