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Need for more freight trucking data in SC

Freight trucking impacts:
Infrastructure: maintaining roadways, adding charging

stations, ...
- Traffic: planning to limit traffic and accidents that may cause,

understand the economic impact, ...
- Health: understand the health impacts, transition to less

polluting technologies, ...
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Very limited freight data for SC

Little information on trucks origin and destination (OD-matrix)

Existing data is indirectly sourced from surveys at ports,
warehouses, rail stations... leads to low temporal and spatial

resolution OD-matrix

Current OD-matrix estimates at a time resolution not always
compatible with what is needed for urban planning and assessing

truck impact on traffic and AQ
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What vehicles to consider

' Class | Class 7 [ Cl f:
Motorcycles % Four or more D = ﬂ
b 4 axde, single unic |
Class 2
Passenger cars m
=Sl s
Four or less axle, |
& . |
[ Class 3 [
Four tire, |
single unit E& Class 9
S-Axle tractor
% semitrailer
| Class 4 m Class 10
Buses L Six or more axde, |
— |
' Class 11
ﬁ Five or less axde,
multi trailer
Class 5 % Class 12
Two axde, six Six axde, multi-
tire, single unit % trailer
Class 13
% Seven or more
Class 6
e | Sl
single unit

Federal Highway Administration Vehicle Classification
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Sources of truck information currently available

~ Precise but sparse truck sensors:
@ R e WIM (5), TAMS (6), RFID,

R Caltrans vehicle counting
7 TAMS : [ w o |
o " <% Sensors used for other applications:
. | UL CCTV (15) (monitoring)
ILD (traffic, e.g., ADMS)
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Freight Modeling From Sensor Data

Goal: provide high temporal and spatial resolution truck information

- OD-matrix
- Link-level volume

Approach: integrate truck sensors observations

Some questions we want to answer:
e How to estimate OD-Matrix from sensor observations?

 How accurate can we model flow? For example, how many sensors and what
sensor layout is needed to obtain useful estimates?

 Can we use CCTV cameras? For example, can we utilize Caltrans’ CCTV
monitoring cameras to classify & count trucks?
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OD-matrix from surveys

Destination A

a b c
« . —O—.é% nA[ nAI nA, o
Origin
—o—gj ng, ng, nf), Destination B
a b c
~— n%, n%, ng, ..

n;:count of trucks for class (a, b, c, ...) over a period of time

[ = 0 at Origin
I = A at Destination A

[ = B at Destination B
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OD-matrix from sensors observations
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t{ , ci] : truck observation i at sensor j

t:time of observation
c:truck class of observation
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Approach: reconcile observations across sensors based on
estimated travel times
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Taking into account sensor data uncertainty for truck
class, travel time and missing data
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Approaches we have developed

Baseline:
* Estimates flow only at road segments where data is sensed

Rule Flow:
Extends estimation to adjacent edges as long as there is no road fork

Reach Flow:
* Finds compatible observations between sensors and imputes the flow

on the edges of the shortest path between the sensors.
* Observations are compatible if travel time is [approximately] equal to
their timestamp difference and detected truck type is the same
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Validation of Freight Modeling

Challenges:
No data was available last year with COVID-19 pandemic

Lack of ground truth data (truck counts) for validation

Therefore:
e We built a truck simulator that uses historical traffic to

simulate trajectories under different conditions
e Scraped Caltrans CCTV footage from off available webcams
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Truck Simulator applied to Flow Modeling Validation

(ADMS) Truck Flow Model
Volume on links
Simulated OD-Matrices
Truck Fleet
Observations

Road
Network
(\_,_\‘w Simulated
Sensors Truck Fleet
Trajectories
N Truck
Truck Fleet Simulafor
Initial ‘ Simulated Estimated
Conditions OD-Matrices OD-Matrices
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Simulated Estimated
Volume on Links Volume on Links
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50 sensors

150 sensors

Ground Truth Baseline RuleFlow ReachFlow

Precision: 100.00% Precision: 100.00% Precision: 66.80%
Recall: 1.61% Recall: 5.63% Recall: 61.71%
i ,‘. ’
| ; 1 o’

00 " soumcd ; J I
1‘ ) 4 ". iy ) - 7
' ‘ L /
K ’ [}
1 3 ' I
) ) tone
Precision: 100.00% Precision: 99.66% Precision: 95.97%
Recall: 5.15% Recall: 17.46% Recall: 75.82%

Pacific

ME F%E—;fiiééé;i . <Southwest
<>»~=% Region UTC

Transportation Consortium , e ‘
USCICSULB University Transportation Center



600

400

200

800

600

400

200

Road Segments

—— 4
— —
\././

x/x
x—
x—
S
50 100 150 200 250 300
Sensors
Road Segments
4
/. = T
||
./
)
| |
RURN—————————————— ¢
0000 { ] { ]
1000 2000 3000 4000 5000
Trucks

1.00
0.95
0.90
0.85
0.80
0.75
0.70
0.65

1.00

0.99

0.98

0.97

0.96

0.95

Truck Flow Modeling Results

Precision
X X: X £ 3 X
| | L | ]

Z

-

low impact on
precision w/
enough sensors

50 100 150 200 250 300
Sensors
Precision
R % %
| |
\I
\_\
| |
\\.
e e
1000 2000 3000 4000 5000
Trucks

—@— Baseline

Varying number of sensors (trucks = 1000)

Recall
0.8 "
l/
[ ] —
0.6 /
| |
0.4
/x
%
x/
02 =
x/ —
/./././.
00 @
50 100 150 200 250 300
Sensors

Varying number of trucks (sensors = 300)

Recall
0.8 o . 1
./
77 .
. high recall
0.6
0.4
B — 3
0.2
000 ® ®
1000 2000 3000 4000 5000
Trucks

—#— RuleFlow —=— ReachFlow

MAE MAPE
1.0
o—_o — o
8 % — % o—
.\.\°\o 0.9 _\x S ——o—
7 \ \
0.8  } x\
6 \ \ ' %
x \
. 0.7 . o
5 X \ %
' 0.6 L]
4 \.\ \
0.5 L
3 [ \
[ 0.4 n
2
50 100 150 200 250 0 50 100 150 200 250 300
Sensors Sensors
lower error
MAE
35 0.9 ]
30 0.8
25 x 0.7
20 +
) 0.6
15
3 0.5
10 / L
5 , ,O / 04 ym= . 1
o %
&l .—l/
0o * 0.3
1000 2000 3000 4000 5000 1000 2000 3000 4000 5000
Trucks Trucks

—#— Ground Truth

Mean Absolute Error (MAE), Mean Absolute Percent Error (MAPE)

Transportatlon Consortlum
usclcsul

. Agacifli‘c
: *.Southwest
%i Region UTC

University Transportation Center



Simulator dashboard

Truck simulation main screen
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Caltrans Web Cams

| Different angles
§ of view
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CCTV Detection and Classification on Single Frames

Detection and
Classification :> cetv Truck

YOLO!

Caltrans CCTV
Labeled dataset
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[1] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You Only Look Once: Unified, Real-Time Object Detection,” ArXiv150602640 Cs, May 2016, Accessed: Oct. 12, 2020.

[Online]. Available: http://arxiv.org/abs/1506.02640.
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What Truck classes to consider?

Axle-based US DOT vehicle classes Existing image datasets vehicle classes

Class | Class 7 [ ¢ L‘\
Motorcycles % Four or more I g
b axle, single unit | @eee
Class 2
Passenger cars m
= MIO-TCD !
=Sl Shaa
Four or less axle, |
L dataset
' Class 3 ey
Four tre,
single unit Bi Class 9
S-Axde tractor
mm semitrailer
'Class 4 | m Class 10
Buses | Six or more axle, |
== |
' Class 11
ﬁ Five or less axde,
multi trailer
Class § | Ei Class 12
Two axde, six | Six axde, multi-
tire, single unit % trailer
Class 13 2015-06-16 9:30:23 PM
% Seven or more
axdle, multi-trailer
Class 6
Three axde, &
single unit

1. https://www.fhwa.dot.gov/policyinformation/tmguide/tmg 2013/vehicle-types.cfm

2.Z. Luo et al., “MIO-TCD: A New Benchmark Dataset for Vehicle Classification and Localization,” IEEE Trans. Image Process., Oct. 2018.
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https://www.fhwa.dot.gov/policyinformation/tmguide/tmg_2013/vehicle-types.cfm

Three Tiers, Size-based Classes

= | B9

ade, single unit
Medium (Heavy-duty non articulated)
DoT Class 6-7

Small (Light-weight)
DoT Class 5
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Van
DoT Class 3, 5

Optimized Classes for Truck Classification

Pickup
DoT Class 3, 5

Single Unit
DoT Class 6-10
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Dataset v2 Dataset v3 Dataset v4
Classes: lightweight single_unit_truck articulated_truck Classes : pickup single unit_truck articulated_truck  Classes annotations: pickup_rear
articulated_truck front articulated_truck rear




Figure 2. Dataset v-2 performance results

Dataset v-2 performance results

Classification Results

Dataset v-3 performance results
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confidence_threshold = .25 mAPEO.50 = 0.777391, or 77.74 % confidence_threshold = 0.25 mAPS0 .50 = 0.743076, or 74.31 %
articulated_truck, AP = 86.82% (TP = 84, FP = 21) mAP20.66 = 0.731565, or 73.16 % articulated._truck, AP = 86.13 (TP = 88, FP = 27) RAPSG.60 = 8.705901, or 70.59 %
single_unit_truck, AP = 84, 20% (TP = 76, FP = 33) mAPE0 .70 = 0,625322, or 62.53 % single_unit_truck, AP = 34»?-"’“ (TP = 76, FP = 31) nAPS0.70 = 0.614002, or 61.40 %
lightweight, AP = 63,00% (TP = 56, FP = 44) mAPEO.80 = 0.357104, or 35.71 % van, AP = 49.98% (TP = 13, FP = 8) nAP@0 .80 = 0.352933, or 35.29 %
mAP26.90 = 0.025788, or 2.58 % pickup AP = 76.33 (TP 46, FP = 30 nAPP0.90 = 0.035619, or 3.56 %
Precision = 8.69 / Recall = 8,77 / Fi-score = 8.73 4 )
TP = 216, FP 98, FN 65, Average IoU 55.63 Precision = 8.70 / Recall = .79 / Fl-score = 8.74
: e 223, FP 96, FN 58, average IoU 56.40 %
confidence_threshold = 0.58
articulated_truck, AP = 86.02% (TP 75, FP 1)
single_unit_truck, AP = B84 28" (TP = 74, FP = 18) confidence_threshold = 0.5
'-qH:nvqu AP = 63.00% (TP = 51. FP = 22) articulated_truck, AP = 86,.13% (TP = 83, FP = 18)
' ' single_unit_truck, AP = 84.87% (TP = 72, FP = 22)
Precision = @.80 / Recall = 8.71 / Fi-score = 8.75 van, AP = 49 98" (TP = 12, FP = 6)
TP = 200, FP = 51, FN = 81, Average IoU = 64.57 % pickup AP = 76.33% (TP = 41, FP = 16)
Precision = 8.77 /7 Recall = .74 / Fl-score = 8.75
TP = 208, FP = 62, FN = 73, average IoU = 62.45 %
- . Pacific




Figure 2. Dataset v-2 performance results

Dataset v-3 performance results

Classification Results

Dataset v-4 performance results

confidence_threshold = 0.25 nAPS0 .50 = 0.743076, or 74.31 % confidenco threshold = 0,25 mAPEO.50 = 0.705120, or 70,51 %
articulated_truck, AP = 86.13% (TP = 88, FP = 27) nAPSG.60 = 0.705901, or 70.59 % articulated_truck_front, AP = 90.93% (TP = 61, FP = 23) mAPPO.60 = 0.675986, or 67.60 %
single_unit_truck, AP = 84 B7% (TP = 76, FP = 31) nAPS0.70 = 0.614002, or 61.40 % articulated_truck_rear, AP = 84.24% (TP = 29, FP = 12) mAP99.70 = 8.571626, or 57.16 %
= van, AP = 49.98% (TP = 13, FP = 8) nAP®0 .80 = 0.352933, or 35.29 % - single_unit_truck_front, AP = 78.12% (TP = 37, FP = 13) mAP#O.80 = 0.306439, or 30.64 %
pickup, AP = 76.33% (TP = 46, FP » 30) nAP®0.90 = 0.035619, or 3.56 % - single_unit_truck_rear, AP = 84 .53% (TP = 36, FP = 16) mAP20.90 = 0.032269, or 3.23 %
van_front, AP = 30.44% (TP = 7, FP = 10)
Precision = 8.70 / Recall = 2.79 / Fl-score = 8,74 van_rear, AP = 56.75% (TP » 3, FP » 4)
e 223, FP 96, FN 58, average IoU 56.48 % pickup_front, AP = 66.82% (TP = 16, FP = 12)
- pickup_rear, AP = 69.27% (TP = 25, FP = 7)
confidence threshold = 9.50 Precision = .69 / Recall = 8.76 / Fi-score = 8.72
articulated_truck, AP = 86.13% (TP = 83, FP = 18) TP » 214, FP » 97, FN » 67, average IoU » 56.09 %
sxngle,unlt,truck, AP = 84.87% (TP = 72, FP = 22)
van, AP = 49, 08% (TP = 12, FP = 6) confidence_threshold = 0.50
pickup, AP = 76.33% (TP = 41, FP = 16) articulated_truck_front, AP = 90.93% (TP = 68, FP = 17)
articulated_truck_rear, AP = 84.24% (TP = 26, FP = §5)
Precision = 8.77 / Recall = @.74 / Fl-score = 8.75 single_unit_truck_front, AP = 78.12% (TP = 33, FP = 11)
TP = 208, FP = 62, FN = 73, average IoU = 62.45 % single_unit_truck_rear, AP = 84.53% (TP = 34, FP = 11)
- van_front, AP = 30.44% (TP = 6, FP = 6)
- van_rear, AP = §9.75% (TP = 3, FP = 4)
pickup_front, AP = 66.82% (TP = 14, FP » 85)
pickup_rear, AP = 69.27% (TP = 23, FP » 6)
Precision = 8.75 / Recall = 8.71 / Fi-score = 0.73
TP = 199, FP = 65, FN = 82, average IoU = 61,76 %
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Image datasets

v2 v3 v4
# of images 1253 1253 1253
# of background images 300 300 300
Total # of images 1553 1553 1553
articulated_truck count 1029 1029
articulated_truck_front count 634
articulated_truck_rear count 395
single_unit_truck count 922 922
single_unit_truck_front count 501
single_unit_truck_rear count 421
lightweight count 866
van count 225
van_front count 128
van_rear count 97
pickup count 641
pickup_front count 253
pickup_rear count 388
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Future Work: using tracking on videos

-

CCTV Location

CCTV Truck
Observations

SORT? (tracking)

F YOLO! (detection)

Video

MIO-TCD3
_ dataset

Caltrans CCTV
Labeled dataset
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