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The thing we don’t like but have to face 
everyday – Road Traffic!



But we can make smarter turn with real 
time traffic! 

Google Maps showing optimized route from USC to Orange County 



How exactly does Google Maps/Garmin/TomTom know how 
clogged the highway is on your way out to home or office?

The traffic information comes from a variety of sources:

• Commercial traffic data providers (INRIX, Tele Atlas, HERE, ..)

• Departments of Transportation 

• State agency – Caltrans

Raw data is collected from: 

• Mobile users (Google Maps)

• Road sensors

• Traffic cameras, and even through aircraft

This information is compiled and delivered via radio frequency 
(FM/HD Radio™ or satellite) to your navigation system. 



Road Sensors: Inductive Loop

• Existing traffic/vehicle detection is determined with “Inductive Loop” 
technologies

• These loops generate a magnetic field that operates at frequencies typically 
less than 1kHz

• Large rectangular loops (4’ x 8’, 6’ x 8’, 6’x 12’ are used to detect larger 
vehicles 

• Small size loops (i.e. 2’ x 5’, 3’ x 6’, 6’ x6’) are used to detect smaller vehicles, 
such as motorcycles and automobiles

Physical Representation Loop Detector Schematic

Source: US DoT Federal Highway Administration



Road Sensors: Inductive Loop

Source: US DoT Federal Highway Administration



Inductive Loop Pros & Cons

Advantages
• Detects ferrous objects precisely 
• Typically immune from environmental effects such 

as weather, temperature, a terrain variations  

Disadvantages
• Expensive to install and maintain ($$$)
• Relatively significant power usage for the 

generation of the magnetic field.
• Large area usage (greater than 10 sq.ft.)



Proposed Solution For Smart Road



Proposed VS Traditional Inductive Loop Based System



Anisotropic Mangeto-Resistive 
Sensors (AMR) IC Sensor

AMR Sensor IC (Honeywell HMC5883L 3-axis 
magnetometer- 3mm in size )
• Wheatstone bridge variable resistor 

network that changes resistance w.r.t. 
changes to the magnetic field

• Provides the same advantages to inductive 
loop technologies without the power and 
area disadvantages

• Power consumption extremely low 
(~200uA at lower sampling rates )

Microcontroller (CC430F5137 )
• Low power modes (LPM) for sleep 

between computational and 
communication operations

• Single package μproc and RF core for low 
area wireless transmissions

Source: Honeywell

Source: Texas Instruments



Machine Learning Based Vehicle 
Classification

• Useful when the sets of data is large enough that 
human observations for extracting patterns in 
data become impractical.

• Typically associated with the field of data mining
• Pattern recognition based on a set of rules

General Idea: 
• Collect vehicle data crossing 

the AMR sensor
• Utilize ML tools to generate a 

model for classification



Our Lab Testbed Setup

• 7 different RC Vehicles with a variety of similar and different 
attributes

• 7 ft straight track for each vehicle to make passes
• 2 sensors roughly 4’ apart to take gather readings and 

classify



Data Collection for supervised machine 
learning  

• We collected data for each of the 7 vehicles 
across 350 runs over 2 sensors

• Total : 700 samples, 100/class for training

Why a decision-tree based algorithm?

• Simple and computationally efficient tree 

• Simplicity of implementation in software



Implementation Flowchart
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Adaptive Baseline

• Zeroing the background 
environmental magnetic 
field by offset

• Allows for the reuse of 
the same vehicle 
detection and 
classification algorithm in 
multiple environments

• Noise removal can be 
implemented at this 
stage
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Threshold Detection

• Once a vehicle 
passes the threshold 
the detection flag 
triggers and a certain 
number of samples 
are recorded for 
processing

Magnitude with vehicle overhead
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Features Collected from Vehicles

Interesting Features:

• Min: minimum value of an axis during the detection 
window

• Max: maximum value of an axis in the window

• Mean: average of all axis values in the window

• Range: Maximum – Minimum

Using a 3-axis sensor this results in 12 unique features

These Features are very simple to calculate and compute



Example Plot and Feature Extraction
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Example Car Data

Similar Sizes but Different Signatures!
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Machine Learning: decision tree 
learning (J48)

J48 is the open source Java 
implementation of C4.5/ID3 
developed by John Quinlan

Inputs: multiple features 
corresponding to a single 
classifier
Note: higher # samples per classifier results in a 
more accurate output tree

Output: a decision tree with 
the highest classification rate 
given the features 

Source: University of Waikato, WEKA



WEKA output

Fast!

4 Features Selected Accuracy
Rate



Graphical Tree

Node
Num.

Information Gain Attribute
Best Attribute

Min Y Max X Mean Z Range Z

1 0.9527 0.8002 0.9031 0.9868 Range Z

2 0.3339 0.9707 0.3978 0.3846 Max X

3 0.3060 0.8411 0.2155 0.3068 Max X

4 0 0.1735 0 0.0379 Max X

5 0.7108 0 0.7108 0.0570 Min Y

6 0.9317 0.1864 0.7574 0.4976 Min Y

7 0.2047 0.1601 0.3717 0.4249 Range Z

8 0.1386 0.4467 0.8798 0.0084 Mean Z

9 0.5724 0.3189 0.9625 0.8676 Mean Z

10 0 0 0.0066 0.6627 Range Z
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Brute Force Search for Best Results

• The output tree doesn’t always generate the 
best results given a large number of features

• Due to fast processing time to generate the 
output tree, we can easily calculate all 
combinations (n choose k) 

(
𝑛
𝑘

) or 𝑛𝐶𝑘

• We use n=2,3,4 where k=12



Feature Performance
2 features (66 combinations):

3 features (220 combinations):

4 features (495 combinations):

.

Comb# Classification% Features

64 94% minx maxx

58 93% minx rangex

30 93% maxx rangey

60 91% minx meany

Comb# Classification% Features

219 98% minx miny maxx

200 98% minx maxx maxz

194 97.8571% minx maxx rangez

57 97.8571% maxx rangey rangez

149 97.7143% miny maxx rangez

Comb# Classification% Features

479 98.8571% minx miny maxx rangez

270 98.8571% miny maxx meanz rangez

390 98.7143% minx maxx meanz rangez

78 98.7143% maxx meany meanz rangez



Best Results Simulated vs. Testbed

Simulated Results Actual Results:

Simulated results match real world testing values 
very closely.

Note: minx results are lower due to clipping

Cross-Validation Percentages

Number of Features (Attributes) Accuracy

Three Features (maxx, rangey, rangez) 97.86%

Three Features (miny, maxx, rangez) 97.71%

Four Features (minx, miny, maxx, rangez) 98.86%

Four Features (miny, maxx, meanz, rangez) 98.86%

Real world Classification Percentages

Number of Features (Attributes) Real-world

Three Features (maxx, rangey, rangez) 98.57%

Three Features (miny, maxx, rangez) 97.38%

Four Features (minx, miny, maxx, rangez) 90.24%

Four Features (miny, maxx, meanz, rangez) 99.05%



Energy Scavenging Using Piezoelectric 
Sensors

• Mechanical to Electrical 
energy conversion

• Proper implementation 
can help in continuous 
operation of wireless 
sensors

• Almost 70% of the 
overall efficiency of the 
energy scavenging 
system depends on 
Piezoelectric sensors

• Applications include 
consumer electronics, 
automotive, health, 
WSN, etc.

Pressure generated by tires of cars 
on the piezoelectric sensors

Generated power is stored in batteries



Energy Scavenging System
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Lab Prototype of Energy Scavenging System



Advanced Energy Scavenging System

• 3 layers instead of 1 layer/ Smaller size and less implementation cost
• Increase probability of the sensors being pressed in every tap
• Increase number of sensors being pressed in a single tap



Energy Scavenging  System

 1 AA rechargeable battery can be charged in 
10 -12 hours with vehicles and pedestrians 
passing over the sensors in every 5 seconds 
using the designed hardware

 The sensors placed on crosswalks can increase 
the average number of taps

 Charging rate would be better if the efficiency 
and the number of sensors used are increased



Designed Smart Traffic Sensing Node 

• Size: 2 ½” x 1 ½” x ¾” (with AA battery pack)

• Dimensions will change depending on the 
battery pack used in future implementations



Final Remarks

The system described in this presentation can 
replace current inductive loop technologies with:

– Maintain traffic/vehicle detection capabilities

– Additional features such as vehicle classification

– Lower power consumption

– Lower physical area utilization

In addition, many classifiers can be used at high 
accuracy rates compared to other methods 
utilizing solely novel features.
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Questions?


