Cost-Sharing Mechanisms for Ride-Sharing

Presenter
Dr. Maged M. Dessouky
Shichun Hu

Co-author
Dr. Nelson A. Uhan
Dr. Phebe Vayanos
MOTIVATION & BACKGROUND

- According to the U.S. Department of Transportation more than 10% of the GDP is related to transportation activity.

- The 2019 Urban Mobility report estimates the cost of congestion in the US to be on the order of $160 billion or $960 per commuter and 7 billion hours in delayed time.

- There exists a significant amount of unused capacity in the transportation network.

- Emerging information technologies have made available a wealth of real-time and dynamic data about traffic conditions:
 - GPS systems both in vehicles/phones
 - Interconnected data systems
 - On-board computers
OPPORTUNITIES for RIDE-SHARING

- Ride-sharing is a joint-trip of more than two participants that share a vehicle and requires coordination with respect to itineraries and time.

- Unorganized ride-sharing
 - Family, colleagues, neighbors
 - Hitchhiking
 - Slugging

- Organized ride-sharing
 - Matching of driver and rider
 - Can require
 - Service operators
 - Matching agencies
 - Cost-sharing systems (Carma, Flinc)
 - Revenue maximizing systems (Uber, Lyft, DiDi, etc)
IMPACT of TNCs on CONGESTION

- Shifts mode from environmentally friendly modes
 - 2018 Schaller Report – survey of TNC users – 60% would have used public transit, biked, or walked and 40% would have used either a taxi or personal vehicle
 - 2019 University of Kentucky Report – more than half of the 62% increase in weekday traffic delays between 2010 and 2016 due to Uber and Lyft trips

- Causes extra deadhead miles to pickup customers – up to 20% of the trip in SF and 50% in NYC (LA Times, 2019)

- Overall, Schaller reports that TNCs have added 5.7 billion VMT annually in total for nine large metro areas

- Less time driving searching for parking and car ownership
RIDE-SHARING CHALLENGES & RESEARCH

EXAMPLES: High-dimensional Matching

Ride preferences have dimensions
- Type of vehicle
- Flexibility of route
- Gender
- Cost
- Travel time

Software assistants can help with
- How to balance different criteria
- Multiple rides for a trip
- Transfer points
- Which routes to take to maximize possibility of ride-sharing

RESEARCH AREAS

High-dimensional Matching
Trust and Reputation
Mechanism Design
Routing
Network Congestion Effects and Computational Planning Tools
RIDE-SHARING CHALLENGES & RESEARCH

EXAMPLES: Trust and Reputation

Implementation of large scale word of mouth systems (reputation systems)
- Used in Carma, Carpool World, Goloco
 - New users
 - Bias toward positive comments (retaliation threat)

Escrow Mechanisms
- Intermediary that forwards payment and collects feedback
- Issues with incentive compatibility, efficiency.

Use of Social Networking Sites (SNS)
- Get to know the driver/rider
- ZimRide, Carma, Participate

RESEARCH AREAS

High-dimensional Matching
Trust and Reputation
Mechanism Design
Routing
Network Congestion Effects and Computational Planning Tools
OUR SETTING

- Share the ride costs fairly and without any subsidies.
- Make sure passengers have no reason to drop out after accepting their fare quote.
- Motivate passengers to submit requests early. This allows the system to maximize serviced passengers.
AN EXAMPLE

<table>
<thead>
<tr>
<th></th>
<th>k=1</th>
<th>k=2</th>
<th>k=3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distance</td>
<td>2</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Total Cost</td>
<td>20</td>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td>Marginal Cost</td>
<td>20</td>
<td>40</td>
<td>0</td>
</tr>
<tr>
<td>Shared Cost</td>
<td>?</td>
<td>?</td>
<td>?</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>k=1</th>
<th>k=2</th>
<th>k=3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distance</td>
<td>2</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Total Cost</td>
<td>20</td>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td>Marginal Cost</td>
<td>20</td>
<td>40</td>
<td>0</td>
</tr>
<tr>
<td>Fixed-Fare</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Incremental</td>
<td>20</td>
<td>40</td>
<td>0</td>
</tr>
<tr>
<td>Proportional</td>
<td>15</td>
<td>15</td>
<td>30</td>
</tr>
</tbody>
</table>
DESIRABLE PROPERTIES

ONLINE FAIRNESS

The costs per distance unit are monotonically nonincreasing (in passengers’ arrival order).

EX-POST INCENTIVE COMPATIBILITY

The best strategy of every passenger is to arrive truthfully (provided that all other passengers arrive truthfully and none change whether they accept).

IMMEDIATE RESPONSE

The passengers’ costs are monotonically nonincreasing (in time).

BUDGET BALANCE

The total cost is shared by all (serviced) passengers.

INDIVIDUAL RATIONALITY

The shared costs of passengers who accepted their initial quotes should never exceed their willingness-to-pay-level.
DESIRABLE PROPERTIES

<table>
<thead>
<tr>
<th></th>
<th>k=1</th>
<th>k=2</th>
<th>k=3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distance</td>
<td>2</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Total Cost</td>
<td>20</td>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td>Marginal Cost</td>
<td>20</td>
<td>40</td>
<td>0</td>
</tr>
<tr>
<td>Fixed-Fare</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Incremental</td>
<td>20</td>
<td>40</td>
<td>0</td>
</tr>
<tr>
<td>Proportional</td>
<td>15</td>
<td>15</td>
<td>30</td>
</tr>
</tbody>
</table>

- × Budget balance (e.g., Fixed-Fare)
- × Immediate response (e.g., Proportional)
- × Online fairness (e.g., Incremental)
POCS MECHANISM

- Proportional Online Cost-Sharing is a mechanism that provides low fare quotes to passengers directly after they submit ride requests and calculates their actual fares directly before their rides.

- POCS calculates shared-costs by:

\[
\text{cost}^t_{\pi(k)} := \alpha_{\pi(k)} \min_{k \leq j \leq t} \max_{1 \leq i \leq j} \frac{\sum_{l=i}^{j} mc_{\pi(l)}}{\sum_{l=i}^{j} \alpha_{\pi(l)}} \text{ccpa}_{\pi(i,j)}
\]

- POCS is a mix of
 - marginal cost-sharing (with respect to coalitions)
 - proportional cost-sharing (with respect to passengers within a coalition)
STATIC RIDE-SHARING MECHANISM DESIGN

THE FRAMEWORK

\[
\text{Total Cost} = \text{Driver’s Direct Cost } F + \text{Total Detour Cost}
\]

\[
\text{Total Shared Cost} = \text{Shared Cost of } F + \text{Shared Cost of the Total Detour}
\]

- **Any sub-mechanism**
- Propose 3 mechanisms

- **Any sub-mechanism**
- Use POCS for now

New Properties Identified

- **Reduced Burden for the First Passenger Property.** In the initial quote for the first passenger, its shared cost of the driver’s direct cost < F.
- **Fairness in Sharing Driver’s Cost Property.** The final share of the driver’s direct cost paid by the passengers should be proportional to their demand.

- The Ride-Sharing Mechanism Framework (RSMF) constrains the sub-mechanisms for sharing the cost of F to satisfy the new properties.
STATIC RIDE-SHARING MECHANISM DESIGN

THE MECHANISM IN DETAIL: DRIVER-OUT-OF-COALITION

Total Shared Cost = Shared Cost of F + Shared Cost of the Total Detour

HOW TO SHARE THE COST F

• Share proportionally to passengers’ demand
• Driver is out of the coalition in sharing F

Pros:
• all five original desirable properties are satisfied
• Fairness in Sharing Driver’s Cost property holds

Cons:
• fails to reduce the burden of the 1st passenger

Proposition 2: they contradict with each other under certain circumstances
STATIC RIDE-SHARING MECHANISM DESIGN

THE MECHANISM IN DETAIL

DRIVER-IN-COALITION

Total Shared Cost = Shared Cost of F + Shared Cost of the Total Detour

HOW TO SHARE THE COST F

• Share proportionally to passengers’ demand
• Driver is in the coalition in sharing F

• Pros:
 • all five original desirable properties are satisfied
 • Fairness in Sharing Driver’s Cost property holds
 • Reduced Burden for the First Passenger property holds

• Cons:
 • the driver’s cost is not fully recovered
STATIC RIDE-SHARING MECHANISM DESIGN

THE MECHANISM IN DETAIL

PASSENGERS PREDICTING

Total Shared Cost = Shared Cost of F + Shared Cost of the Total Detour

HOW TO SHARE THE COST F

- Predict the total number of passengers by adapting a robust optimization method (Bandi et al. 2015, 2018)
- A passenger’s share of the driver’s direct cost = \(F \times \frac{\text{passenger’s demand}}{\text{total demand of the estimated passengers}} \)

Pros:
- four of the five original desirable properties are satisfied
- Fairness in Sharing Driver’s Cost property holds
- Reduced Burden for the First Passenger property holds

Cons:
- the Budget Balance property is lost (increase prediction accuracy can mitigate this issue)
WHAT’S DIFFERENT?

- Drivers and passengers have a limit of how much time they want to spend in the vehicle.
- We use an inconvenience cost function to measure delays past their time window.
STATIC RIDE-SHARING MECHANISM DESIGN

RIDE-SHARING with TIME CONSTRAINTS

\[
\text{Total Shared Cost} = \text{Shared Cost of F} + \text{Shared Cost of the Total Detour} + \text{Discount Component}
\]

Process Flow Diagram

Discounts are received whenever inconveniences occur.

How to determine the discount amount?
STATIC RIDE-SHARING MECHANISM DESIGN

RIDE-SHARING with TIME CONSTRAINTS

Basic Discount

The new passenger is responsible for all inconvenience costs of previous passengers

- **Pros:**
 - three of the five original desirable properties are satisfied
 - Fairness in Sharing Driver’s Cost property holds
 - Reduced Burden for the First Passenger property holds
 - Passengers are not responsible for the inconveniences costs that are not caused by themselves

- **Cons:**
 - the Online Fairness property is lost
 - the Ex-Post Incentive Compatibility property is lost

Inconvenience Cost Based Discount

Passengers form coalitions to share the inconvenience costs

- **Pros:**
 - four of the five original desirable properties are satisfied
 - Fairness in Sharing Driver’s Cost property holds
 - Reduced Burden for the First Passenger property holds

- **Cons:**
 - the Online Fairness property is lost
 - passengers with high tolerance for time may not get any discounts while being responsible for part of the total inconvenience cost
 - requires more memory and time in simulation
EXPERIMENT RESULT

MECHANISM WITHOUT DISCOUNT

SETTINGS

- Randomly generated data set on 40*40 grid
- Each replication has 1 vehicle and 4 passengers
- Cost per mile is $1
- Clustered spatial pattern, origins (destinations) are generated within a 10*10 grid at the bottom left (top right) corner
- Results are averaged over 100 replications

COMPARE

- Driver-out-of-coalition (DooC) mechanism
- Driver-in-coalition (DiC) mechanism
- Passengers Prediction (PP) mechanism
EXPERIMENT RESULT

MECHANISM WITHOUT DISCOUNT

Table 1 Average Performance Measures for the Different Mechanisms

<table>
<thead>
<tr>
<th>Mechanisms</th>
<th>DooC</th>
<th>DiC</th>
<th>PP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Cost of the Operation</td>
<td>69.61</td>
<td>69.61</td>
<td>69.61</td>
</tr>
<tr>
<td>Driver’s Direct Trip Cost</td>
<td>42.46</td>
<td>42.46</td>
<td>42.46</td>
</tr>
<tr>
<td>Average Passenger Cost</td>
<td>17.40</td>
<td>15.26</td>
<td>17.17</td>
</tr>
<tr>
<td>% of Absolute Budget Balance Error</td>
<td>0</td>
<td>0</td>
<td>2.2</td>
</tr>
<tr>
<td>% of Driver’s Cost Recovered</td>
<td>100</td>
<td>80.01</td>
<td>97.79</td>
</tr>
<tr>
<td>% of Reduced Burden for the First Passenger</td>
<td>0</td>
<td>39.91</td>
<td>60.05</td>
</tr>
</tbody>
</table>

INSIGHTS

- Supports theoretical analysis
- DiC produces the lowest average passenger cost
- DooC recovers all of the driver’s cost
- PP balances the driver and passengers’ costs

Choose PP mechanism for sharing F for further experiments in comparing the discount methods
EXPERIMENT RESULT

MECHANISM WITH DISCOUNT

Small Dataset

- low probability in passengers having inconvenience costs

Go with Large Dataset

- the problem becomes too large to solve optimally

Use **heuristics** for quick solution with good quality

- the Ex-Post Incentive Compatibility is lost

The effect of the loss of the property is tested in the paper
EXPERIMENT RESULT

MECHANISM WITH DISCOUNT

DATASET

- Road sensor data by LA Metro (archived by USC researchers)
- LA county region including 33 sensors on 7 freeways
- Generate origin-destination (OD) probability matrix using the sensor data
- OD generated randomly using the OD probability matrix
EXPERIMENT RESULT

MECHANISM WITH DISCOUNT

GENERAL SETTINGS

- Average vehicle speed: 36 mph
- Each passenger has different linear function value of in-vehicle time
- Maximum in-vehicle time is set to be either 1.5 or 2 times their direct travel time
- Each passenger has a willingness-to-pay-level of 1.5, 2 or 3 times (W-factor) the passengers’ direct cost
- The system has 1,000 passenger requests and 300 or 500 ride-sharing drivers
- Results are averaged over 100 replications
EXPERIMENT RESULT

MECHANISM WITH DISCOUNT

Table 4: Average Performance Measures for the Discount Methods in Scenario 1

<table>
<thead>
<tr>
<th>Mechanisms</th>
<th>No Discount</th>
<th>ICBBD</th>
<th>Basic Discount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Driver’s Direct Trip Cost</td>
<td>7.33</td>
<td>7.33</td>
<td>7.33</td>
</tr>
<tr>
<td>Total Operation Cost per Vehicle</td>
<td>9.54</td>
<td>9.82</td>
<td>9.65</td>
</tr>
<tr>
<td>Shared Cost Per Passenger</td>
<td>3.10</td>
<td>3.33</td>
<td>3.19</td>
</tr>
<tr>
<td>Shared Cost Per Driver</td>
<td>2.72</td>
<td>2.48</td>
<td>2.48</td>
</tr>
<tr>
<td>% of Requests Served</td>
<td>74.67</td>
<td>71.86</td>
<td>75.76</td>
</tr>
<tr>
<td># of No-Passenger Vehicles</td>
<td>87.34</td>
<td>46.23</td>
<td>62.03</td>
</tr>
</tbody>
</table>

Table 5: Average Performance Measures for the Discount Methods in Scenario 2

<table>
<thead>
<tr>
<th>Mechanisms</th>
<th>No Discount</th>
<th>ICBBD</th>
<th>Basic Discount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Driver’s Direct Trip Cost</td>
<td>7.30</td>
<td>7.30</td>
<td>7.30</td>
</tr>
<tr>
<td>Total Operation Cost per Vehicle</td>
<td>11.27</td>
<td>11.87</td>
<td>11.35</td>
</tr>
<tr>
<td>Shared Cost Per Passenger</td>
<td>3.10</td>
<td>3.40</td>
<td>3.15</td>
</tr>
<tr>
<td>Shared Cost Per Driver</td>
<td>2.75</td>
<td>2.43</td>
<td>2.42</td>
</tr>
<tr>
<td>% of Requests Served</td>
<td>91.89</td>
<td>86.40</td>
<td>90.95</td>
</tr>
<tr>
<td># of No-Passenger Vehicles</td>
<td>85.7</td>
<td>29.49</td>
<td>51.54</td>
</tr>
</tbody>
</table>
EXPERIMENT RESULT

MECHANISM WITH DISCOUNT

Table 4 Average Performance Measures for the Discount Methods in Scenario 1

<table>
<thead>
<tr>
<th>Mechanisms</th>
<th>No Discount</th>
<th>ICBD</th>
<th>Basic Discount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Driver’s Direct Trip Cost</td>
<td>7.33</td>
<td>7.33</td>
<td>7.33</td>
</tr>
<tr>
<td>Total Operation Cost per Vehicle</td>
<td>9.54</td>
<td>9.82</td>
<td>9.65</td>
</tr>
<tr>
<td>Shared Cost Per Passenger</td>
<td>3.10</td>
<td>3.33</td>
<td>3.19</td>
</tr>
<tr>
<td>Shared Cost Per Driver</td>
<td>2.72</td>
<td>2.48</td>
<td>2.48</td>
</tr>
<tr>
<td>% of Requests Served</td>
<td>74.67</td>
<td>71.86</td>
<td>75.76</td>
</tr>
<tr>
<td># of No-Passenger Vehicles</td>
<td>87.34</td>
<td>46.23</td>
<td>62.03</td>
</tr>
</tbody>
</table>

Table 6 Average Performance Measures for the Discount Methods in Scenario 3

<table>
<thead>
<tr>
<th>Mechanisms</th>
<th>No Discount</th>
<th>ICBD</th>
<th>Basic Discount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Driver’s Direct Trip Cost</td>
<td>7.33</td>
<td>7.33</td>
<td>7.33</td>
</tr>
<tr>
<td>Total Operation Cost per Vehicle</td>
<td>8.74</td>
<td>9.17</td>
<td>8.88</td>
</tr>
<tr>
<td>Shared Cost Per Passenger</td>
<td>3.16</td>
<td>3.46</td>
<td>3.28</td>
</tr>
<tr>
<td>Shared Cost Per Driver</td>
<td>3.70</td>
<td>3.24</td>
<td>3.38</td>
</tr>
<tr>
<td>% of Requests Served</td>
<td>90.89</td>
<td>90.67</td>
<td>91.63</td>
</tr>
<tr>
<td># of No-Passenger Vehicles</td>
<td>208.29</td>
<td>115.97</td>
<td>115.00</td>
</tr>
</tbody>
</table>
The effect of willingness-to-pay-level on passengers’ cost and drivers’ cost
EXPERIMENT RESULT

MECHANISM WITH DISCOUNT

The effect of willingness-to-pay-level on % served and # of no-passenger vehicles
CONCLUSION

WHAT HAVE WE DONE

○ Developed RSMF for designing cost-sharing mechanisms in ride-sharing
 ○ Modular
 ○ Caters to different requirements

○ Proposed 3 mechanisms in detail
 ○ PP mechanism balances driver cost with passenger cost

○ Developed 2 discount methods
 ○ BD outperforms ICBD in shared cost per passenger and number of requests served
 ○ ICBD leads to a more distributed system

FUTURE DIRECTIONS...

• Develop cost-sharing mechanisms for the dynamic case
• Develop a dynamic ride-sharing routing method
• Combine the cost-sharing mechanisms and the routing method in the dynamic case and test their performances

