Mobility interventions to protect supply chain workers during pandemics

Presenter: Kevin Gingerich
Co-authors: Elanakayon Annalingam, Erik Nevland, Peter Park

2022 I-NUF Conference
May 26, 2022
Objectives

Truck Parking (rest stop) supply
- Identify long-haul HCV rest stop parking locations
- Classify HCV parking locations
- Estimate total (legal) parking supply

Connect rest stops with distribution centers
- Identify major distribution centers (DCs)
- Link observed trips between rest stops and DCs
- Prioritize rest stops for resources during a pandemic
From closed rest areas to drive-thru testing limitations, truck drivers face rough road during coronavirus pandemic

By Mary Wisniewski
Chicago Tribune • Jun 24, 2020 at 2:10 pm
Background

- **Fatigue** is cited as a contributing factor to freight collisions.

- **Hours of Service (HOS) Laws** have been enacted with the intent of reducing driver fatigue.

- **Electronic Logging Device** mandates:
 - The United States began mandating **ELDs** in 2017
 - Canada implemented a similar **ELD** mandate in 2021; enforcement expected in June 2022

Caledon illegal trucking operator hit with $1M fine

By Ryan Rumbolt
Published December 10, 2021 at 5:09 pm
Identify Parking Locations

• **Truck GPS data** for 2014 was used to identify long-haul HCV stop locations:
 • ~27 million stop events
 • ~3.3 million trips in North America

• Rest stops are identified when a vehicle is stopped for 2 hours or longer in the middle of a trip
Parking Activities: Region of Peel
Classification Scheme

Notable Truck Parking Characteristics:

1. **Legality** – is a parking space legal or unauthorized?
2. **Accessibility** – is a parking space open or limited access?
3. **Ownership** – is a parking space publicly or privately owned?
4. **Dedication** – is parking the dedicated function of the location?
5. **Roadside** – is the parking space a roadside?
Classification Scheme

Authorized Parking Locations

1. Public Rest Areas and Gas Stations
2. Weigh Stations
3. Open Access HCV Parking
4. Limited Access HCV Parking
5. Authorized Roadside Parking

Unauthorized Parking Locations

6. Unauthorized Roadside Parking
7. Unauthorized Highway Ramp Parking
8. Unauthorized Parking on Public Property
9. Unauthorized Parking on Private Property
Locations where trucks park:
- Parcel contains SIC '5541' firm:
 - TRUE: Public Rest Areas and Gas Stations
 - FALSE: Parcel contains weigh station:
 - TRUE: Weigh Stations
 - FALSE:
 - Parcel area (m²) / parcel road length (m):
 - ≤50: Area is zoned to allow truck parking
 - ≥50:
 - Parcel area (m²) / total building footprint area (m²):
 - ≤10: Area is zoned as 'Airport'
 - ≥10:
 - Parcel contains >100m of highway ramp:
 - TRUE: Unauthorized Highway Ramp Parking
 - FALSE:
 - Parcel contains SIC '42' firm:
 - TRUE: Open Access HCV Parking
 - FALSE: Limited Access HCV Parking
 - FALSE:
 - Truck parking tickets have been issued in parcel:
 - TRUE: Unauthorized Parking on Public Property
 - FALSE:
 - Unauthorized Parking on Private Property
 - Legal Roadside Parking
 - FALSE:
 - Parcel area (m²) / parcel road length (m):
 - ≤50:
 - Area is zoned to allow truck parking:
 - TRUE:
 - Land use indicates public ownership:
 - TRUE:
 - Unauthorized Parking on Public Property
 - FALSE:
 - Unauthorized Parking on Private Property
 - FALSE:
 - Truck parking tickets have been issued in parcel:
 - TRUE: Unauthorized Roadside Parking
 - FALSE:
 - Unauthorized Roadside Parking
HCV Parking Supply

![Image Source: Modified from Google (2019)]
Parking Supply – Manual Counting

- Public Rest Areas and Gas Stations
- Open Access HCV Parking
- Limited Access HCV Parking

Number of HCV Parking Spaces Counted

Frequency
Parking Supply – Model Results

<table>
<thead>
<tr>
<th>Variable</th>
<th>Negative Binomial</th>
<th>Zero-Inflated Negative Binomial</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Model 1</td>
<td>Model 2</td>
</tr>
<tr>
<td>Intercept</td>
<td>1.49</td>
<td>2.27</td>
</tr>
<tr>
<td>Perimeter<sub>i</sub></td>
<td>1.96</td>
<td>2.19</td>
</tr>
<tr>
<td>Rural<sub>i</sub></td>
<td>1.48</td>
<td>-0.35</td>
</tr>
<tr>
<td>Perimeter<sub>i</sub> × Rural<sub>i</sub></td>
<td>-2.63</td>
<td>-1.91</td>
</tr>
<tr>
<td>Area<sub>paved,i</sub></td>
<td>53.04</td>
<td>82.90</td>
</tr>
<tr>
<td>Perimeter<sub>i</sub> × Area<sub>paved,i</sub></td>
<td>-49.46</td>
<td>-49.46</td>
</tr>
<tr>
<td>Class<sub>open,i</sub></td>
<td>1.02</td>
<td>0.60</td>
</tr>
<tr>
<td>Class<sub>rest,i</sub></td>
<td>-0.12</td>
<td>-0.44</td>
</tr>
<tr>
<td>IND<sub>59,i</sub></td>
<td>-2.13</td>
<td>-2.04</td>
</tr>
</tbody>
</table>

Zero-Inflated Variables

<table>
<thead>
<tr>
<th>Variable</th>
<th>Model 1</th>
<th>Model 2</th>
<th>Model 3</th>
<th>Model 4</th>
<th>Model 5</th>
<th>Model 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>0.14</td>
<td>0.32</td>
<td>0.923</td>
<td>0.11</td>
<td>0.744</td>
<td>0.744</td>
</tr>
<tr>
<td>Area<sub>paved,i</sub></td>
<td>-163.07</td>
<td>-124.72</td>
<td>0.005</td>
<td>-156.99</td>
<td>0.004</td>
<td>0.004</td>
</tr>
<tr>
<td>Perimeter<sub>i</sub> × Area<sub>paved,i</sub></td>
<td>68.40</td>
<td>69.31</td>
<td>37.76</td>
<td>37.76</td>
<td>37.76</td>
<td>37.76</td>
</tr>
</tbody>
</table>

Data

<table>
<thead>
<tr>
<th>Removed Outliers</th>
<th>3</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>127</td>
<td>129</td>
<td>128</td>
</tr>
<tr>
<td>k</td>
<td>5</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>df</td>
<td>121</td>
<td>123</td>
<td>121</td>
</tr>
</tbody>
</table>

(***), (**), (*) represent statistical significance to 99%, 95%, or 90% respectively
Parking Supply – Model Estimates

<table>
<thead>
<tr>
<th>TAZ</th>
<th>City of Mississauga Estimated Supply</th>
<th>TAZ</th>
<th>City of Brampton Estimated Supply</th>
<th>TAZ</th>
<th>Town of Caledon Estimated Supply</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>736</td>
<td>1</td>
<td>16</td>
<td>1</td>
<td>523</td>
</tr>
<tr>
<td>2</td>
<td>1,242</td>
<td>2</td>
<td>792</td>
<td>2</td>
<td>216</td>
</tr>
<tr>
<td>3</td>
<td>187</td>
<td>3</td>
<td>3,931</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>165</td>
<td>4</td>
<td>0</td>
<td>4</td>
<td>7,423</td>
</tr>
<tr>
<td>5</td>
<td>19,588</td>
<td>5</td>
<td>195</td>
<td>5</td>
<td>886</td>
</tr>
<tr>
<td>6</td>
<td>259</td>
<td>6</td>
<td>939</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>90</td>
<td>7</td>
<td>973</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>136</td>
<td>8</td>
<td>10,067</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>449</td>
<td>9</td>
<td>37</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>10</td>
<td>645</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>1,206</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total Estimated Supply:
- City of Mississauga: 24,058
- City of Brampton: 17,594
- Town of Caledon: 9,049

Region of Peel Total: 50,701
Prioritization of Rest Stops

• GPS data is used next to identify trips between overnight rest stops and distribution centers (DCs)
GPS Data Statistics

• GPS Data in the Region of Peel
 ➢ obtained from Transport Canada and the Smart Freight Centre

<table>
<thead>
<tr>
<th>Description</th>
<th>1<sup>st</sup> dataset received</th>
<th>2<sup>nd</sup> dataset received</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time Frame</td>
<td>February 1, 2020 to July 31, 2020</td>
<td>January 1, 2019 to Dec 31, 2019</td>
</tr>
<tr>
<td>Raw data file size</td>
<td>109,372,246 data records</td>
<td>50,415,327</td>
</tr>
<tr>
<td>Data fields</td>
<td>Truck ID, date/time, latitude, longitude</td>
<td>Truck ID, date/time, latitude, longitude</td>
</tr>
<tr>
<td>Study Area</td>
<td>Region of Peel</td>
<td>Region of Peel</td>
</tr>
<tr>
<td>Number of unique trucks</td>
<td>117,537</td>
<td>43,736</td>
</tr>
<tr>
<td>(based on power ID)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

• Trips identified for trucks:
 ➢ resting overnight for at least 2 hours: 9 pm to 6 am period
 ➢ Traveling to a distribution center (DC) in the morning
Identifying Distribution Centres (DCs)

<table>
<thead>
<tr>
<th>Source</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>McMaster Institute of Transportation & Logistics report</td>
<td>A list of firms that attract or generated significant freight activity in the Greater Toronto-Hamilton Area.</td>
</tr>
<tr>
<td></td>
<td>(MITL, 2014)</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>DMTI Enhanced Points of Interest</td>
<td>Businesses filtered by Standard Industrial Classification (SIC) codes using SIC4225 (i.e., warehouses).</td>
</tr>
<tr>
<td>3</td>
<td>ATRI GPS data</td>
<td>Locations with a high concentration of parking were individually verified.</td>
</tr>
</tbody>
</table>
DC Locations
Optimization

• P-Median used to determine impact of available open/closed rest stops

• Assign closest open rest stop to the DC for each trip

• Travel cost based on AM morning travel times

• Demand based on observed trips to DCs

Minimize $\sum_i \sum_j D_j c_{ij} x_{ij}$

Subject to:

• $\sum_i x_{ij} = 1 \quad \forall j$

• $\sum_i Y_i = p$

• $x_{ij} \leq Y_i \quad \forall i, j$

• $x_{ij} \in \{0,1\} \quad \forall i, j$

• $Y_i \in \{0,1\} \quad \forall i, j$
Trip Rest Stops to DCs

• How does opening more rest areas help change travel time between major freight facilities?

P = 2; Two available rest stops for parking

P = 10; Ten available rest stops for parking
Travel Time Results

<table>
<thead>
<tr>
<th>Cumulative Percentage of trips</th>
<th>Travel Time in Minutes</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00%</td>
<td>Travel Time Results</td>
</tr>
<tr>
<td>10.00%</td>
<td></td>
</tr>
<tr>
<td>20.00%</td>
<td></td>
</tr>
<tr>
<td>30.00%</td>
<td></td>
</tr>
<tr>
<td>40.00%</td>
<td></td>
</tr>
<tr>
<td>50.00%</td>
<td></td>
</tr>
<tr>
<td>60.00%</td>
<td></td>
</tr>
<tr>
<td>70.00%</td>
<td></td>
</tr>
<tr>
<td>80.00%</td>
<td></td>
</tr>
<tr>
<td>90.00%</td>
<td></td>
</tr>
<tr>
<td>100.00%</td>
<td></td>
</tr>
</tbody>
</table>

- 2 Open Rest Areas
- 6 Open Rest Areas
- 10 Open Rest Areas
Conclusions – Next Steps

• Optimization testing is still in progress

• Optimization can benefit from:
 ➢ Expanded data beyond sample values
 ➢ Capacity constraints based on parking supply
 ➢ Substitution patterns with other potential parking locations

• Further research expected on illegal truck parking
Acknowledgements

• NSERC
• Region of Peel
• Transport Canada
• Additional data providers