Socioeconomic Dimensions of Resilience to Seaport and Highway Transportation Network Disruptions

Dan Wei, Adam Rose, Chen Zhenhua, Eyup Koc, and Lucio Soibelman

University of Southern California

May 26, 2022
9th International Urban Freight Conference
Introduction

• Economic impacts of seaport and highway transportation network disruptions can be extensive well beyond on-site operations through supply-chain effects.

• Research gaps: 1) resilience considerations; 2) spatial distribution and networked nature of transportation systems; 3) income distribution impacts

• Objective of this study:
 • Develop a synergetic approach linking a regional transportation model, a multi-regional computable general equilibrium (CGE) model, and a multi-sector income distribution matrix to analyze socioeconomic impacts of port and transportation network disruptions and effectiveness of resilience tactics
 • Apply the integrated transportation and socioeconomic analysis model to a simulated earthquake scenario
Comprehensive Assessment of Transportation Resilience in Metropolitan Areas

- Characterize Hazard Occurrences
 - Determine Loads
- Extract Bridge Geometry
- Model Bridges and Simulate Hazard Response
- Derive Fragility Functions
- Estimate Functionality Losses
- Component-level Resilience
 - Component (e.g., bridge, tunnel) restoration curves

- Model Network Versions
 - Initialization
 - Network Skimming
- Trip Generation
- Trip Distribution
- Time of Day
- Mode Choice
- System-level (Network) Resilience
 - Network Functionality Indicators (e.g., total travel distance/time, accessibility)

- Macroeconomic Impact Analysis
 - Run TERM Multi-Regional CGE Model + Economic Resilience Analysis Framework
 - Quantify Aggregate Impact (GDP, Employment)

- Distribution Impact Analysis
 - Multi-Sector Income Distribution Matrix (MSIDM)
 - Income Distribution (Changes in Gini Coefficient and/or Atkinson Index between Base Case and individual resilience cases)

- Regional Economic Resilience
 - GDP, Employment
 - Environmental Justice
Case Study
Bridge Closures (Day 1)
Case Study
System Level Resilience
(Delay)

147 bridges closed,
approx. 690,000 hours/day additional delay in L.A. County,
730,000 hours/day additional delay in Study Region
Economic Resilience – Basic Considerations

• Static:
 – General Definition: Ability of a system to *maintain function* when shocked.
 – Econ Definition: *Efficient use of remaining resources* at a given point in time to produce as much as possible.

• Dynamic
 – General Definition: Ability of a system to *recover*.
 – Econ Definition: *Efficient* use of resources *over time* for investment in repair and reconstruction, including expediting the process & adapting to change.

 ◦ *Metric*: *averted losses as % of potential losses*
Economic Resilience Tactics to Port and Transportation Network Disruptions

<table>
<thead>
<tr>
<th>Supplier-Side Resilience Options</th>
<th>Customer-Side Resilience Options</th>
</tr>
</thead>
<tbody>
<tr>
<td>Excess capacity. Utilization of unused capacity at undamaged terminals</td>
<td>Use of inventories. Stockpiling critical inputs for the production of goods and services by firms</td>
</tr>
<tr>
<td>Cargo prioritization. Altering schedules for unloading or loading based on the characteristics or value of the cargo</td>
<td>Conservation. Finding ways to utilize less of disrupted imported goods in production processes</td>
</tr>
<tr>
<td>Ship re-routing. Sending ships to other ports</td>
<td>Input substitution. Utilizing similar goods in the production process to those whose production has been disrupted</td>
</tr>
<tr>
<td>Export diversion for import use. Sequestering goods intended for export to substitute for unavailability of imports or domestically-produced goods</td>
<td>Import substitution. Bringing in goods and services in short supply from outside the region through land routes</td>
</tr>
<tr>
<td>Effective management. Improvements in decision-making and expertise that enhance functionality</td>
<td>Production relocation. Shifting production to branch plants</td>
</tr>
<tr>
<td>Production recapture. Working extra shifts or over-time to clear up backlog of vessels after resumption of port operation</td>
<td>Production recapture. Making up lost production by working extra shifts/overtime after port re-opens</td>
</tr>
<tr>
<td>Effective road infrastructure asset management. Improvements in decision-making and expertise that enhance functionality and recovery</td>
<td>Effective travel demand management. Establishing measures to decrease travel demand during recovery</td>
</tr>
</tbody>
</table>
TERM CGE Model

• Bottom-up multi-regional CGE model (Monash U.)
• Based on detailed regional & sectoral accounts
• Consists of 4 regions: 3-County LA Region, 9-County Bay Area, Rest of CA, and Rest of U.S.
• Divides the economy into 97 sectors
• CES production functions (allows for substitution)
• Explicit trade and transport margins
Simulation Results – Combined Disruptions/Damages

(in millions 2019 dollars and percent reduction from pre-disaster levels)

<table>
<thead>
<tr>
<th></th>
<th>LA Metro</th>
<th>SF Metro</th>
<th>Rest of CA</th>
<th>Rest of US</th>
<th>US Total</th>
<th>Loss Reduction Potential (for LA)</th>
<th>Loss Reduction Potential (for US)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base Case (no resilience)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Loss</td>
<td>-24,208</td>
<td>-828</td>
<td>-855</td>
<td>-4,296</td>
<td>-30,187</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reduction</td>
<td>-3.00%</td>
<td>-0.17%</td>
<td>-0.15%</td>
<td>-0.03%</td>
<td>-0.22%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Combined Resilience Case</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Loss</td>
<td>-14,200</td>
<td>-12</td>
<td>-167</td>
<td>1,571</td>
<td>-12,808</td>
<td>41.34%</td>
<td>57.57%</td>
</tr>
<tr>
<td>Reduction</td>
<td>-1.76%</td>
<td>0.00%</td>
<td>-0.03%</td>
<td>0.01%</td>
<td>-0.09%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Income Distribution Impacts

- Compare Gini coefficients between the scenario cases and baseline level

<table>
<thead>
<tr>
<th>Disruption Type</th>
<th>Baseline</th>
<th>Scenario Gini Coefficient</th>
<th>Change in Gini Coefficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>Port Disruption_Base Case</td>
<td>0.465478</td>
<td>0.465614</td>
<td>0.000136</td>
</tr>
<tr>
<td>Transportation Cost Increase_Base Case</td>
<td>0.465478</td>
<td>0.465478</td>
<td>0.000000</td>
</tr>
<tr>
<td>Building Damage_Base Case</td>
<td>0.465478</td>
<td>0.463904</td>
<td>-0.001574</td>
</tr>
<tr>
<td>Combined Disruptions_Base Case</td>
<td>0.465478</td>
<td>0.464041</td>
<td>-0.001438</td>
</tr>
<tr>
<td>Port Disruption_Resilience Case</td>
<td>0.465478</td>
<td>0.465473</td>
<td>-0.000006</td>
</tr>
<tr>
<td>Transportation Cost Increase_Resilience Case</td>
<td>0.465478</td>
<td>0.465478</td>
<td>0.000000</td>
</tr>
<tr>
<td>Building Damage_Resilience Case</td>
<td>0.465478</td>
<td>0.464243</td>
<td>-0.001235</td>
</tr>
<tr>
<td>Combined Disruptions_Resilience Case</td>
<td>0.465478</td>
<td>0.464238</td>
<td>-0.001240</td>
</tr>
</tbody>
</table>

- Income losses born disproportionately by lower-income groups in Port Disruption Base Case
- Port resilience tactics help reduce income inequality
- Income losses born disproportionately by middle- & higher-income groups in the other two cases.
Conclusion

• Develop and apply an integrated transportation-socioeconomic impact model to analyze aggregate economic and income distributional impacts of port and highway transportation disruptions.

• Resilience tactics can potentially reduce GDP losses by 41% and 58% at the regional and national levels, respectively.

• Effective port resilience tactics: ship-rerouting, inventory use, input substitution, and production recapture.

• Income losses from port disruptions are born slightly disproportionately by lower- and middle-income groups; the distributional impacts are the opposite for transportation cost increase and building stock damages.

• Port resilience tactics help reduce the inequality in income distribution.
Questions and Comments?

Dan Wei,
University of Southern California
danwei@usc.edu