Development of Micro Wireless Sensor Platforms for Collecting Data of Passenger-Freight Interactions

Mohammad Mozumdar

<u>**Graduate Students:**</u> Kyle Ying, Alireza Ameri, Ankit Trivedi, Dilip Ravindra, Darshan Patel, Varun Sharma, Ashutosh Parhad

> Department of Electrical Engineering California State University Long Beach

The thing we don't like but have to face everyday – Road Traffic!

But we can make smarter turn with real time traffic!

Google Maps showing optimized route from USC to Orange County

How exactly does Google Maps/Garmin/TomTom know how clogged the highway is on your way out to home or office?

The traffic information comes from a variety of sources:

- Commercial traffic data providers (INRIX, Tele Atlas, HERE, ..)
- Departments of Transportation
- State agency Caltrans

Raw data is collected from:

- Mobile users (Google Maps)
- <u>Road sensors</u>
- Traffic cameras, and even through aircraft

This information is compiled and delivered via radio frequency (FM/HD Radio™ or satellite) to your navigation system.

Road Sensors: Inductive Loop

Source: US DoT Federal Highway Administration

Physical Representation

Loop Detector Schematic

- Existing traffic/vehicle detection is determined with "Inductive Loop" technologies
- These loops generate a magnetic field that operates at frequencies typically less than 1kHz
- Large rectangular loops (4' x 8', 6' x 8', 6'x 12' are used to detect larger vehicles
- Small size loops (i.e. 2' x 5', 3' x 6', 6' x6') are used to detect smaller vehicles, such as motorcycles and automobiles

Road Sensors: Inductive Loop

(b) Perturbation of Earth's magnetic field by a ferrous metal vehicle

Source: US DoT Federal Highway Administration

Inductive Loop Pros & Cons

Advantages

- Detects ferrous objects precisely
- Typically immune from environmental effects such as weather, temperature, a terrain variations

Disadvantages

- Expensive to install and maintain (\$\$\$)
- Relatively significant power usage for the generation of the magnetic field.
- Large area usage (greater than 10 sq.ft.)

Proposed Solution For Smart Road

Proposed VS Traditional Inductive Loop Based System

Anisotropic Mangeto-Resistive Sensors (AMR) IC Sensor

AMR Sensor IC (Honeywell HMC5883L3-axis magnetometer-3mm in size **)**

- Wheatstone bridge variable resistor network that changes resistance w.r.t. changes to the magnetic field
- Provides the same advantages to inductive loop technologies without the power and area disadvantages
- Power consumption extremely low (~200uA at lower sampling rates)

Microcontroller (CC430F5137)

- Low power modes (LPM) for sleep between computational and communication operations
- Single package µproc and RF core for low area wireless transmissions

Machine Learning Based Vehicle Classification

- Useful when the sets of data is large enough that human observations for extracting patterns in data become impractical.
- Typically associated with the field of data mining
- Pattern recognition based on a set of rules

General Idea:

- Collect vehicle data crossing the AMR sensor
- Utilize ML tools to generate a model for classification

Our Lab Testbed Setup

- 7 different RC Vehicles with a variety of similar and different attributes
- 7 ft straight track for each vehicle to make passes
- 2 sensors roughly 4' apart to take gather readings and classify

Data Collection for supervised machine learning

- We collected data for each of the 7 vehicles across 350 runs over 2 sensors
- Total : 700 samples, 100/class for training

Why a decision-tree based algorithm?

- Simple and computationally efficient tree
- Simplicity of implementation in software

Implementation Flowchart

Adaptive Baseline

- Zeroing the background environmental magnetic field by offset
- Allows for the reuse of the same vehicle detection and classification algorithm in multiple environments
- Noise removal can be implemented at this stage

Threshold Detection

 Once a vehicle passes the threshold the detection flag triggers and a certain number of samples are recorded for processing

Features Collected from Vehicles

Interesting Features:

- Min: minimum value of an axis during the detection window
- Max: maximum value of an axis in the window
- Mean: average of all axis values in the window
- Range: Maximum Minimum

Using a 3-axis sensor this results in 12 unique features

These Features are very simple to calculate and compute

Example Plot and Feature Extraction

Time (seconds)

MinX=-1097 MinY = -256MinZ=-834 MaxX=1054 MaxY=267 MaxZ=1011 MeanX=4.01 MeanY=17.13 MeanZ=7.48 RangeX=2151 RangeY=523 RangeZ=1845

Magnetic Field Change (uT)

Example Car Data

Similar Sizes but Different Signatures!

Machine Learning: decision tree learning (J48)

J48 is the open source Java implementation of C4.5/ID3 developed by John Quinlan

Inputs: multiple features corresponding to a single classifier

Note: higher # samples per classifier results in a more accurate output tree

Output: a decision tree with the highest classification rate given the features

Source: University of Waikato, WEKA

WEKA output

J48 pruned tree

=== Stratified cross-validation ===

=== Summary ===

4 Features Selected range z <= 2187 max x <= 419.4: 1 (100.0) max x > 419.4 max x <= 791.6 | max x <= 757.8: 5 (94.0)</pre> | max x > 757.8 | | min y <= -118.2: 2 (4.0) | min y > -118.2: 5 (6.0) $\max x > 791.6$; 2 (96.0) range z > 2187min y <= -1103.8 range z <= 3725: 6 (60.0) range z > 3725 mean z <= -168.58: 4 (101.0/1.0) | mean z > -168.58: 6 (36.0) min_y > -1103.8 mean z <= -116.47 range z <= 3796: 6 (3.0) range_z > 3796: 7 (100.0) mean z > -116.47: 3 (100.0)

```
Number of Leaves : 11
```

Size of the tree : 21

Time taken to build model: 0.03 seconds

Fast!

=== C	onfu	usion	Mat	rix	===					
a	b	с	d	e	f	g		<	c.	lassified as
100	0	0	0	0	0	0	I	a	=	1
0	99	0	0	1	0	0	I	b	=	2
0	0	100	0	0	0	0	I	с	=	3
0	0	0	97	0	3	0	I	d	=	4
0	1	1	0	98	0	0	I	e	=	5
0	0	0	1	0	99	0	I	f	=	6
0	0	1	0	0	0	99	I	g	=	7

Graphical Tree

Node		Bost Attribute			
Num.	Min Y	Max X	Mean Z	Range Z	Best Allfibule
1	0.9527	0.8002	0.9031	0.9868	Range Z
2	0.3339	0.9707	0.3978	0.3846	Max X
3	0.3060	0.8411	0.2155	0.3068	Max X
4	0	0.1735	0	0.0379	Max X
5	0.7108	0	0.7108	0.0570	Min Y
6	0.9317	0.1864	0.7574	0.4976	Min Y
7	0.2047	0.1601	0.3717	0.4249	Range Z
8	0.1386	0.4467	0.8798	0.0084	Mean Z
9	0.5724	0.3189	0.9625	0.8676	Mean Z
10	0	0	0.0066	0.6627	Range Z

Brute Force Search for Best Results

- The output tree doesn't always generate the best results given a large number of features
- Due to fast processing time to generate the output tree, we can easily calculate all combinations (n choose k)

$$\binom{n}{k}$$
 or ${}_{n}C_{k}$

• We use *n=2,3,4* where *k=12*

Feature Performance

2 features (66 combinations):	Comb#	Classification%	Features			
	64	94%	minx maxx			
	58	93%	minx rangex			
	30	93%	maxx rangey			
	60	91%	minx meany			
3 features (220 combinations):	Comb#	Classification%	Features			
	219	98%	minx miny maxx			
	200	98%	minx maxx maxz			
	194	97.8571%	minx maxx rangez			
	57	97.8571%	maxx rangey rangez			
	149	97.7143%	miny maxx rangez			
A features (AOE combinations):						
4 leatures (495 combinations).	Comb#	Classification%	Features			
	479	98.8571%	minx miny maxx rangez			
	270	98.8571%	miny maxx meanz rangez			
	390	98.7143%	minx maxx meanz rangez			
	78	98.7143%	maxx meany meanz rangez			

Best Results Simulated vs. Testbed

Simulated Results

Actual Results:

Cross-Validation Percentages				
Number of Features (Attributes)	Accuracy			
Three Features (maxx, rangey, rangez)	97.86%			
Three Features (miny, maxx, rangez)	97.71%			
Four Features (minx, miny, maxx, rangez)	98.86%			
Four Features (miny, maxx, meanz, rangez)	98.86%			

Real world Classification Percentages	
Number of Features (Attributes)	Real-world
Three Features (maxx, rangey, rangez)	98.57%
Three Features (miny, maxx, rangez)	97.38%
Four Features (minx, miny, maxx, rangez)	90.24%
Four Features (miny, maxx, meanz, rangez)	99.05%

Simulated results match real world testing values very closely.

Note: minx results are lower due to clipping

Energy Scavenging Using Piezoelectric Sensors

- Mechanical to Electrical energy conversion
- Proper implementation can help in continuous operation of wireless sensors
- Almost 70% of the overall efficiency of the energy scavenging system depends on Piezoelectric sensors
- Applications include consumer electronics, automotive, health, WSN, etc.

Pressure generated by tires of cars on the piezoelectric sensors

Generated power is stored in batteries

Energy Scavenging System

Lab Prototype of Energy Scavenging System

Advanced Energy Scavenging System

- 3 layers instead of 1 layer/Smaller size and less implementation cost
- Increase probability of the sensors being pressed in every tap
- Increase number of sensors being pressed in a single tap

Energy Scavenging System

- 1 AA rechargeable battery can be charged in 10 -12 hours with vehicles and pedestrians passing over the sensors in every 5 seconds using the designed hardware
- The sensors placed on crosswalks can increase the average number of taps
- Charging rate would be better if the efficiency and the number of sensors used are increased

Designed Smart Traffic Sensing Node

- Size: 2 ½" x 1 ½" x ¾" (with AA battery pack)
- Dimensions will change depending on the battery pack used in future implementations

Final Remarks

The system described in this presentation can replace current inductive loop technologies with:

- Maintain traffic/vehicle detection capabilities
- Additional features such as vehicle classification
- Lower power consumption
- Lower physical area utilization

In addition, many classifiers can be used at high accuracy rates compared to other methods utilizing solely novel features.

Related Publications

- K. Ying, A. Ameri, A. Trivedi, D. Ravindra, D. Patel, M. Mozumdar," Decision Treebased Machine Learning Algorithm for In-node Vehicle Classification", Proceedings of IEEE Green Energy and Systems Conference, Long Beach, November 2015, USA
- V. Sharma, A. Parhad, M. Mozumdar, "Energy Scavenging Using Piezoelectric Sensors to Power in Pavement Intelligence Vehicle Detection Systems", METRANS International Urban Freight Conference, Long Beach, 2015

Questions?