Congestion Reduction via Personalized Incentives

Ali Ghafelebashi, Meisam Razaviyayn, and Maged Dessouky

Daniel J. Epstein Department of Industrial & Systems Engineering University of Southern California

Motivation and Background

- Traffic congestion cost in US in 2019: \$88 billion^[1]
- ♣ Longer traffic can worsen the air quality ^[2]
- Strategies to solve traffic congestion^[3]
 - 1. Adding more capacity
 - 2. Transportation System Management and Operation (TSM)
 - 3. Demand management
- Road pricing policy
 - Pros: in theory and some cases work
 - Cons: equity barriers
- Rewarding policy (positive incentive)
 - \checkmark Three projects in the Netherlands^[4]
 - ✓ CAPRI project^[5]
 - ✓ This research project

[1] Inrix 2018 global traffic scorecard. https://inrix.com/scorecard

- [3] Cambridge Systematics. Traffic congestion and reliability: Trends and advanced strategies for congestion mitigation. Technical report, United States. Federal Highway Administration, 2005.
- [4] Michiel Bliemer, et. al., Rewarding for avoiding the peak period: A synthesis of three studies in the Netherlands. 2009.
- [5] Jia Shuo Yue, Chinmoy V Mandayam, Deepak Merugu, Hossein Karkeh Abadi, and Balaji Prabhakar. Reducing road congestion through incentives: a case study. 2015.

^[2] Health Effects Institute. Panel on the Health Effects of Traffic-Related Air Pollution. Traffic-related air pollution: a critical review of the literature on emissions, exposure, and health effects . Number 17. Health Effects Institute, 2010.

Incentive Offering Process

Personalized and Dynamic

Different times	Different routes
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccc} \textbf{4:30} \\ \textbf{PM} \end{array} \begin{array}{c} \bullet & \text{Home} \\ \bullet & \bullet & \checkmark \end{array} \begin{array}{c} \text{Office} \\ \bullet & \bullet & \bullet \end{array} \end{array}$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

✤ Avoid creating new congestion

Incentivizing Process

National Center for Sustainable Transportation

Modeling

What should be our objective/goal?

- Minimize incentivizing cost
- Maximize a utility of the drivers' travel times
- Minimize Carbon emission footprint

A simple formulation

First Model

 $\min_{\text{incentives}}$ Cost of offering incentives

s.t. $\mathbb{E}[\text{Volume}_t] \leq \text{Capacity}, \forall t$

constraints on incentive offering mechanism

- \succ Pros: ILP \rightarrow off-the-shelf solvers
- ➢ Cons:
 - \succ Is it fair?
 - ➢ It assumes feasibility.

 $\max_{\text{incentives}} U(\text{Drivers' travel time})$

s.t. $\mathbb{E}[\text{Volume}_t] \leq \text{Capacity}, \forall t$

Cost of offering incentives ≤ BudgetOther constraints incentives

- Major (limiting) assumption:
 - We are operating below the system capacity (feasibility).

Operating in Congested Networks

Example: Use the total carbon emission as the objective

$$\min_{\mathbf{S}} \quad \sum_{\ell=1}^{|\mathcal{E}|} \sum_{t=1}^{|\mathbf{T}|} \hat{v}_{\ell,t} f_{CE} \left(\hat{v}_{\ell,t} \right) L_{\ell}$$

s.t.
$$\hat{v}_{\ell,t} = (\mathbf{RP})_{\ell,t} \mathbf{S1}$$

$$\mathbf{S}^\intercal \mathbf{1} = \mathbf{1}$$

$$\mathbf{c}^{\intercal}\mathbf{S}\mathbf{1} \leq \Omega$$

$$\mathbf{DS1} = \mathbf{q}$$

 $\mathbf{S} \in \{0,1\}^{(|\mathcal{R}||\mathcal{I}|) \times |\mathcal{N}|}$

- → Total Carbon Emission [3,4]
- \rightarrow Estimated volume [1,2]
- \rightarrow One incentive per driver
- → Budget constraint
- \rightarrow Aware of the # of drivers per O-D

- Modular Design
 - ≻ Can be changed if needed
 - ≻ Can be learned
 - ➤ Use preference learning
 - ➢ Parameterize by a neural network and learn

> How to solve it? Large-scale and challenging

[1] Chenfeng Xiong, Mehrdad Shahabi, Jun Zhao, Yafeng Yin, Xuesong Zhou, and Lei Zhang. An integrated and personalized traveler information and incentive scheme for energy efficient mobility systems. Transportation Research Part C: Emerging Technologies, 2019.

[2] Wei Ma and Zhen Sean Qian. Estimating multi-year 24/7 origin-destination demand using high-granular multi-source traffic data. Transportation Research Part C: Emerging Technologies, 96:96–121, 2018.

[3] United States. Bureau of Public Roads. Traffic assignment manual for application with a large, highspeed computer, volume 37. US Department of Commerce, Bureau of Public Roads, Office of Planning, Urban Planning Division, 1964.

[4] PG Boulter and IS McCrae. Artemis: Assessment and reliability of transport emission models and inventory systems-final report. TRL Published Project Report, 2007.

ODDS Research Group

University of Southern California

Efficient Algorithm

 $\begin{array}{ll} \min_{\mathbf{S}} & \sum_{\ell=1}^{|\mathcal{E}|} \sum_{t=1}^{|\mathbf{T}|} \hat{v}_{\ell,t} f_{CE} \left(\delta(\hat{v}_{\ell,t}) \right) L_{\ell} & \rightarrow \text{Total Carbon Emission [3,4]} \\ \text{s.t.} & \hat{v}_{\ell,t} = (\mathbf{RP})_{\ell,t} \mathbf{S1} & \rightarrow \text{Estimated volume [1,2]} \\ & \mathbf{S}^T \mathbf{1} = \mathbf{1} & \rightarrow \text{One incentive per driver} \\ & \mathbf{c}^T \mathbf{S1} \leq \Omega & \rightarrow \text{Budget constraint} \\ & \mathbf{DS1} = \mathbf{q} & \rightarrow \text{Aware of the $\#$ of drivers per O-D} \\ & \mathbf{S} \in \{0,1\}^{(|\mathcal{R}||\mathcal{I}|) \times |\mathcal{N}|} \end{array}$

 $f_{CE}(\delta) = 523.7 - (1654.4 \times 10^{-2})\delta - (2635.4 \times 10^{-4})\delta^2 - (1771.5 \times 10^{-6})\delta^3 - (442.9 \times 10^{-8})\delta^4,$ ^[4] $\delta(v) = \frac{L}{t_0} \left(1 + 0.15 \left(\frac{v}{w}\right)^4\right)^{-1}$ ^[3]

Theorem: Relaxing the last constraint leads to a convex optimization problem!

- ➤ How should we solve this problem?
 - First order methods
 - Off-the-shelf solvers such as CVX and Gurobi
- \succ It is still challenging due to massive scale of the problem.
- Can we use distributed/edge computation?
- Can we exploit the individual processing power of drivers' smartphones?
- > We use Alternating Direction Method of Multipliers (ADMM) to do distributed computation.

[1] Chenfeng Xiong, Mehrdad Shahabi, Jun Zhao, Yafeng Yin, Xuesong Zhou, and Lei Zhang. An integrated and personalized traveler information and incentive scheme for energy efficient mobility systems. Transportation Research Part C: Emerging Technologies, 2019.

[2] Wei Ma and Zhen Sean Qian. Estimating multi-year 24/7 origin-destination demand using high-granular multi-source traffic data. Transportation Research Part C: Emerging Technologies, 96:96–121, 2018.

[3] United States. Bureau of Public Roads. Traffic assignment manual for application with a large, highspeed computer, volume 37. US Department of Commerce, Bureau of Public Roads, Office of Planning, Urban Planning Division, 1964.

[4] PG Boulter and IS McCrae. Artemis: Assessment and reliability of transport emission models and inventory systems-final report. TRL Published Project Report, 2007.

Alternating Direction Method of Multipliers (ADMM) - Background

Solving linearly constrained optimization problems in form:

$$\min_{w,z} h(w) + g(z) \qquad \text{s.t.} \quad Aw + Bz = c$$

Augmented Lagrangian function

$$\mathcal{L}(w, z, \lambda) \triangleq h(w) + g(z) + \langle \lambda, Aw + Bz - c \rangle + \frac{\rho}{2} \|Aw + Bz - c\|_2^2$$

Augmented update rules

Primal Update:	$w^{r+1} = \arg\min_{w} \mathcal{L}(w, z^r, \lambda^r),$
	$z^{r+1} = \arg\min_{z} \mathcal{L}(w^{r+1}, z, \lambda^r)$
Dual Update:	$\lambda^{r+1} = \lambda^r + \rho \left(A w^{r+1} + B z^{r+1} - c \right)$

Efficient Algorithm for Finding Optimal Incentives

The update rule of $\gamma_{\ell,t}$ can be done in parallel. Different columns of variables **W**, **S**, **H** can be updated in parallel (via edge computation).

> Theorem: The above algorithm finds an ϵ -solution of the relaxed problem in $O(1/\epsilon)$ iterations.

 \succ How to do rounding? ADMM-Q algorithm (became popular recently for training binary neural networks)

Network Construction

- ✤ How do we construct the network?
- ✤ How to estimate O-D pairs for drivers?
 - We do not have access to prior O-D as some works need [1-4]
 - We have a large-scale problem (some prior work cannot scale)
 - We use [5]

✤ Data:

- ADMS (Archived Data Management System at USC)
 - Real-time traffic data such as volume and speed
 - Collected by loop sensors
 - Highway data \rightarrow recorded every 30 seconds
 - \circ Arterial road data \rightarrow recorded every 1 minute
- City: Los Angeles
- > Why this region?
 - 1. Available detailed data
 - 2. Including both heavy and light traffic
- Date: March, April, and May 2018
- Only business days
- Used features: speed and volume

National Center for

Sustainable Transportation

[1] P. Krishnakumari, H. v. Lint, T. Djukic, and O. Cats. A data driven method for od matrix estimation. Transportation Research Part C: Emerging Technologies, 2019.

[2] S. Carrese, E. Cipriani, L. Mannini, and M. Nigro. Dynamic demand estimation and prediction for traffic urban networks adopting new data sources. Transportation Research Part C: Emerging Technologies, 81:83–98, 2017.

- [3] M. Nigro, E. Cipriani, and A. Giudice. Exploiting floating car data for time-dependent origin-destination matrices estimation. Journal of Intelligent Transportation Systems, 22(2):159–174, 2018.
- [4] J. Y. Kim, F. Kurauchi, N. Uno, T. Hagihara, and T. Daito. Using electronic toll collection data to understand traffic demand. Journal of Intelligent Transportation Systems, 18(2):190–203, 2014.
- [5] W. Ma and Z. S. Qian. Estimating multi-year 24/7 origin-destination demand using high-granular multi-source traffic data. Transportation Research Part C: Emerging Technologies, 96:96–121, 2018

University of Southern California

Numerical Experiments - Small Region

- ✤ Experiment I:
 - Region: USC neighborhood
 - Only arterial roads
 - Incentive Set: {\$0, \$1, \$2, \$5, \$10, \$1000}

	Budget $(\$ \times 10^3)$	Percentage of drivers to whom we offered incentives	Average of the incentive amount (\$)	Reduction in Carbon Emission
7-8 AM exp. I	1	8.94%	1.51	4.33%
7-8 AM exp. 1	10	43.12%	3.13	17.79%

Numerical Experiments - Large Region

✤ Experiment II:

- Region: Los Angeles
- Only highways
- Incentive Set: {\$0, \$1, \$2, \$5, \$10, \$1000}

	Budget $(\$ \times 10^3)$	Percentage of drivers to whom we offered incentives	Average of the incentive amount (\$)	Reduction in Carbon Emission
7-8 AM exp. II	1	3.78%	1.75	0.72%
7-8 AM exp. 11	10	21.91%	3.02	5.70%

Conclusion

- Offering personalized incentives to drivers to reduce congestion
- Efficient algorithms to solve the problem in large-scale
- Utilizing the computational power of individuals' smartphones by distributed algorithm

Download the code

- ✤ Future work:
 - Considering different travel modes such as public transportation, carpooling, and biking in options
 - Utilizing preference learning to learn the drivers' acceptance probability
 - More features such as income value and gender in computation the drivers' acceptance probability
 - Implementation and analysis of the algorithm in the real-world
 - Combining the data of highways and arterial ways

Thank you

Literature review

- Theory of congestion **pricing** has been widely studied (de Palma and Lindsey 2011, Tsekeris and Voß 2009)
 - Time or area dependent pricing (Zheng et al 2016)
 - Distance dependent (Daganzo and Lehe 2015)
 - Based on vehicle characteristics (Zhang et al 2018)
- Limitations:
 - Political barriers, social barriers such as equity, and unpopularity of taxation (Knockaert et al 2012, Levinson 2010, Martens et al 2012)
- Token-based schemes as an alternative idea (Verhoef et al 1997, Viegas 2001, Raux 2004).
 - Design and technological complexities (Azevedo et al 2018)

***** Offering rewards

- Psychologically more effective than penalizing (Brehm 1966)
- More popular (Knockaert et al 2012)
- Some studies on offering rewards:
 - Context of safe driving (Mazureck and Hattem 2006, Bolderdijk et al 2011)
 - Context of congestion reduction (Bliemer et al 2009, Knockaert et al 2012, Yue et al 2015)

A Simple Model

$\mathcal{N} = \{1, \dots, N\}$	Set of drivers	
$\mathcal{I}_n = \{(\text{money amount, route})\}$	Set of incentives for driver n	
$s_i^n \in \{0,1\}, i \in \mathcal{I}_n$	Decision variable: Offer incentive <i>i</i> or not	
C_i^n	Cost of offering incentive <i>i</i> to driver <i>n</i>	
$p_i^{m{r},n}$ [1]	Prob of selecting route <i>r</i> after offering incentive <i>i</i>	
$eta_{r,t}$ [2]	Location of driver on route r at time t (Probability vector)	

min Cost of offering incentives

s.t. $\mathbb{E}[\text{Volume}_t] \leq \text{Capacity}, \forall t$

$$\begin{split} \min_{\{s_i^n\}} & \sum_{n \in \mathcal{N}} \sum_{i \in \mathcal{I}_n} s_i^n c_i^n \\ \text{s.t.} & \sum_{n \in \mathcal{N}} \sum_{i \in \mathcal{I}_n} \sum_{\mathbf{r} \in \mathcal{R}_n} s_i^n p_i^{\mathbf{r}, n} \boldsymbol{\beta}_{\mathbf{r}, t} \leq \mathbf{v}_0, \quad \forall t \in \mathbf{T} \\ & \sum_{i \in \mathcal{I}_n} s_i^n = 1, \quad \forall n \in \mathcal{N}, \\ & s_i^n \in \{0, 1\}, \quad \forall n \in \mathcal{N}, \forall i \in \mathcal{I}_n \end{split}$$

[1] Chenfeng Xiong, Mehrdad Shahabi, Jun Zhao, Yafeng Yin, Xuesong Zhou, and Lei Zhang. An integrated and personalized traveler information and incentive scheme for energy efficient mobility systems. Transportation Research Part C: Emerging Technologies, 2019.

[2] Wei Ma and Zhen Sean Qian. Estimating multi-year 24/7 origin-destination demand using high-granular multi-source traffic data. Transportation Research Part C: Emerging Technologies, 96:96–121, 2018. 17

University of Southern California

Modifying the Simple Model

min Cost of offering incentives	$\mathcal{N} = \{1, \dots, N\}$	Set of drivers
s.t. $\mathbb{E}[\text{Volume}_t] \leq \text{Capacity}, \forall t$	$\mathcal{I}_n = \{(\text{money amount, route})\}$	Set of incentives for driver n
$\max_{\text{incentives}} U(\text{Drivers' travel time})$ s.t. Volume _t \leq Capacity, $\forall t$	$s_i^n \in \{0,1\}, i \in \mathcal{I}_n$	Decision variable: Offer incentive <i>i</i> or not
	C_i^n	Cost of offering incentive <i>i</i> to driver <i>n</i>
Cost of offering incentives \leq Budget	$p_i^{r,n}$	Prob of selecting route <i>r</i> after offering incentive <i>i</i>
Sum utility (simple case)	$\beta_{r,t}$	Location of driver on route r at time t (Probability vector)
$\begin{split} \min_{\{s_i^n\}} & \sum_{n \in \mathcal{N}} \sum_{i \in \mathcal{I}_n} s_i^n \sum_{\mathbf{r} \in \mathcal{R}_n} p_i^{\mathbf{r}, n} \delta_{\mathbf{r}}^n \\ \text{s.t.} & \sum_{n \in \mathcal{N}} \sum_{i \in \mathcal{I}_n} \sum_{\mathbf{r} \in \mathcal{R}_n} s_i^n p_i^{\mathbf{r}, n} \boldsymbol{\beta}_{\mathbf{r}, t} \leq \mathbf{v}_0, \forall t \in \mathbf{T} \\ & \sum_{n \in \mathcal{N}} \sum_{i \in \mathcal{I}_n} s_i^n c_i^n \leq \text{Budget} = \Omega \\ & \sum_{i \in \mathcal{I}_n} s_i^n = 1, \forall n \in \mathcal{N}, \\ & s_i^n \in \{0, 1\}, \forall n \in \mathcal{N}, \forall i \in \mathcal{I}_n \end{split}$	l time of driver <i>n</i> after offering incentiv	e i
		18

References

- André de Palma and Robin Lindsey. Traffic congestion pricing methodologies and technologies. Transportation Research Part C: Emerging Technologies , 19(6):1377–1399, 2011.
- Theodore Tsekeris and Stefan Voß. Design and evaluation of road pricing: state-of-the-art and methodological advances. NETNOMICS: Economic Research and Electronic Networking, 10(1):5–52, 2009.
- Nan Zheng, Guillaume Rérat, and Nikolas Geroliminis. Time-dependent area-based pricing for multimodal systems with heterogeneous users in an agent-based environment. Transportation Research Part C: Emerging Technologies, 62:133–148, 2016.
- Carlos F Daganzo and Lewis J Lehe. Distance-dependent congestion pricing for downtown zones. Transportation Research Part B: Methodological, 75:89–99, 2015.
- hu Zhang, Ann M Campbell, and Jan F Ehmke. Impact of congestion pricing schemes on costs and emissions of commercial fleets in urban areas. Networks, 73(4):466–489, 2019.
- Jasper Knockaert, Yin-Yen Tseng, Erik T Verhoef, and Jan Rouwendal. The spitsmijden experiment: A reward to battle congestion. Transport Policy, 24:260–272, 2012.
- David Levinson. Equity effects of road pricing: A review. Transport Reviews, 30(1):33–57, 2010.
- Karel Martens, Aaron Golub, and Glenn Robinson. A justice-theoretic approach to the distribution of transportation benefits: Implications for transportation planning practice in the united states. Transportation research part A: policy and practice, 46(4):684–695, 2012.
- Erik Verhoef, Peter Nijkamp, and Piet Rietveld. Tradeable permits: their potential in the regulation of road transport externalities. Environment and Planning B: Planning and Design, 24(4):527–548, 1997.
- Jose M Viegas. Making urban road pricing acceptable and effective: searching for quality and equity in urban mobility. Transport Policy, 8(4):289–294, 2001.
- Charles Raux. The use of transferable permits in transport policy. Transportation Research Part D: Transport and Environment, 9(3):185–197, 2004.
- Carlos Lima Azevedo, Ravi Seshadri, Song Gao, Bilge Atasoy, Arun Prakash Akkinepally, Eleni Christofa, Fang Zhao, Jessika Trancik, and Moshe Ben-Akiva. Tripod: sustainable travel incentives with prediction, optimization, and personalization. In Transportation Research Board 97th Annual Meeting, 2018.
- Jack W Brehm. A theory of psychological reactance. 1966.
- Undine Mazureck and Jan van Hattem. Rewards for safe driving behavior: Influence on following distance and speed. Transportation research record, 1980(1):31–38, 2006.
- Jan Willem Bolderdijk, Jasper Knockaert, EM Steg, and Erik T Verhoef. Effects of pay-as-you-drive vehicle insurance on young drivers' speed choice: Results of a dutch field experiment. Accident Analysis & Prevention, 43(3):1181–1186, 2011.
- Michiel Bliemer, et. al., Rewarding for avoiding the peak period: A synthesis of three studies in the Netherlands. 2009.
- Jia Shuo Yue, Chinmoy V Mandayam, Deepak Merugu, Hossein Karkeh Abadi, and Balaji Prabhakar. Reducing road congestion through incentives: a case study. 2015.