

Luciano Nocera¹, Gen Giuliano², Seon Ho Kim¹ and Cyrus Shahabi¹ Chrysovalantis Anastasiou¹, Mustafa Alturki¹ Yiqing Fan¹, Yingzhe Liu¹, Luke Nelson¹, Aditi Hoskere Deepack¹

- ¹ Integrated Media Systems Center (IMSC)
- ² METRANS Transportation Consortium

FREIGHT MODELING RESEARCH

Need for more freight trucking data in SC

Freight trucking impacts:

- Infrastructure: maintaining roadways, adding charging stations, ...
- **Traffic:** planning to limit traffic and accidents that may cause, understand the economic impact, ...
- Health: understand the health impacts, transition to less polluting technologies, ...

Very limited freight data for SC

- Little information on trucks origin and destination (OD-matrix)
- Existing data is indirectly sourced from surveys at ports, warehouses, rail stations... leads to low temporal and spatial resolution OD-matrix

Current OD-matrix estimates at a time resolution not always compatible with what is needed for urban planning and assessing truck impact on traffic and AQ

Region of Study

What vehicles to consider

Federal Highway Administration Vehicle Classification

Sources of truck information currently available

Precise but sparse truck sensors:

WIM (5), TAMS (6), RFID, Caltrans vehicle counting

Sensors used for other applications:

CCTV (15) (monitoring)

ILD (traffic, e.g., ADMS)

Freight Modeling From Sensor Data

Goal: provide high temporal and spatial resolution truck information

- OD-matrix
- Link-level volume

Approach: integrate truck sensors observations

Some questions we want to answer:

- How to estimate OD-Matrix from sensor observations?
- How accurate can we model flow? For example, how many sensors and what sensor layout is needed to obtain useful estimates?
- Can we use CCTV cameras? For example, can we utilize Caltrans' CCTV monitoring cameras to classify & count trucks?

OD-matrix from surveys

 n_i^j : count of trucks for class (a, b, c, ...) over a period of time

i = 0 at Origin

i = A at Destination A

i = B at Destination B

OD-matrix from sensors observations

 t_i^j, c_i^j : truck observation i at sensor j t: time of observation c: truck class of observation

Approach: reconcile observations across sensors based on estimated travel times

 t_i^j : truck i time at sensor j

Travel times on links estimated from traffic sensors

Taking into account sensor data uncertainty for truck class, travel time and missing data

Approaches we have developed

Baseline:

Estimates flow only at road segments where data is sensed

Rule Flow:

Extends estimation to adjacent edges as long as there is no road fork

Reach Flow:

- Finds compatible observations between sensors and imputes the flow on the edges of the shortest path between the sensors.
- Observations are compatible if <u>travel time</u> is [approximately] equal to their timestamp difference and detected truck type is the same

Validation of Freight Modeling

Challenges:

- No data was available last year with COVID-19 pandemic
- Lack of ground truth data (truck counts) for validation

Therefore:

- We built a truck simulator that uses historical traffic to simulate trajectories under different conditions
- Scraped Caltrans CCTV footage from off available webcams

Truck Simulator applied to Flow Modeling Validation

Truck Flow Modeling Results

Varying number of sensors (trucks = 1000)

Simulator dashboard

Truck simulation main screen

Caltrans Web Cams

Partially seen

HWY50 AT 24TH ST

CCTV Detection and Classification on Single Frames

[1] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, "You Only Look Once: Unified, Real-Time Object Detection," ArXiv150602640 Cs, May 2016, Accessed: Oct. 12, 2020. [Online]. Available: http://arxiv.org/abs/1506.02640.

What Truck classes to consider?

Axle-based US DOT vehicle classes

Existing image datasets vehicle classes

- 1. https://www.fhwa.dot.gov/policyinformation/tmguide/tmg 2013/vehicle-types.cfm
- 2. Z. Luo et al., "MIO-TCD: A New Benchmark Dataset for Vehicle Classification and Localization," IEEE Trans. Image Process., Oct. 2018.

Three Tiers, Size-based Classes

Small (Light-weight)
DoT Class 5

Medium (Heavy-duty non articulated)
DoT Class 6-7

Heavy (Heavy-duty articulated)
DoT Class 8-13

Optimized Classes for Truck Classification

Van DoT Class 3, 5 Pickup DoT Class 3, 5 Single Unit DoT Class 6-10 **Heavy-duty Articulated** DoT Class 8-13

Dataset v2

Classes: lightweight single_unit_truck articulated_truck

Dataset v3

Classes: pickup single unit truck articulated truck

Dataset v4

Classes annotations: pickup_rear articulated_truck_front_articulated_truck_rear

Classification Results

Dataset v-2 performance results

```
confidence_threshold = 0.25
  - articulated_truck, AP = 86.02% (TP = 84, FP = 21)
  - single_unit_truck, AP = 84.20% (TP = 76, FP = 33)
  - lightweight, AP = 63.00% (TP = 56, FP = 44)

Precision = 0.69 / Recall = 0.77 / F1-score = 0.73
TP = 216, FP = 98, FN = 65, Average IoU = 55.63 %

confidence_threshold = 0.50
  - articulated_truck, AP = 86.02% (TP = 75, FP = 11)
  - single_unit_truck, AP = 84.20% (TP = 74, FP = 18)
  - lightweight, AP = 63.00% (TP = 51, FP = 22)

Precision = 0.80 / Recall = 0.71 / F1-score = 0.75
TP = 200, FP = 51, FN = 81, Average IoU = 64.57 %
```

```
mAP00.50 = 0.777391, or 77.74 %
mAP00.60 = 0.731565, or 73.16 %
mAP00.70 = 0.625322, or 62.53 %
mAP00.80 = 0.357104, or 35.71 %
mAP00.90 = 0.025788, or 2.58 %
```

Dataset v-3 performance results

```
confidence_threshold = 0.25
- articulated_truck, AP = 86.13% (TP = 88, FP = 27)
- single_unit_truck, AP = 84.87% (TP = 76, FP = 31)
                    AP = 49.90% (TP = 13, FP = 8)
- van,
                    AP = 76.33% (TP = 46, FP = 30)
- pickup.
Precision = 0.70 / Recall = 0.79 / F1-score = 0.74
TP = 223, FP = 96, FN = 58, average IoU = 56.40 %
confidence_threshold = 0.50
- articulated_truck, AP = 86.13% (TP = 83, FP = 18)
- single_unit_truck, AP = 84.87% (TP = 72, FP = 22)
- van,
                   AP = 49.98% (TP = 12, FP = 6)
                   AP = 76.33% (TP = 41, FP = 16)
- pickup,
Precision = 0.77 / Recall = 0.74 / F1-score = 0.75
TP = 208, FP = 62, FN = 73, average IoU = 62.45 %
```

```
mAP00.50 = 0.743076, or 74.31 %
mAP00.60 = 0.705901, or 70.59 %
mAP00.70 = 0.614002, or 61.40 %
mAP00.80 = 0.352933, or 35.29 %
mAP00.90 = 0.035619, or 3.56 %
```


Classification Results

Dataset v-3 performance results

```
confidence_threshold = 0.25
- articulated_truck, AP = 86.13% (TP = 88, FP = 27)
- single_unit_truck, AP = 84.87% (TP = 76, FP = 31)
                 AP = 49.90% (TP = 13, FP = 8)
- pickup.
                    AP = 76.33%
                                 (TP = 46, FP = 30)
Precision = 0.70 / Recall = 0.79 / F1-score = 0.74
TP = 223, FP = 96, FN = 58, average IoU = 56.40 %
confidence_threshold = 0.50
articulated_truck, AP = 86.13% (TP = 83, FP = 18)
- single_unit_truck, AP = 84.87% (TP = 72, FP = 22)
                    AP = 49.98%
                                 (TP = 12, FP = 6)
- pickup.
                    AP = 76.33% (TP = 41, FP = 16)
Precision = 0.77 / Recall = 0.74 / F1-score = 0.75
TP = 208, FP = 62, FN = 73, average IoU = 62.45 %
```

```
mAP00.50 = 0.743076, or 74.31 %
mAP00.60 = 0.705901, or 70.59 %
mAP00.70 = 0.614002, or 61.40 %
mAP00.80 = 0.352933, or 35.29 %
mAP00.90 = 0.035619, or 3.56 %
```

Dataset v-4 performance results

```
confidence\_threshold = 0.25
- articulated_truck_front, AP = 90.93% (TP = 61, FP = 23)
- articulated_truck_rear, AP = 84.24% (TP = 29, FP = 12)
single_unit_truck_front, AP = 78.12% (TP = 37, FP = 13)
- single_unit_truck_rear, AP = 84.53% (TP = 36, FP = 16)
- van_front,
                       AP = 30.44% (TP = 7, FP = 10)
- van_rear,
                       AP = 59.75\% (TP = 3, FP = 4)
                     AP = 66.82% (TP = 16, FP = 12)
- pickup_front,
                         AP = 69.27\% (TP = 25, FP = 7)
- pickup_rear.
Precision = 0.69 / Recall = 0.76 / F1-score = 0.72
TP = 214, FP = 97, FN = 67, average IoU = 56.89 %
confidence_threshold = 0.50
- articulated_truck_front, AP = 90.93% (TP = 60, FP = 17)
- articulated_truck_rear. AP = 84.24% (TP = 26, FP = 5)
- single_unit_truck_front, AP = 78.12% (TP = 33, FP = 11)
single_unit_truck_rear, AP = 84.53% (TP = 34, FP = 11)
- van_front, AP = 30.44% (TP = 6, FP = 6)
                       AP = 59.75\% (TP = 3, FP = 4)
- van_rear,
- pickup_front, AP = 66.82% (TP = 14, FP = 5)

- pickup_rear, AP = 69.27% (TP = 23, FP = 6)
Precision = 0.75 / Recall = 0.71 / F1-score = 0.73
TP = 199, FP = 65, FN = 82, average IoU = 61.76 %
```

```
mAP00.50 = 0.705120, or 70.51 %
mAP00.60 = 0.675986, or 67.60 %
mAP00.70 = 0.571626, or 57.16 %
mAP00.80 = 0.306439, or 30.64 %
mAP00.90 = 0.032269, or 3.23 %
```


Image datasets

	v2	v3	v4
# of images	1253	1253	1253
# of background images	300	300	300
Total # of images	1553	1553	1553
articulated_truck count	1029	1029	
articulated_truck_front count			634
articulated_truck_rear count			395
single_unit_truck count	922	922	
single_unit_truck_front count			501
single_unit_truck_rear count			421
lightweight count	866		
van count		225	
van_front count			128
van_rear count			97
pickup count		641	
pickup_front count			253
pickup_rear count			388

Future Work: using tracking on videos

- [1] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, "You Only Look Once: Unified, Real-Time Object Detection," ArXiv150602640 Cs, May 2016, Accessed: Oct. 12, 2020. [Online]. Available: http://arxiv.org/abs/1506.02640.
- [2] A. Bewley, Z. Ge, L. Ott, F. Ramos, and B. Upcroft, "Simple Online and Realtime Tracking," 2016 IEEE Int. Conf. Image Process. ICIP, pp. 3464–3468, Sep. 2016, doi: 10.1109/ICIP.2016.7533003.
- 3. Z. Luo et al., "MIO-TCD: A New Benchmark Dataset for Vehicle Classification and Localization," IEEE Trans. Image Process., Oct. 2018.

