Evaluating the Role of Resilience in Recovering from Major Port Disruptions

Dan Wei, Zhenhua Chen, and Adam Rose

University of Southern California
Center for Risk and Economic Analysis of Terrorism Events

7th METRANS International Urban Freight Conference,
October 17-20, 2017 Long Beach, CA
Background

• Ports play a vital role in a nation’s economic well-being.

• An increasing number of port disruptions have taken place in recent years.

• Many studies have estimated the direct and indirect impacts of port disruptions.

• However, very few studies have adequately factored in port resilience in the economic impact analysis.
Objectives of this Study

• Develop a framework for identifying and evaluating the appropriate set of economic resilience options to port disruptions.

• Formally analyze the effects of various resilience measures in a computable general equilibrium model.

• Evaluate the effectiveness of various resilience tactics using a major port disruption case study.
Defining Economic Resilience

- **Static**: Ability of a system to maintain function when shocked (efficient use of remaining resources at a given point in time).

- **Dynamic**: Speed of a system to recover from a shock (efficient use of resources over time for investment in repair and reconstruction).
Resilience Tactics

• Supplier-side resilience options:
 – Excess capacity
 – Cargo prioritization
 – Ship re-routing
 – Export diversion for import use
 – Effective management
 – Production recapture (Rescheduling)

• Customer-side resilience options:
 – Inventories
 – Conservation
 – Input Substitution
 – Production recapture (Rescheduling)
Port Valuation

- Standard approach for estimating economic impact of a port: direct econ activity \times multiplier
 - Direct economic activity = Port revenue
 - POLA/POLB: 220 million $\times 5.9 = 1.3 billion

- But the standard approach misses the value of the cargo & its contribution to rest of the economy
Results for Port Arthur/Beaumont
(90-day Disruption; Business Interruption Loss)

• Comparison of estimates:
 - Standard estimate: $1.3 billion
 - SOA approach (w/o resilience): $14.8 billion
 - SOA approach (w/ resilience): $4.8 billion

• Supply chain effects increase impacts 10-fold

• Resilience lowers the economic impacts by 67%
 (and at relatively low-cost)
Major Port Disruption Scenario

• Large-Scale Tsunami Scenario (but generalizes across disasters)

• POLA/POLB completely shut down immediately after the disaster event

• Ports recover to their pre-disaster operation levels by end of one year (recovery path is linear)

• Import and Export supply-chains disrupted
Framework of Estimating Total Economic Impacts of a Port Disruption
TERM Model

- Bottom-up multi-regional CGE model
- Based on detailed regional & sectoral accounts
- Consists of 4 regions: 3-County LA Region, 9-County Bay Area, Rest of CA, and Rest of U.S.
- Divides the economy into 97 sectors
- CES production functions (allows for substitution)
- Explicit trade and transport margins
Modeling Resilience Tactics in TERM Model

<table>
<thead>
<tr>
<th>Tactic</th>
<th>Variable</th>
<th>Representation/notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conservation</td>
<td>aprim</td>
<td>Technical change parameter of the CES function, by industry and region</td>
</tr>
<tr>
<td>Port Excess capacity</td>
<td>fimps, fqexp</td>
<td>Adjust import and export shocks</td>
</tr>
<tr>
<td>Inherent Input Substitution</td>
<td>n/a</td>
<td>Inherent input substitution ability captured by the model automatically</td>
</tr>
<tr>
<td>Import Substitution</td>
<td>ARMSIGMA</td>
<td>Inherent import substitution ability is captured by the model automatically by the specification of the Armington elasticity of substitution</td>
</tr>
<tr>
<td>Ship Rerouting</td>
<td>fimps, fqexp</td>
<td>Adjust import and export shocks in different regions</td>
</tr>
<tr>
<td>Export Diversion for Import Use</td>
<td>fimps, fqexp</td>
<td>Adjust import and export shocks</td>
</tr>
<tr>
<td>Inventory Use</td>
<td>fimps</td>
<td>Adjust import shock</td>
</tr>
<tr>
<td>Production Recapture</td>
<td>side-calculation</td>
<td>Application of “Recapture Factor Parameter” to adjust the total loss estimate by sector</td>
</tr>
</tbody>
</table>
Simulation Results

Real GDP Impact of the Port Disruption Scenario (million 2010$)

<table>
<thead>
<tr>
<th></th>
<th>LA Region</th>
<th>Bay Area</th>
<th>Rest of CA</th>
<th>Rest of US</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base Case (No Resilience)</td>
<td>-$7,475</td>
<td>-$2,256</td>
<td>-$2,318</td>
<td>-$4,273</td>
<td>-$16,322</td>
</tr>
<tr>
<td>With Ship Rerouting</td>
<td>-$4,343</td>
<td>-$1,184</td>
<td>-$1,284</td>
<td>-$1,160</td>
<td>-$7,971</td>
</tr>
<tr>
<td>With Export Diversion</td>
<td>-$6,548</td>
<td>-$1,833</td>
<td>-$1,952</td>
<td>-$529</td>
<td>-$10,863</td>
</tr>
<tr>
<td>With Use of Inventory</td>
<td>-$7,877</td>
<td>-$2,881</td>
<td>-$2,611</td>
<td>$2,556</td>
<td>-$10,813</td>
</tr>
<tr>
<td>With Production Rescheduling</td>
<td>-$2,599</td>
<td>-$773</td>
<td>-$816</td>
<td>-$1,455</td>
<td>-$5.642</td>
</tr>
<tr>
<td>With All Resilience Adj</td>
<td>-$1,621</td>
<td>-$550</td>
<td>-$533</td>
<td>$982</td>
<td>-$1,722</td>
</tr>
</tbody>
</table>
Summary of Resilience Potential

Loss Reduction Potentials of Individual Resilience Tactics

<table>
<thead>
<tr>
<th>Loss Reduction Potential</th>
<th>Potential Percentage Reduction of Total National GDP Losses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ship Rerouting</td>
<td>51.2%</td>
</tr>
<tr>
<td>Export Diversion</td>
<td>33.5%</td>
</tr>
<tr>
<td>Conservation</td>
<td>2.5%</td>
</tr>
<tr>
<td>Use of Inventory</td>
<td>33.8%</td>
</tr>
<tr>
<td>Production Rescheduling</td>
<td>65.4%</td>
</tr>
<tr>
<td>All Resilience Adjustments</td>
<td>89.5%</td>
</tr>
</tbody>
</table>
Policy Recommendations

• Economic impacts of port disruptions are far reaching and require a comprehensive modeling approach.

• Port vulnerability & resilience assessment is a critical step in building resilience capacity to help port and supply-chain managers identify bottlenecks and resilience tactics.

• Most ports are much less resilient to large disruptions; more planning is needed for worst case scenarios.

• More research is needed to optimize resilience tactics.