

Analyzing the operational and cost impacts of pick-up points on e-commerce's last mile distribution: the case of São Paulo, Brazil

Claudio B. da Cunha

Rhandal Masteguim

MIT Center for Transportation & Logistics

International Urban Freight Conference October 16-18, 2019 Hotel Maya, Long Beach, CA

E-commerce

• One of the fastest growing marketing channels for consumers

Some challenges

- Free shipping 24h delivery same day delivery
- Return policies Delivery failed
- Consumers behavior => more frequent deliveries.
- Home deliveries is one the crucial aspects in terms of costs and level of service
 - $\circ~$ Up to 28% of a product's total transportation cost.

Black Friday on track for record online spending

Black Friday (Nov 23): 6.7 bi USD

AND IT 7

INTL

s in

SEARCH Q

MARKETS

Singles Day (Nov 11): 30.8 bi USD

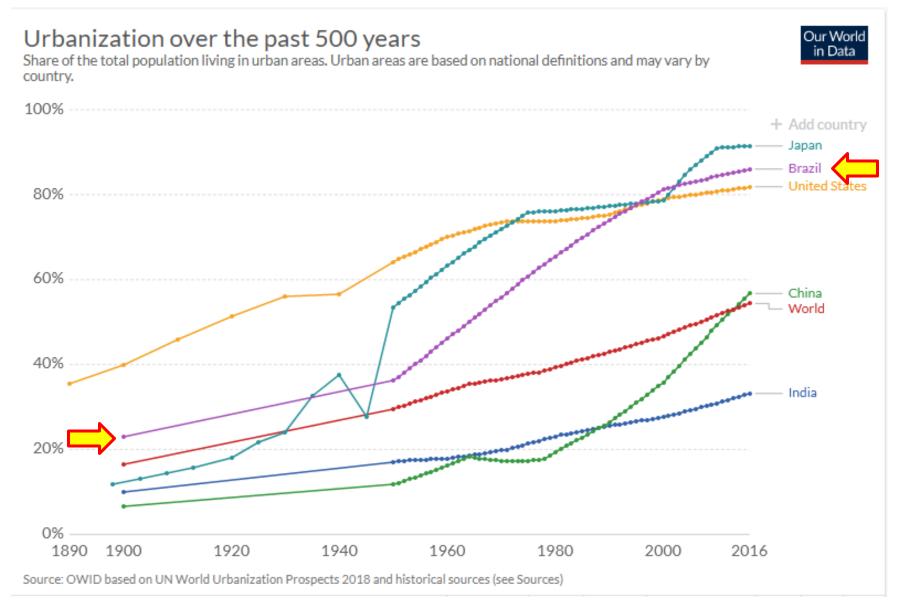
E-COMMER

-onte: https://www.cnbc.com/2018/12/04/how-chinas-singles-day-became-the-worlds-biggest-shopping-holiday.html

China — not the US. Here's how Singles Day became No. 1

Growing urbanization

1900 | 2 out of every 10 people lived in an urban area 4 out of every 10 people lived in an urban area 1990 2010 5 out of every 10 people lived in an urban area


2030 6 out of every 10 people will live in an urban area

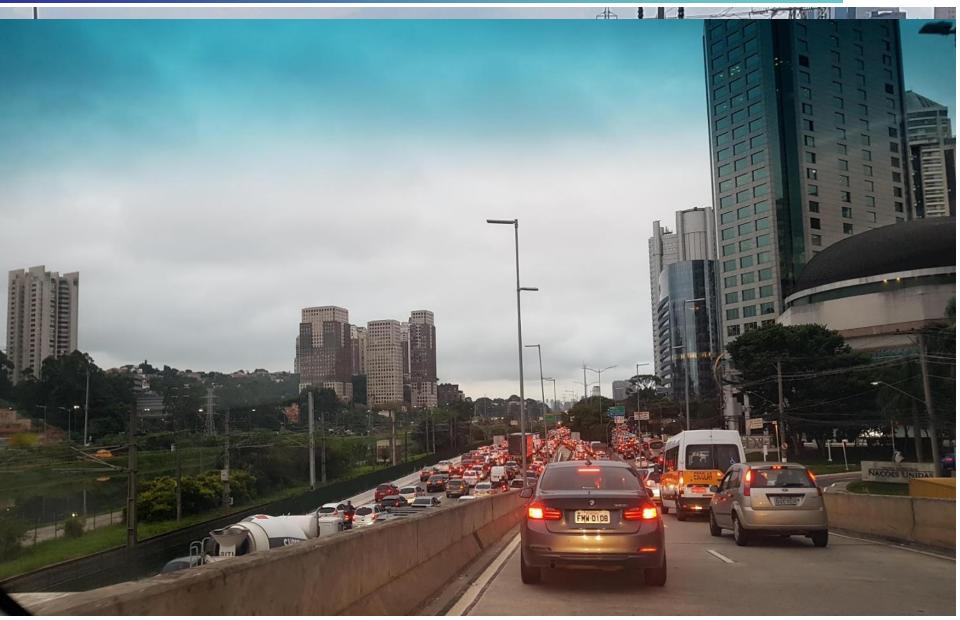
Late ate

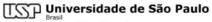
Intel of State

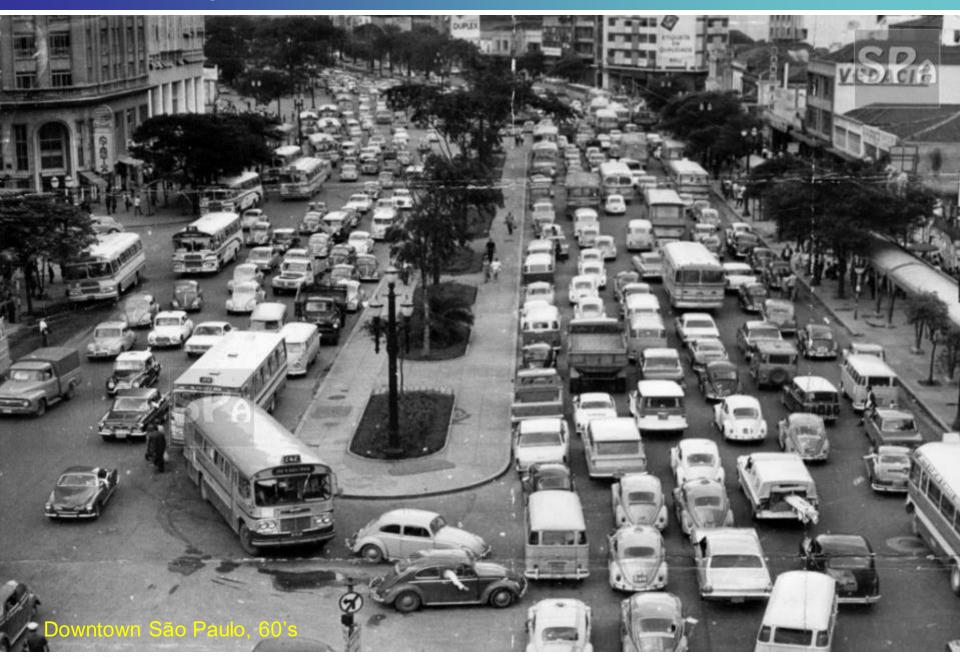
2050 7 out of every 10 people will live in an urban area

Urbanization growth

Fonte https://www.ldinslata.org/urbanization


São Paulo, Brazil


21 million inhabitants


▶ 10% of the country's population

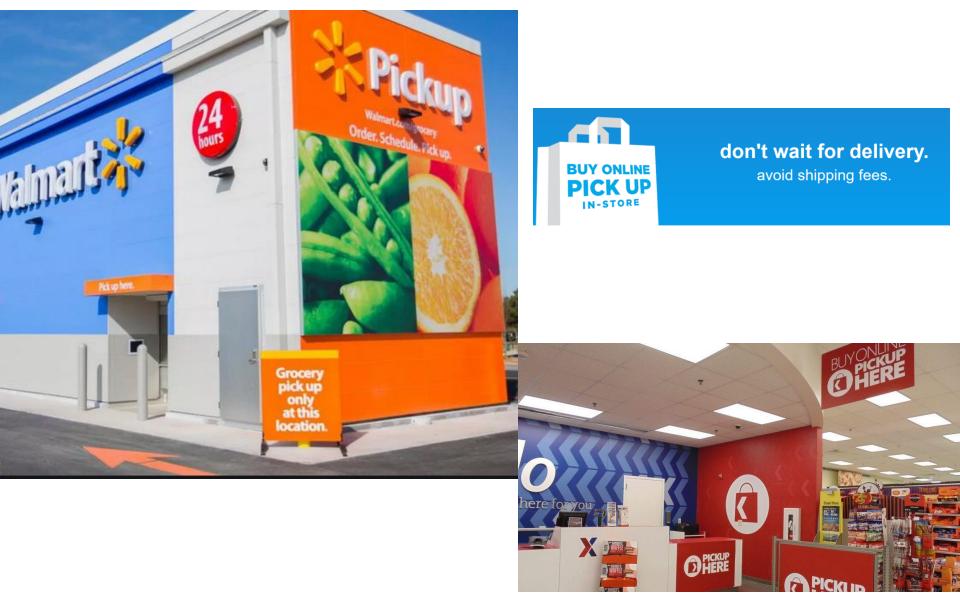
Traffic congestion



Not exactly new....

The b

	BBC	Q Sign in	News	Sport	Reel	Worklife	Travel	Future
boom of package	NEW	'S						
delivery	Home Video				Science	Stories		nment & Arts
	Business	Market Data Global	Trade	Companie	s Ent	repreneursh	ip Tecl	nology of Bi
								Share


Online shopping is skyrocketing. So what are cities going to do about it?

Curbside increasing complexiy

Pick-up in store

The role of sellers

OCTOBER 10, 2019 Amazon Has Added Three Million Sellers Since 2017

Amazon Squeezes Sellers to Optimize Warehouse Space

English Edition Video October 12, 2019 Print Edition Video

Home World U.S. Politics Economy Business Tech Markets Opinion Life & Arts Real Estate WSJ. Magazine

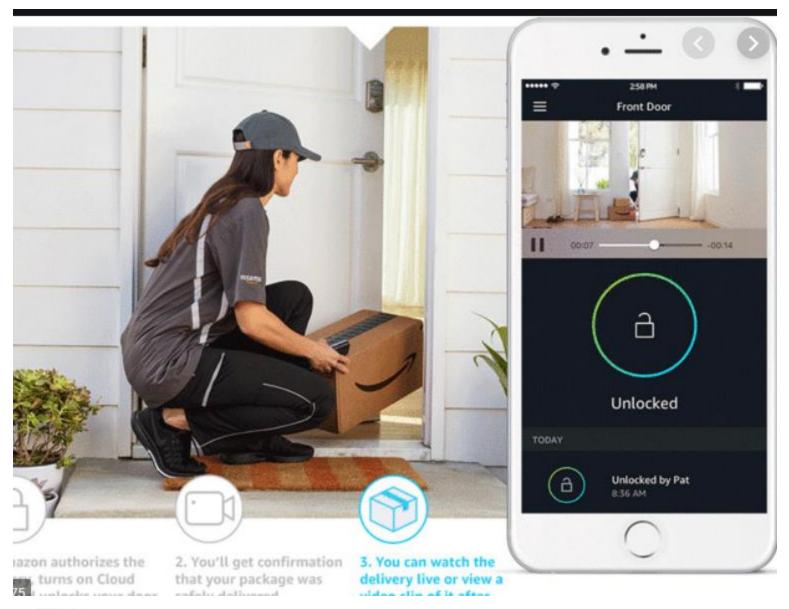
CFO JOURNAL

Argentinian Company Wants to Build the Amazon of Latin America

Buenos Aires-based e-commerce company is working to strengthen its foothold in the region and fend off Amazon and Alibaba

Related literature

INTERNATIONAL JOURNAL OF TRANSPORT ECONOMICS ISSN 0391-8440 · E-ISSN 1724-2185 VOL. XLIV · NO. 2 · JUNE 2017


THE E-COMMERCE PARCEL DELIVERY MARKET AND THE IMPLICATIONS OF HOME B2C DELIVERIES VS PICK-UP POINTS

Ivan Dario Cardenas* · Wouter Dewulf** Thierry Vanelslander*** · Christophe Smet**** Joris Beckers****

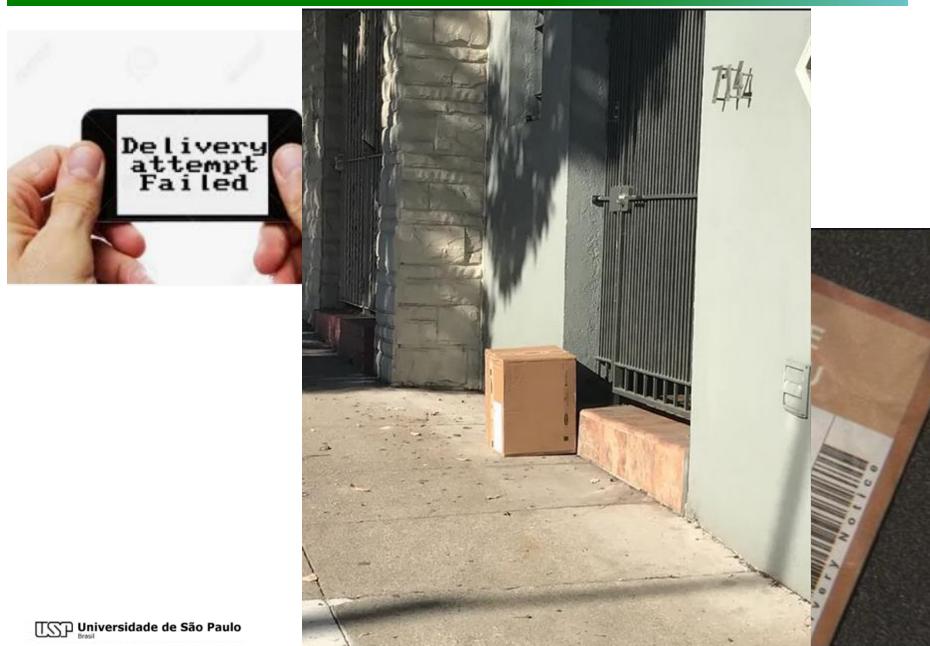
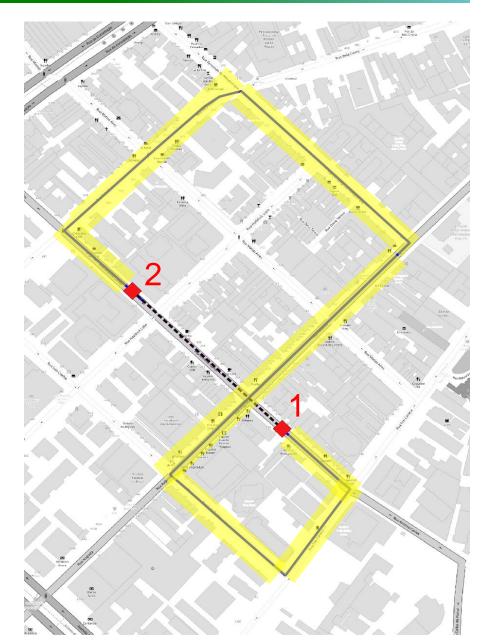
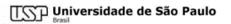

Distribution Costs Drivers	Handling Costs Drivers
 Failed Deliveries Time Windows Returns Density Consolidation Vehicles Congestion 	 Failed Deliveries Returns Consolidation Peak Seasons

FIGURE 3. Main cost drivers in the e-commerce parcel delivery market. Own composition, adapted from (Gevaers 2013).

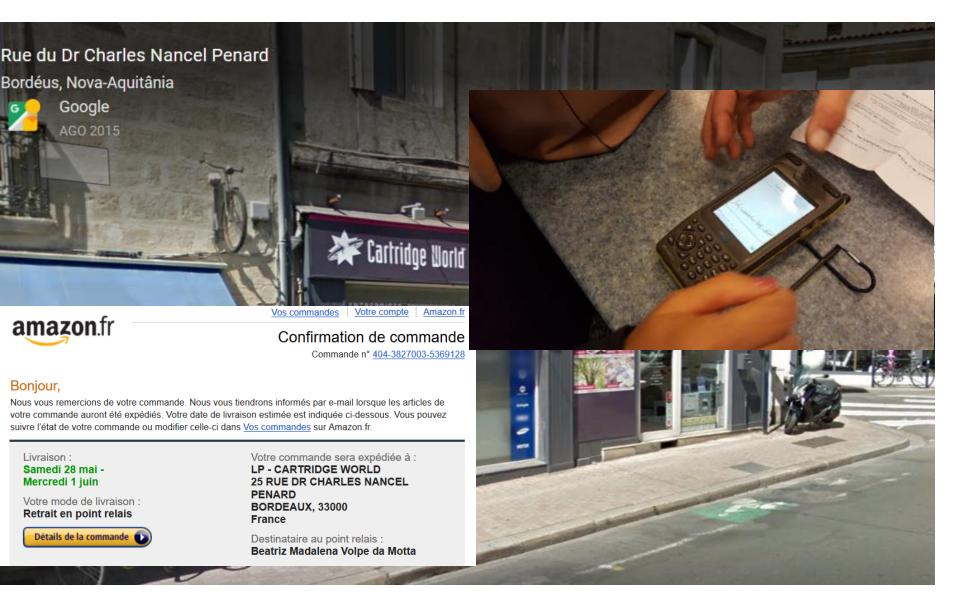
Unattended home delivery

Failed deliveries to home addresses




Consequences of failed deliveries

More mileage


Less deliveries per vehicle

More vehicles

Pick-up points (non-automated)

Automated Parcel Stations (APS) - Lockers

It works in a very straighforward way

amazonlocker	Enter your code	
	Or scan your package barcode below	

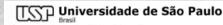
Potential benefits of pick-up points

- Promote consolidation of final deliveries
- Increase the number of successful first-time deliveries
- Increase vehicle efficiency
 - 🕂 stops
 - **—** mileage
- Reduce congestion and emissions (GHG)
- Reduce last mile distribution costs

Research questions

- In what conditions are PP/APS more efficient than home deliveries for B2C e-commerce? (operational)
 - Demand density
 - Distance and willingness to retrieve package (customer)
 - Location of the depot from where delivery vehicles depart
- How many vehicles and VMT can be reduced?
- ► How many PP/APS should there be?
- Dedicated routes to delivery to PP/APS?

Our approach

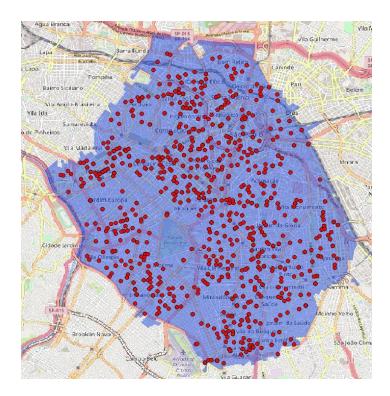

Select a central urban área (high population density)

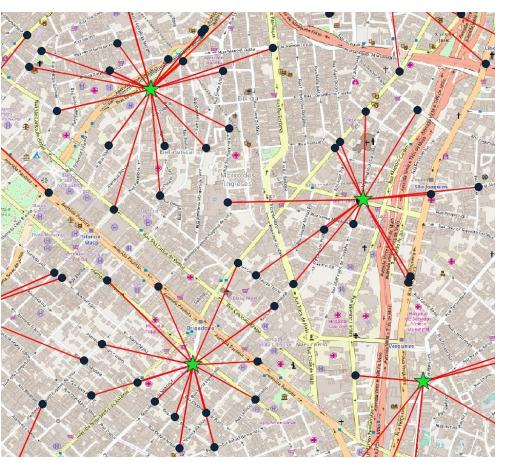
Randomly generate daily home deliveries

Determine the number and best locations for PP/APS

- Set covering MIP optimization formulation
- Willingness to walk: 0.5 mile (10 min), ³/₄ mile (15 min)
- Existing commercial establishments: gas stations, supermarkets, malls,...

Solve fleet size and mix vehicle routing problem




Selected rea and delivery locations

- Based on real data from a major online shopping retailer
- Central region of the megacity of São Paulo, Brazil
 - Area: 93.2 km²
 - Population: 1.2 million
 - Density: 12,560 people/km².

- Deliveries
 - Item average weight:
 4.3 kg (10 pounds)

PP/APS Location Model

Objective Function:

min $\sum x_j$

Set Covering Model

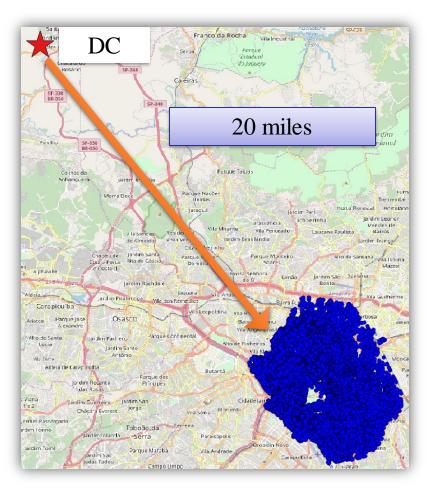
Parameters:

- i = customer
- j = locker candidate

 $d = \max$ distance that the customer is willing

- $a_{ij} = \begin{cases} 1, \text{ if the customer } \boldsymbol{i} \text{ is in less than} \\ \boldsymbol{d} \text{ km from candidate } \boldsymbol{j} \\ 0, \text{ otherwise} \end{cases}$

Variables:


 $x_j = \begin{cases} 1, \text{ if the candidate } \boldsymbol{j} \text{ will be used} \\ 0, \text{ otherwise} \end{cases}$

Constraints: $\sum_{i=1}^{n} a_{ij} x_j \ge 1, \forall = 1, \dots n$

$$x_j \in \{0,1\}, j = 1,2, \dots n$$

Location of the DC

 Impact of different locations (distances)

What is the best time of vehicle to use

	Motorcycle	Light Van	Van
Fixed Cost (BRL/day)	123.05	168.59	207.16
Variable Cost (BRL/km)	0.15	0.44	0.43
Weight capacity (kg)	30	650	1.620
Maximum route length (h)	10	10	10
Fixed time (per stop)	00:01:30	00:04:30	00:06:00
Variable time (per package)	00:00:36	00:00:36	00:00:36
Speed (km/h)	35	25	15

Results: costs, distances and fleet

	Total cost (\$)		Total distance (km)		Required Fleet				
% of PP deliveries	0.5 miles	3/4 miles	Independent routes	0.5 miles	3/4 miles	Independent routes	0.5 miles	3/4 miles	Independent routes
0%	4009		2045			2 Vans 16 Light vans			
20%	4030	3997	4454	2006	2017	2045	3 Vans 15 Light vans	2 Vans 16 Light vans	2 Vans 18 Light vans
40%	3772	3609	4077	1888	1816	2289	2 Vans 15 Light vans	3 Vans 13 Light vans	3 Vans 15 Light vans
60%	3377	3265	3657	1672	1545	2113	3 Vans 12 Light vans	6 Vans 8 Light vans	4 Vans 12 Light vans
80%	2911	2614	3080	1337	1214	1840	8 Vans 4 Light vans	6 Vans 5 Light vans	6 Vans 7 Light vans
100%	2027	2005	2027	860	809	860	8 Vans	8 Vans	8 Vans

Results: average times and vehicle utilization

	Avg route time (h)			Avg veh occupation vol (%)		
% of PP deliveries	0.5 miles	3/4 miles	Independent routes	0.5 miles	3/4 miles	Independent routes
0%	9.5			90.3%		
20%	9.2	9.1	8.9	86.3%	88.5%	82.7%
40%	8.9	9.2	9.2	94.7%	93.8%	86.1%
60%	8.8	9	8.8	96,0%	85.7%	85.5%
80%	9.2	9	9	84,0%	94.7%	80.6%
100%	8.9	7.9	8.9	93,0%	93,0%	93,0%

Concluding remarks

PP/APS are efficient

- Yields to reduced cost, fleet required, total distance traveled
- only becomes effective if the % of deliveries $\geq 40\%$
- Otherwise only a few home deliveries per vehicle (in some cases just one) are replaced by a delivery to a pick-up point.

- Work in progress
 - New delivery densities, other distances from the origin DC
 - Improvements in our VRP algorithm
 - Comparing our VRP algorithm against benchmark instances

Thank you!

cbcunha@usp.br

http://cislog.poli.usp.br/