

Shortest Path and Scheduling with Driving Hours and Parking Availability Constraints

Filipe Vital Petros Ioannou

Motivation

Too many trusted not anough northing anabes...

- Many drivers report issues to find truck parking at night.
- Less than 50% of truck stops report operating overcapacity at night.

Too many trucks going for the same rest areas at the same time!!!

Driving

Illegal

Parking

Previous Work

- Working hours regulations
- Parking restricted to certain locations
- Scheduling (fixed path)
- Routing (choose order of clients)

+ Parking availability

Truck Driver Scheduling

• Route and path are given

Vehicle Routing Problem

 Paths between any 2 locations are given

Our Objective

- Include parking availability
- Optimize path between clients

Problem

Objective

Minimize Trip Duration

- Send a single truck from A to B;
- Location B has 1 or more delivery time-windows;
- Can stop only at rest areas;
- Schedule must comply with the regulation;
- Rest areas with a scheduled stop must be available at the time of arrival.

Constraints

Structural

- Network Topology
- Departure time

Client Time-windows

Restrict arrival time

- 1

Required Visit/Stop

Regulation

- Elapsed time
- Accumulated driving time
- Minimum rest duration

Parking Availability Time-windows

- If stopping, restrict arrival time
- If stopping, must rest

Optional Visit/Stop

Parking Availability

Time-windows

- start when the parking lot is expected to become available
- end when the parking lot is expected to become full
- matter only when the driver needs to stop
- early arrival is not allowed.

Shortest Path with Resource Constraints

Resources

- current time (η^0)
- elapsed time since trip start (η^s)
- elapsed time since last *break* (η^b)
- elapsed time since last daily rest (η^r)
- ullet accumulated driving time since last daily rest (ψ^r)
- accumulated on-duty time since last weekly rest (ψ^w)

Road Network

Resource Extension Functions

	f^d	f^s	\int_{a}^{b}	f^r	f^{w}	$\int f^0$
$\hat{\eta}_{k+1}^{0} =$						
$\hat{\eta}_{k+1}^{s} =$						
$\hat{\eta}_{k+1}^b =$						
$\hat{\eta}^r_{k+1} =$						
$\hat{\psi}_{k+1}^r =$						
$\hat{\psi}_{k+1}^{w} =$						

d: Driving,

s: Service,

b: Break,

r: Daily rest,

w: Weekly rest,

0: Departure

Label Correcting Algorithm

Label Correcting Algorithm

• Label Treatment Order

• Decisions to Test

• Label Improvement

• A*

Dominance Check

Experiment

Results - Single Client

Results – Two Clients

Conclusion

- Parking restrictions greatly affect the minimum cost path and schedule between two locations;
- Under limited parking availability, it is cost-effective to consider alternative paths;
- The label correcting method presented generates paths and schedules that are feasible in practice;
- It can be used as a post-processing step to refine the path for a given route or directly integrated in a vehicle routing algorithm.

Future Work

Thank You!

- Stochastic Parking Availability
- Extend to Battery Electric Trucks (energy consumption, charging stations)
- Include speed optimization
- Include time-dependent travel times
- Multiple vehicles routing
- Vehicle platooning

