Process Flow Analysis of the Final 50’ of the Goods Delivery System

Haena Kim
PhD Student, Research Assistant

Dr. Anne Goodchild
Supply Chain Transportation and Logistics Center Director

Dr. Linda Boyle
Industrial and Systems Engineering Department Chair

2017 METRANS International Urban Freight Conference (I-NUF)
October 20, 2017
5-Step Approach

1. Select 5 prototype buildings and obtain permissions
2. Recruit and train data collection team
3. Collect data using a customized application
4. Create a process flow map
5. Quantify delay & find opportunities for improvement
Step 1 – Select 5 Prototype Buildings

<table>
<thead>
<tr>
<th>Building Types</th>
</tr>
</thead>
<tbody>
<tr>
<td>Residential Tower</td>
</tr>
<tr>
<td>Retail Building</td>
</tr>
<tr>
<td>Hotel</td>
</tr>
<tr>
<td>Office Building</td>
</tr>
<tr>
<td>Historical Building</td>
</tr>
</tbody>
</table>
Step 2 - Recruit and Train Data Collection Team

Building Type: Office Tower
Office Tower

• January 30 – February 17, 2017
• 9:00 am – 4:00 pm

• Building managers:
 • Posted an announcement at every entrance notifying carriers that they would be monitored
 • Informed their staff
 • Provided security badges for the data collectors
Building Configuration for other four buildings

Retail Building

Hotel

Historical Building

Residential Tower
Step 3 – Collect Data Using a Customized Application

<table>
<thead>
<tr>
<th>App Button</th>
<th>Time Stamp</th>
</tr>
</thead>
<tbody>
<tr>
<td>Security Check-In Start</td>
<td>01-30-2017 9:26:06 AM</td>
</tr>
<tr>
<td>Security Check-In End</td>
<td>01-30-2017 9:29:10 AM</td>
</tr>
</tbody>
</table>

- SCTL developed an app that records a time stamp for each goods delivery process step
- Students entered the data into the app as they walked behind delivery people
- The app transmitted info to a database in real time
The Data Collection App Also Records:

- Name of the:
 - Building
 - Data collector
 - Delivery company
- Types of delivery truck and goods being delivered
- Number of delivery people engaged in the delivery
- Additional notes
Step 4 – Create a Process Flow Map
<table>
<thead>
<tr>
<th>Percent of Total Time</th>
<th>Enter</th>
<th>Deliver</th>
<th>Exit</th>
</tr>
</thead>
<tbody>
<tr>
<td>35%</td>
<td>Mean: 7 min sd: 3 min Range: 2 - 15 min</td>
<td>Mean: 8 min sd: 8 min Range: 2 - 34 min</td>
<td>Mean: 5 min sd: 3 min Range: 2 - 15 min</td>
</tr>
<tr>
<td></td>
<td>1. Park in freight bay</td>
<td>5. Take elevator to receivers’ floor</td>
<td>9. Take elevator back to freight bay</td>
</tr>
<tr>
<td></td>
<td>2. Get clearance from security guard</td>
<td>6. Deliver/pick up goods on receivers’ floor</td>
<td>10. Return security device to guard</td>
</tr>
<tr>
<td></td>
<td>3. Unload goods on to cart</td>
<td>7. Repeat process steps 5-6 for multiple deliveries</td>
<td>11. Load hand cart onto truck</td>
</tr>
<tr>
<td></td>
<td>4. Wait for freight elevator</td>
<td>8. Wait for elevator to return to truck</td>
<td>12. Maneuver truck out of freight bay</td>
</tr>
</tbody>
</table>
Can a Locker System Cut 61% of Total Delivery Time?

<table>
<thead>
<tr>
<th>Percent of Total Time</th>
<th>Enter</th>
<th>Deliver</th>
<th>Exit</th>
</tr>
</thead>
<tbody>
<tr>
<td>35%</td>
<td>Mean : 7 min sd: 3 min Range: 2 - 15 min</td>
<td>Mean : 8 min sd: 8 min Range: 2 - 34 min</td>
<td>Mean : 5 min sd: 3 min Range: 2 - 15 min</td>
</tr>
</tbody>
</table>

1. Park in freight bay
2. **Get clearance from security guard**
3. Unload goods on to cart
4. **Wait for freight elevator**
5. **Take elevator to receivers’ floor**
6. Deliver/pick up goods on receivers’ floor
7. Repeat process steps 5-6 for multiple deliveries
8. Wait for elevator to return to truck
9. **Take elevator back to freight bay**
10. **Return security device to guard**
11. Load hand cart onto truck
12. Maneuver truck out of freight bay
Buildings' Delivery Policies Drive Dwell Time

Retail Building
(n = 38)

Mean: 28 min
sd: 24 min
Range: 3 - 107 min

Residential Building
(n = 41)

Mean: 8 min
sd: 6 min
Range: 1 - 23 min
Types of Delivery Goods by Building Type

<table>
<thead>
<tr>
<th>Retail Building (n = 38)</th>
<th>Residential Building (n = 41)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Food (41%)</td>
<td>Food (37%)</td>
</tr>
<tr>
<td>Furniture (6%)</td>
<td>Furniture (5%)</td>
</tr>
<tr>
<td>Mail (9%)</td>
<td>Groceries (5%)</td>
</tr>
<tr>
<td>Office Supplies (6%)</td>
<td>Parcel (54%)</td>
</tr>
<tr>
<td>Parcel (19%)</td>
<td></td>
</tr>
<tr>
<td>Event Supplies (3%)</td>
<td></td>
</tr>
<tr>
<td>Retail Supplies (16%)</td>
<td></td>
</tr>
</tbody>
</table>
Lessons Learned:

- Delivery time can be improved by:
 - Better communication methods between carriers and receivers
 - The location of receiving goods
 - Building policies

- Process Flow Map visualizes the components and gaps in delivery
 - Provide time measures for each process steps
 - Find areas for improvements in terms of total delivery time
 - Performance of new system can be measured by time data before and after

- Process Flow Map shows % of first failed delivery
 - Discover characteristics of failed delivery
 - Propose solutions to improve the current system with data
Thank you!

Any Questions?

Haena Kim
haenakim@uw.edu