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Disclaimer Statement

The contents of this report reflect the views of the authors, who are responsible for the accuracy of
the data and information presented herein. This document is disseminated under the sponsorship of
the Department of Transportation, University Transportation Centers Program, the California De-
partment of Transportation and the METRANS Transportation Center in the interest of information
exchange. The U.S. Government, the California Department of Transportation, and the University
of Southern California assume no liability for the contents or use thereof. The contents do not
necessarily reflect the official views or policies of the State of California, USC, or the Department
of Transportation. This report does not constitute a standard, specification, or regulation.
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Abstract

We develop traffic management strategies for urban areas characterized by tight areas by control
of demand and supply. Specifically, on the supply side, we design boundary control, in the form
of ramp metering. On the demand side, we design time-dependent incentives/payment schemes to
spread the demand during periods of peak demand.

We systematically analyze the social optimum under a user equilibrium as well as budget and
maximum toll constraints for a single bottleneck. We cast the congestion pricing problem as a
bilevel optimization problem and provide several analytical and numerical results. Specifically, we
show that the bilevel optimization problem can be converted into a convex optimization problem
under some weak assumptions of the schedule delay cost under an inelastic demand setting. The
methodological contributions are supplemented with illustrative simulation results.

We consider ramp metering (RM) at the microscopic level subject to vehicle following safety
constraints for a single freeway with arbitrary number of on- and off-ramps. The arrival times
of vehicles to the on-ramps, as well as their destinations are modeled by exogenous stochastic
processes. Once a vehicle is released from an on-ramp, it accelerates towards the free flow speed if
it is not obstructed by another vehicle; once it gets close to another vehicle, it adopts a safe gap
vehicle following behavior. The vehicle exits the freeway once it reaches its destination off-ramp.
We design traffic-responsive RM policies that maximize the freeway throughput. All the proposed
policies are reactive, meaning that they only require real-time traffic measurements without the
need for demand prediction. The throughput of these policies is proven to be maximized when the
merging speed of all the on-ramps equals the free flow speed. Simulations are provided to illustrate
the performance of our policies and compare with a well-known RM policy from the literature.
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3 Introduction

Traffic systems in several spots of a large city are characterized by tight spaces. Therefore, during
peak period, when traffic demand exceeds supply, congestion could spill to adjoining areas, which
could then lead to cascading effects. We develop traffic management strategies for such systems
by control of demand and supply. Specifically, on the supply side, we design boundary control, in
the form of ramp metering. On the demand side, we design time-dependent incentives/payment
schemes to spread the demand during periods of peak demand. In contrast to the current literature,
we explicitly include budget constraint of a city as well as cap on payment for an individual driver
when designing incentives. Unlike existing literature, our ramp metering algorithms operate at the
microscopic level and hence are able to explicitly handle vehicle safety constraints.

4 Task 1: Demand Control of Bottlenecks through Incentive Design

Bottleneck related congestion involves traffic demand exceeding a bottleneck capacity in a limited
time interval. A typical example is a rush hour traffic between residential areas and a central busi-
ness district or a popular sporting/cultural event. A traffic incident could also lead to congestion.
If left uncontrolled, the congestion could lead to long and persistent queues, which not only result
in a wasteful loss of time for travelers, but can also spill over into adjacent areas.

A natural approach for eliminating congestion is the demand-side decentralized control mecha-
nism which spreads the arrivals to the congested bottleneck over time to achieve an optimal trade-off
between the traveled time in congestion and unpunctuality, (i.e., early or late arrival at the desti-
nation). However, prior approaches did not consider a strategy of using a combination of incentives
and tolls under budget and maximum toll constraints. The budget and maximum toll constraints
are motivated by the fact that relying solely on incentives may put a large strain on the budget of
the traffic management authorities and social fairness, necessitating a maximum toll for the use of
the congested bottleneck.

The congestion problem is commonly studied using the single bottleneck(See, for example, [1]).
Previous works typically focus only on pricing the congestion (See, for example [2, 3]). Compre-
hensive reviews of the congestion pricing using marginal cost-based pricing can be found in [4–6].
Even though using tolls to price congestion may eliminate queuing, [7] shows that tolls can make
some travelers worse off because they do not consider travelers’ income levels, occupations, or the
costs of travel times. In addition, there may be resistance from elected officials towards introducing
a price for accessing public roads that have been freely available for a long time. In fact, the re-
cent survey paper [2] suggests that schemes which do not involve money transfer from travelers to
the traffic management authorities can significantly improve public engagement in the congestion
management schemes.

Studies on the effects of incentives on congestion management are relatively few. For example,
[8], using [9] marginal-cost based congestion pricing, states that optimal price can be a toll, a
reward, or a combination of the two for a perfect inelastic demand setting. However, the marginal-
cost based congestion pricing mentioned in [8] is restrictive and does not provide a generalized
framework for extending the bottleneck model to optimizing the total social cost given constraints
on the offered pricing.

We consider the possibility of incentives for some travelers and tolls for others. We design a
range of incentives and tolls to respect the budget constraints as well as the maximum toll while
minimizing the social cost and ensuring a user equilibrium. We start with the departure-time based
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formulation of the user equilibrium, where the travelers choose their departure times given the
exogenous pricing profile. We then propose a systematic approach for determining a combination
of incentives and tolls that achieves the social optimum. We further determine the optimal pricing
for a single bottleneck under an elastic demand setting. Our proposed approach relies on the
following: (1) given an exogenous pricing profile, a corresponding unique equilibrium solution can
be obtained by solving equivalent mathematical programs and (2) in the inelastic demand setting
and under some weak assumptions on the schedule delay cost, the bilevel optimization problem for
obtaining the social optimum can be converted into a single level optimization problem.

Proofs of all the technical results of this section can be found in [10].

4.1 MODEL

The model studied herein assumes that each traveler is travelling on a road segment that connects
for example a residential area ("origin") to a central business district ("destination"). It is further
assumed, the road segment has only one bottleneck. At the bottleneck, the traffic congestion
can be modeled as a point queue having a First-In-First-Out (FIFO) discipline. In addition, we
assume that at the beginning of congestion period every traveler that intends to travel via the road
segment can choose their departure times from the bottleneck by knowing the equilibrium delays
at the bottleneck, and hence select their arrival times by subtracting the equilibrium delays from
the bottleneck departure times.

Moreover, we assume each traveler is aware of the pricing profile offered by the system planner
and considers his/her private travel cost which includes the schedule delay cost at the destination,
travel delay cost at the bottleneck and offered pricing when selecting a departure time from the
bottleneck. In one implementation, the system planner displays the pricing profile and the a
suggested departure time, resulting in the minimum cost to each traveler. For example, the system
planner may display information to the travelers by means of a mobile application or communicate
the information directly to the autonomous vehicles that intend to use the road segment containing
the bottleneck.

Under the above assumptions, in equilibrium, no traveler can reduce his/her private travel cost
by changing his/her departure/arrival time unilaterally. There are two equivalent formulations for
the equilibrium: (1) arrival-time based, where the time variable is given in terms of the arrival
at the bottleneck and (2) departure-time based, where the time variable is given in terms of the
departure from the bottleneck. In this study, we adopt the departure-time based formulation
and subsequently show that the equilibrium in the departure time formulation is equivalent to a
mathematical program.

The following additional assumptions are made in our model formulation (See [2, 11]):

1. travelers are homogeneous. In other words, the travelers are assumed to have identical values
of the times associated with queuing and schedule delay costs.

2. The physical length of the bottleneck does not affect the queuing delays. In other words, the
bottleneck is modeled as a point FIFO queue.

3. There is a latent demand for using the bottleneck over the time horizon T , which covers
the period within which travelers’ departure time may be adjusted and in which all travelers
arrive at their destinations.

4. All travelers have the same desired arrival time at the destination; that is travelers arriving
at the desired arrival time incur no scheduling cost.

8



Notation

• t denotes the arrival time at the bottleneck

• s denotes the departure time from the bottleneck

• l(s) denotes the exit rate from the bottleneck at the departure time s

• µ denotes the capacity of the bottleneck e.g., number of travelers which pass within each time
interval ∆s

• ψ(s) denotes the time-varying incentive/toll faced by a traveler departing from the bottleneck
at time s

• φ(s) denotes the departure time based schedule delay cost faced by a traveler at the departure
time s

• d(t) denotes the travel time delay through the bottleneck for a traveler arriving at time t to
the bottleneck

• b(s) denotes the travel time through the bottleneck for a traveler departing at time s from
the the bottleneck

• τ desired arrival time at the destination

4.1.1 Equilibrium Formulation For A Single Bottleneck With Inelastic Demand

In this study, we adopt a discrete time formulation of the equilibrium conditions. As such, the
departure time from the bottleneck is discretized by s = i∆s, where i is an integer from I =
[1, ...,M ] and ∆s is the time interval between each discrete time. We first consider the equilibrium
conditions for a single bottleneck with inelastic demand. As such, the first equilibrium condition;
expressed in terms of the time cost are:
∀i ∈ I {

Cdep = b(i) + φ(i) + α−1ψ(i), if l(i) > 0

Cdep ≤ b(i) + φ(i) + α−1ψ(i), if l(i) = 0,
(1)

where Cdep is the minimum (equilibrium) trip cost for travelers, b(i), φ(i), and ψ(i) are the sampled
version of b(s), φ(s), and ψ(s), and α is the value of time for each traveler. Note, the equilibrium
condition in (1) is given in terms of the departure times from the bottleneck and represents the no-
arbitrage condition. The schedule delay cost is typically modeled as a piecewise linear function, [9]:

φ(i) =

{
β
α (τ − i∆s) , if i∆s < τ
γ
α (i∆s− τ) , if i∆s ≥ τ ,

(2)

where β is the cost of early arrival per unit time and γ is the cost of late arrival per unit time. We
will assume γ > α > β > 0, which is consistent with the experimental data (e.g., [12]). The second
equilibrium condition models the queuing dynamics of the bottleneck given by ∀i ∈ I

{
l(i) = µ, if b(i) > 0

l(i) ≤ µ, if b(i) = 0.
(3)

9



The third equilibrium condition is the total demand condition, which requires
∑

i∈I
l(i) = N, (4)

where l(i) is the number of travelers exiting the bottleneck in the time interval [i, i+∆s]. Under the
FIFO service discipline, the first traveler arriving at the bottleneck earlier than the second traveler
cannot depart from it later than the second traveler. This proposition can be expressed as

∆si1 − b(i1) ≤ ∆si2 − b(i2)⇒ i1 ≤ i2. (5)

The proposition (5) is equivalent to

i2 − i1 ≥ 0⇒ b(i2)− b(i1) ≤ ∆s(i2 − i1). (6)

Remark 1. In discrete time, the condition on the schedule delay cost φ(i) and the incentive ψ(i)
under which the FIFO condition (6) holds are

∀i1, i2 ∈ I and i2 ≥ i1,
φ(i1)− φ(i2) + α−1(ψ(i1)− ψ(i2)) ≤ ∆s(i2 − i1).

(7)

or equivalently φ(i) + α−1ψ(i)− φ(i+ 1)− α−1ψ(i+ 1) ≤ ∆s.

The condition (7) follows from applying the equilibrium conditions (1) and (3) in the FIFO
condition (6).

In the next section, we show the equivalence between the equilibrium conditions introduced
above and a finite dimensional mathematical program. We will show that the departure time based
equilibrium formulation in the discrete time posseses a simple mathematical structure for expressing
its solution, which is absent in the arrival time based equilibrium formulation.

4.2 EQUIVALENT MATHEMATICAL PROGRAMS

4.2.1 A Single Bottleneck With Inelastic Demand

Consider the following finite dimensional linear program (LP):

min
l(i)

∑

i∈I

[
φ(i) + α−1ψ(i)

]
l(i)

subject to:
l(i) ≥ 0

l(i) ≤ µ (LP)
∑

i∈I
l(i) = N.

Theorem 1. The optimal solution of the problem (LP) satisfies the departure time based equilibrium
conditions (1), (3), and (4) for a single bottleneck model with an inelastic demand if the Lagrange
multipliers associated with the inequality constraints l(i) ≤ µ are considered as the queuing delay
b(i).
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Remark 2. For this interpretation of the Lagrange multiplier u(i) to be valid, the FIFO conditions
(6) or (7) should hold.

The associated dual of (LP), which can be used to calculate the bottleneck delay b(i) in the
discrete time is given by

max
b(i),ν

−µ
∑

i∈I
b(i)−Nν

subject to: (D-LP)

φ(i) + α−1ψ(i) + b(i) ≥ −ν, ∀i ∈ I
b(i) ≥ 0, ∀i ∈ I.

Note that the existence of the solution to the dual problem (D-LP) does not guarantee the FIFO
condition (6). However, if the parameters of the dual program are known (i.e., φ(·) and ψ(·)), one
can determine whether these parameters satisfy the condition (7) or if the candidate equilibrium
solution b∗(i) satisfies the FIFO condition (6). If the solution obtained by the (D-LP) does not
satisfy the FIFO condition (6), then there is no equilibrium. Clearly, the departure time based
formulation has a benefit of reducing to a linear program, whose solution can be easily obtained.

In summary, the above equivalent mathematical formulation of the user equilibrium allows us
to consider a more general problem of the pricing design that achieves the social optimum under
the budget and maximum price constraints, which is the topic of the next section.

4.3 SOCIAL OPTIMUM WITH PRICING CONSTRAINTS

In the case of an inelastic demand, the maximization of the social surplus is equivalent to minimizing
the total social cost. The total social cost with respect to the departure time is the sum of queuing
delay and schedule delay costs for all travelers during the commute period T . Thus, the social
optimum is determined by minimizing the total social cost subject to the user equilibrium and
constraints on the incentive ψ(·). The constraints restrict the maximum toll to a predetermined
ψmax and do not allow the total incentives paid by the system planner to exceed a preset budget
Bmax. Moreover, we consider incentives that satisfy the FIFO condition, thus ensuring that only
physically feasible arrival flows at the bottleneck are allowed.
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4.3.1 Social Optimum For A Single Bottleneck

Now consider the following finite dimensional bilevel optimization problem:

min
ψ(i)

∑

i∈I
l(i)
[
b(i) + φ(i)

]
(IP)

subject to:
ψ(i) ≤ ψmax, ∀i ∈ I
−
∑

i∈I
ψ(i)l(i) ≤ Bmax

α−1ψ(i)− α−1ψ(i+ 1) ≤ ∆s− φ(i) + φ(i+ 1)

(b(i), ν) ∈ arg max

{
− µ

∑

i∈I
b(i) +Nν

}

subject to:

b(i) + φ(i) + α−1ψ(i)− ν ≥ 0 (IPa)
b(i) ≥ 0

l(i) ∈ arg min
∑

i∈I

[
φ(i) + α−1ψ(i)

]
l(i)

subject to:
l(i) ≥ 0, ∀i ∈ I
l(i) ≤ µ, ∀i ∈ I (IPb)
∑

i∈I
l(i) = N.

In (P1), the cost function expresses the total social cost and the inner problems (IPa) and
(IPb) ensure that the feasible solution is also a candidate equilibrium solution. Clearly, by the
rearrangement inequality, the optimal solution to the inner problem (IPb), given any feasible ψ(i),
simply assigns the maximum allowed exit rate l∗(i) = µ at time slots i which have N

µ as the smallest
values of

[
φ(i) + α−1ψ(i)

]
and assigns l∗(i) = 0, otherwise. For example, in Figure 1, three time

slots with smallest values
[
φ(i) +α−1ψ(i)

]
are i2, i3, and i4. If only three time slots are required to

satisfy the inelastic demand N, then at time slots i2, i3, and i4 there will be a non-zero exit rate.
Note, the assumption that N

µ is an integer is not restrictive since the residual demand will not cause
queuing and can arrive before or after N

µ as the smallest
[
φ(i) + α−1ψ(i)

]
time slots.

In (I1), the optimal ν∗ = mini∈I
{
b(i) + φ(i) + α−1ψ(i)

}
since N ≥ 0. Substituting for ν∗ into

the cost function of the (I1), we can convert the (I1), for a feasible ψ(i), into a concave optimization
problem given by

max
b(i)≥0

−µ
∑

i∈I
b(i) +N min

i∈I

{
b(i) + φ(i) + α−1ψ(i)

}
. (8)

Theorem 2. The optimal solution to the concave optimization problem 8 is given by

b∗(i) =





min
k∈I\A(ψ)

(
φ(k) + α−1ψ(k)

)
−

−
(
φ(i) + α−1ψ(i)

)
, i ∈ A(ψ)

0, i ∈ I \ A(ψ),
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subject to:
l(i) � 0, 8i 2 I
l(i)  µ, 8i 2 I (IPb)X

i2I
l(i) = N.

In (P1), the cost function expresses the total social cost and
the inner problems (IPa) and (IPb) ensure that the feasible
solution is also a candidate equilibrium solution. Clearly,
by the rearrangement inequality, the optimal solution to the
inner problem (IPb), given any feasible  (i), simply assigns
the maximum allowed exit rate l⇤(i) = µ at time slots i
which have N

µ the smallest values of
⇥
�(i) + ↵�1 (i)

⇤
and

assigns l⇤(i) = 0, otherwise. For example, in Figure 1, three
time slots with smallest values

⇥
�(i) + ↵�1 (i)

⇤
are i2, i3,

and i4. If only three time slots are required to satisfy the
inelastic demand N, then at time slots i2, i3, and i4 there
will a non-zero exit rate. Note, the assumption that N

µ is
an integer is not restrictive since the residual demand will
not cause queuing and can arrive before or after N

µ smallest⇥
�(i) + ↵�1 (i)

⇤
time slots.

In (I1), the optimal ⌫⇤ = mini2I
�
b(i)+�(i)+↵�1 (i)

 

since N � 0. Substituting for ⌫⇤ into the cost function of
the (I1), we can convert the (I1), for a feasible  (i), into a
concave optimization problem given by

max
b(i)�0

�µ
X

i2I
b(i) + N min

i2I

�
b(i) + �(i) + ↵�1 (i)

 
. (9)

↵�1 (i5) > 0

�(i5)

�(i5) + ↵�1 (i5)

i1 i2 i3 i4 i5 i6 i7

�(i3)

�(i3) + ↵�1 (i3)

�(i)

t

↵�1 (i3) < 0

Fig. 1. Schedule delay cost with toll applied at time i5 and incentive
applied at time i3.

Theorem 2: The optimal solution to the concave optimiza-
tion problem 9 is given by

b⇤(i) =

8
>><
>>:

min
k2I\A( )

�
�(k) + ↵�1 (k)

�
�

�
�
�(i) + ↵�1 (i)

�
, i 2 A( )

0, i 2 I \ A( ),

where A( ) is the set of time slots i with N
µ smallest �(i)+

↵�1 (i) values.

Proof: See Appendix C
Note that if there are two time slots i1, i2 with same

�(i1) +↵�1 (i1) = �(i2) +↵�1 (i2), then ambiguity may
be resolved by selecting the time slot i from i1, i2 that is
closest to the desired arrival time ⌧

�s .
Taking into account that the exit rate l(i) 6= 0 on N

µ
number of time slots and the analytical solutions of inner
problems (IPa) and (IPb) enable us to further simplify (IP)
as follows

min
 (i)

X

i2A( )

µ
⇥
b(i) + �(i)

⇤

subject to:
 (i)   max, 8i 2 A( ) (SIP)

� µ
X

i2A( )

 (i)  Bmax, 8i 2 A( )

↵�1 (i)� ↵�1 (i + 1)  �s� �(i) + �(i + 1)

b(i) =

8
>>>><
>>>>:

min
j2I\A( )

�
�(k) + ↵�1 (k)

�
�

�
�
�(i) + ↵�1 (i)

�
, i 2 A( )

0, i 2 I \ A( ).

Assumption 1: Assume the time based schedule delay cost
�(·) is strictly convex, �( ⌧

�s ) = 0, and �(i) > 0 for all
i 6= ⌧

�s .
Assumption 2: Assume the time based schedule delay cost

�(·) satisfies the following condition for 8i 2 I
�(i + 1)� �(i)

�s
> �1.

Theorem 3: If Assumptions 1 and 2 hold, then for the
optimal  ⇤(i) in the simplified Problem (SIP), A( ⇤) = S,
where S is the set of time slots with N

µ smallest �(i).
Proof: See Appendix D

Remark 3: The piecewise linear schedule delay given in
(2) satisfies both Assumptions 1 and 2.
Note, given the Assumption 1, set S is uniquely defined.
Moreover, the objective function in the problem (SIP) is also
convex. Therefore, problem (SIP) under the assumptions of
Theorem 3 is convex.

Remark 4: Given the optimal pricing profile  ⇤(i) in
departure times, we can recover the approximate time delay
d(·) in terms of the arrival time at the bottleneck from
d(i � b(i)) = b(i). Similarly, the incentive profile at the
arrival time i � b(i) can be obtained from departure time
pricing  (i).

Since the bottleneck pricing has a long-term effect on the
demand, the price elasticity of the travel demand should be
considered. Next, we extend the approach developed above
to the design of optimal incentives under the elastic demand
setting.

B. Equilibrium Formulation For A Single Bottleneck With
Elastic Demand

Suppose travelers demand for the use of the single bot-
tleneck depends of the generalized cost Cdep, which is the

Figure 1: Schedule delay cost with toll applied at time i5 and incentive applied at time i3.

where A(ψ) is the set of time slots i with N
µ as the smallest φ(i) + α−1ψ(i) values.

Note that if there are two time slots i1, i2 with the same φ(i1) + α−1ψ(i1) = φ(i2) + α−1ψ(i2),
then ambiguity may be resolved by selecting the time slot i from i1, i2 that is closest to the desired
arrival time τ

∆s .
Taking into account that the exit rate l(i) 6= 0 on the N

µ number of time slots and the analytical
solutions of the inner problems (IPa) and (IPb) enable us to further simplify (IP) as follows

min
ψ(i)

∑

i∈A(ψ)

µ
[
b(i) + φ(i)

]

subject to:
ψ(i) ≤ ψmax, ∀i ∈ A(ψ) (SIP)

− µ
∑

i∈A(ψ)

ψ(i) ≤ Bmax, ∀i ∈ A(ψ)

α−1ψ(i)− α−1ψ(i+ 1) ≤ ∆s− φ(i) + φ(i+ 1)

b(i) =





min
j∈I\A(ψ)

(
φ(k) + α−1ψ(k)

)
−

−
(
φ(i) + α−1ψ(i)

)
, i ∈ A(ψ)

0, i ∈ I \ A(ψ).

Assumption 1. Assume the time based schedule delay cost φ(·) is strictly convex, φ( τ
∆s) = 0, and

φ(i) > 0 for all i 6= τ
∆s .

Assumption 2. Assume the time based schedule delay cost φ(·) satisfies the following condition
for ∀i ∈ I

φ(i+ 1)− φ(i)

∆s
> −1.

Theorem 3. If Assumptions 1 and 2 hold, then for the optimal ψ∗(i) in the simplified Problem
(SIP), A(ψ∗) = S, where S is the set of time slots with N

µ as the smallest φ(i).
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Remark 3. The piecewise linear schedule delay given in (2) satisfies both Assumptions 1 and 2.

Note, given the Assumption 1, the set S is uniquely defined. Moreover, the objective function
in the problem (SIP) is also convex. Therefore, problem (SIP) under the assumptions of Theorem
3 is convex.

Remark 4. Given the optimal pricing profile ψ∗(i) in the departure times, we can recover the
approximate time delay d(·) in terms of the arrival time at the bottleneck from d(i − b(i)) = b(i).
Similarly, the incentive profile at the arrival time i − b(i) can be obtained from the departure time
pricing ψ(i).

Since the bottleneck pricing has a long-term effect on the demand, the price elasticity of the
travel demand should be considered. Next, we extend the approach developed above to the design
of the optimal incentives under the elastic demand setting.

4.3.2 Equilibrium Formulation For A Single Bottleneck With Elastic Demand

Suppose the travelers demand for the use of the single bottleneck depends of the generalized cost
Cdep, which is the equilibrium private cost faced by each traveler. Let N = D(Cdep) denote the
demand for the equilibrium cost Cdep. We further assume that the demand function D(Cdep) is a
strictly monotone, invertible, and decreasing function of the equilibrium cost Cdep. Let D−1(N) be
the inverse or benefit function. The inverse function D−1(N) can be regarded as an amount that
each traveler is willing to pay for his or her travel through the bottleneck, or a benefit that he or she
can obtain from this travel. The equilibrium conditions in the departure time based formulation
for the elastic demand are,
∀i ∈ I {

Cdep = b(i) + φ(i) + α−1ψ(i), if l(i) > 0

Cdep ≤ b(i) + φ(i) + α−1ψ(i), if l(i) = 0,
(9)

{
l(i) = µ, if b(i) > 0

l(i) ≤ µ, if b(i) = 0,
(10)

and ∑

i∈I
l(i) = D(Cdep). (11)

The FIFO condition in elastic demand setting is identical to (6).

4.3.3 A Single Bottleneck With Elastic Demand

Consider the following finite dimensional mathematical program,

min
l(i),N

−
∫ N

0
D−1(w) dw +

∑

i∈I

[
φ(i) + α−1ψ(i)

]
l(i)

subject to:
l(i) ≥ 0

l(i) ≤ µ (CP)
∑

i∈I
l(i) = N.
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The mathematical problem (CP) is strictly convex and hence has a unique solution in terms of the
exit rate l(i) and the demand N since the first term in the objective function is strictly convex (the
benefit function D−1(w) is strictly monotonically decreasing in demand), the second term is linear,
and the constraints are convex.

Theorem 4. The optimal solution of the convex problem (CP) satisfies the equilibrium conditions
(9), (10), and (11) if the Lagrange multipliers associated with the inequality constraints l(i) ≤ µ are
considered as the queuing delay b(i), and ν is considered as the equilibrium cost.

Since the Slater’s condition is satisfied for (CP), then the strong duality holds. The dual of
(CP) is

max
b(i),ν

−
∫ D(−ν)

0
D−1(w) dw − µ

∑

i∈I
b(i)−Nν

subject to: (D-CP)

φ(i) + α−1ψ(i) + b(i) ≥ −ν, ∀i ∈ I
b(i) ≥ 0, ∀i ∈ I.

The dual problem (D-CP) can be used to calculate the bottleneck delay b(i) in the elastic demand
setting.
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4.3.4 Social Optimum For A Single Bottleneck With Elastic Demand

We consider the following finite dimensional bilevel optimization problem for the single bottleneck
with an elastic demand setting,

min
ψ(i)

∑

i∈I
l(i)
[
b(i) + φ(i)

]
(EP)

subject to:
ψ(i) ≤ ψmax, ∀i ∈ I
−
∑

i∈I
ψ(i)l(i) ≤ Bmax,

α−1ψ(i)− α−1ψ(i+ 1) ≤ ∆s− φ(i) + φ(i+ 1)

(b(i), ν) ∈ arg max

{
−
∫ D(ν)

0
D−1(w) dw−

− µ
∑

i∈I
b(i) +D(ν)ν

}

subject to:

b(i) + φ(i) + α−1ψ(i)− ν ≥ 0 (EPa)
b(i) ≥ 0

(l(i), N) ∈ arg min−
∫ N

0
D−1(w) dw+

+
∑

i∈I

[
φ(i) + α−1ψ(i)

]
l(i)

subject to:
l(i) ≥ 0, ∀i ∈ I
l(i) ≤ µ, ∀i ∈ I (EPb)
∑

i∈I
l(i) = N.

Problems (EPba) and (EPb) (parameterized by ψ(·)) are strictly convex because D−1(w) is strictly
monotonically decreasing in demand w. Since the lower level problems (EPa) and (EPb) are convex
and sufficiently regular (i.e., Slater’s condition holds), it is possible to replace problems (EPa)
and (EPb) with their Karush-Kuhn-Tucker (KKT) conditions. Using the KKT conditions, we can
reformulate the bilevel optimization (EP) into a single-level mathematical program with equilibrium
constraints (MPEC).

4.4 SIMULATION

In this section, two numerical examples are presented. The first example is designed to illustrate
the findings in Section 4.1 for a single bottleneck, and the second example illustrates the results of
Section 4.2 for a single bottleneck with elastic demand.
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Figure 2: Maximum travel time b(s) for the maximum price ψmax = $0.
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Figure 3: Maximum travel time b(s) for the maximum price ψmax = $1.

4.4.1 Example 1

The basic input parameters used in the first numerical example are: τ = 300min, s = 600 carsmin , α =
$0.0952min, β = $0.0582/min, γ = $0.2263/min N = 78600 cars, ∆s = 1 min

We selected the demand that may be present at the Los Angeles Memorial Coliseum on a
typical game day. Note that the desired time τ is referenced from beginning of the morning/evening
commute start time at which there is no congestion present at the bottleneck. In this example,
we consider the effect of the price cap and the budget constraint on the maximum travel time b(s)
through the bottleneck. Figure 2 shows the maximum travel time for the price cap ψmax = $0.
Our simulations show that the maximum travel time monotonically decreases as the system planner
increases the allocated budget. This behavior is consistent with the price cap ψmax = $1 shown
in figure 3; however, for the same budget constraint the maximum travel time is more than 2
times smaller than in the case of price cap ψmax = $0. Figure 4 shows the maximum travel
time dependence on the price caps for Bmax = $0 and Figure 5 shows the maximum travel time
dependence on the maximum price for the fixed budget Bmax = $5, 000.

4.4.2 Example 2

We assumed the elastic demand function to be D(ν) = D̂exp(−ων), where D̂ represents the po-
tential level of demand over the entire time horizon, ν is the equilibrium generalized cost for each
traveler, and ω is the cost sensitivity parameter. The input data are: D̂ = 5000 τ = 30 min. We
solved the single-level MPEC by relaxing the complementary constraints with a positive relaxation
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Figure 4: Maximum travel time b(s) for the budget constraint Bmax = $0.
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Figure 5: Maximum travel time b(s) for the budget constraint Bmax = $5K.
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Figure 6: Served demand for Bmax = $500 and ψmax = $5.

parameter and solved the relaxed nonlinear program with the fmincon solver. We simulated fmin-
con solver with randomized initial conditions for 10 repeatedly runs. Figure 6 shows served demand
for various cost sensitivity levels. As the cost sensitivity decreases, demand is less sensitive to the
the equilibrium generalized cost. Note, in 6 as the cost sensitivity increase (i.e., demand becomes
more elastic) less traveler are served, which is due to the fact that the cost function in the (EP)
solely minimizes the system cost.
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5 Task 2: Supply Control through Microscopic Ramp Metering

Freeway congestion is caused by high demand competing to use the limited supply of the freeway
system. One of the most effective tools to combat this congestion is Ramp Metering (RM),
where the inflows to a freeway are regulated in order to balance the supply-demand and ultimately
improve some measure of performance ( [13–15]). The problem of designing a RM policy is
often studied by using macroscopic traffic flow models. In spite of their generality, these models
do not have the resolution to distinguish between safety protocols under different connectivity
and automation scenarios. On the other hand, the use of microscopic-level approach to study the
interplay between safety, connectivity and freeway performance in the context of RM is limited to
heuristics or simulations. Our objective is to address this gap.

There is an overwhelming body of literature on designing RM policies using macroscopic traffic
flow models. We review them here only briefly; interested readers are referred to [13] for a com-
prehensive review. RM policies can be generally classified as fixed-time or traffic-responsive ( [13]).
Fixed-time policies such as [16] are fine-tuned offline and operate based on historical traffic data.
Due to the uncertainty in the traffic demand and the absence of real-time measurements, these
policies would either lead to congestion or under-utilization of the capacity of the freeway ( [17]).
Traffic-responsive policies, on the other hand, use real-time measurements. These policies can be
further sub-classified as local or coordinated depending on whether the on-ramps make use of the
measurements obtained from their vicinity (local) or other regions of the freeway (coordinated)
( [13, 18]). A well-known example of a local policy is ALINEA ( [19]) which has been shown, both
analytically and in practice, to yield a (locally) good performance. A caveat in employing local
policies is that there is no guarantee that they can improve the overall performance of the freeway
while providing a fair access to the freeway from different on-ramps ( [17]). This motivates the
study of coordinated policies such as the ones considered in [17,20,21].

The aforementioned studies adopt macroscopic traffic flow models for design purposes. An
alternative is the microscopic-level approach, which is an appropriate choice in the context of Con-
nected and Automated Vehicles (CAVs) ( [14]). CAVs come with promising capabilities: they can
compensate for human errors by means of automation, and can provide more accurate traffic mea-
surements by means of Vehicle-to-Vehicle (V2V), or Vehicle-to-Infrastructure (V2I) communications
( [14,22,23]). On the other hand, they are required to obey certain constraints such as safety rules.
It is natural to investigate how these capabilities and constraints can be incorporated in the design
of traffic control techniques such as RM in order to optimize their performance. In the literature,
the RM design problem at the microscopic level is often stated in terms of determining the merging
sequence for an on-ramp. That is, determining the order in which vehicles on the mainline and
at the on-ramp can cross the merging point. The objective is to choose a merging sequence that
optimizes some measure of performance such as fuel consumption subject to vehicle constraints
such as speed, safety, and comfort ( [14, 24]). Most, if not all, previous work considers an isolated
on-ramp for this purpose. Relatively little attention has been given to analyzing the implications
of such merging-sequence design on the overall performance of the freeway. For example, do they
optimize certain system-level performance? Indeed it is possible that a greedy policy, i.e., a policy
where each on-ramp acts independent of the others, limits entry from the downstream on-ramps
and thereby creating long queues or congestion. Motivated by increasing vehicle connectivity and
automation, our primary objective is to systematically design and analyze the system-level perfor-
mance of traffic-responsive RM policies subject to vehicle following safety constraints.

We consider a freeway with arbitrary number of on- and off-ramps. The freeway geometry can
be modeled either as a ring road, in which case every entry point is controlled, or a straight road,
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in which case the upstream entry point is not controlled. Previous studies on a ring road with no
on/off-ramps have suggested that this setup has some theoretical advantages over the straight road
network ( [25–29]). For example, the creation and dissipation of stop-and-go waves can be captured
using a ring road ( [25, 26]). For the sake of completeness, we consider both geometries in this
work. However, our results are not specific to the choice of road geometry. Vehicles in the network
are assumed to have the same length, same acceleration and braking capabilities, and are equipped
with V2V and V2I communication systems. Each vehicle follows the standard rules for safety and
speed: it accelerates and maintains the free flow speed when it is sufficiently far away from the
leading vehicle, or maintains a safe gap if it gets close. We do not specify the exact transient
behavior for maintaining a safe gap, nor require vehicles to adopt the same behavior during the
transient. However, at the steady state free flow speed, we assume that each vehicle keeps a safe
constant time headway plus an additional constant gap from its leading vehicle ( [30]). The entry
points to the freeway are the on-ramps and, in the case of the straight road geometry, the upstream
(uncontrolled) entry point. Vehicle arrivals to each on-ramp is modeled by a Bernoulli process that
is independent across different on-ramps. The destination of each vehicle is one of the off-ramps,
and, in the case of the straight road geometry, also the downstream exit point. The destination
of each vehicle is sampled independently from a routing matrix. It should be emphasized that our
main results do not depend on this specific demand model. Once a vehicle enters the freeway, it
follows the aforementioned safety and speed rules until it reaches its destination, at which point it
exits the network. We design traffic-responsive RM policies that maximize the freeway throughput
subject to vehicle following safety constraints. For a given routing matrix, the throughput of a
RM policy is characterized by the set of on-ramp arrival rates for which the queue sizes at all the
on-ramps remain bounded in expectation. Roughly, the throughput of a RM policy is the highest
traffic demand that it can handle without creating long queues at the on-ramps.

The proposed RM policies work in synchronous cycles during which an on-ramp does not release
more vehicles than the number of vehicles waiting in its queue, i.e., its queue size, at the begin-
ning of the cycle. Furthermore, all of the proposed policies operate under vehicle following safety
constraints, where the on-ramps release new vehicles only if there is enough gap on the mainline at
the moment of release. We provide three policies under which each on-ramp: (i) pauses release for
a time-interval at the end of a cycle, or (ii) modulates the time between successive releases during
a cycle, or (iii) adopts a conservative safe gap criterion for release during a cycle, all based on the
traffic state. None of the policies however require information about the on-ramp arrival rates or
the routing matrix, i.e., they are reactive. The throughput of these policies is characterized by
studying stochastic stability of the induced Markov chains, and is proven to be maximized when
the merging speed of all the on-ramps equals the free flow speed.

In summary, the three main contributions are as follows:

• Formalizing the notion of throughput as a performance index for freeways with arbitrary
number of on- and off-ramps. The throughput of a RM policy measures the highest traffic
demand that it can handle without creating long on-ramp queues. In case of a single on-ramp,
the throughput of any policy cannot exceed the on-ramp’s flow capacity.

• Design of traffic-responsive RM policies at the microscopic level subject to vehicle following
safety constraints. This allows to understand the impact of different safety, connectivity,
and automation protocols on the freeway throughput. The proposed policies require V2X
communication but do not require vehicle autonomy. Hence, they are suitable to implement
in mixed-autonomy scenarios.
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• Design of policies that are reactive yet maximize the freeway throughput. In other words, the
proposed policies only require real-time traffic measurements, and do not need any information
about the arrival rates or the routing matrix (thus, they can adapt to time-varying demand);
yet, their throughput is at least as good as any other policy, including the policies that know
the demand in advance.

The following standard notations are used throughout this section. Let N, N0, and R respectively
denote the set of positive integers, non-negative integers and real numbers. For m ∈ N, [m] denotes
the set {1, . . . ,m}. Proofs of the technical results can be found in [31].

5.1 Problem Formulation

Consider a simple model of a freeway, where the mainline is abstracted either as a straight road or
a ring road of length P , as illustrated in Figure 7. We use the ring road geometry to formulate the
problem and state the main results; the discussion of the straight road geometry can be found in
Section 5.2.7. The freeway has m on- and off- ramps; they are placed alternately, and are numbered
in an increasing order along the direction of travel, such that, for all i ∈ [m], off-ramp i comes after
on-ramp i 1. The section of the mainline between the i-th on- and off- ramps is referred to as link
i.

Vehicles arrive at the on-ramps from outside the freeway and join the on-ramp queues. We
assume a point queue model for vehicles waiting at the on-ramps, with the queue on an on-ramp
co-located with its ramp meter. The on-ramp vehicles are released into the mainline by the ramp
meters installed at each on-ramp. Upon release, each vehicle follows the standard speed and safety
rules until it reaches its destination off-ramp at which point it leaves the freeway without creating
any obstruction for the upstream vehicles. Vehicles are equipped with V2V and V2I communication
systems. They use these systems to communicate their state, e.g., speed, to nearby vehicles and
the on-ramp control units. The exact information communicated by a vehicle will be specified in
later sections.

The objective is to design RM policies that perform well under vehicle following safety con-
straints. The performance of a RM policy is evaluated in terms of its throughput defined as follows:
let λi be the arrival rate to on-ramp i, i ∈ [m], and λ := [λi] be the vector of arrival rates. Let
R = [Rij ] be the routing matrix, where Rij specifies the fraction of arrivals to on-ramp i that want
to exit from off-ramp j. For a given routing matrix R, the under-saturation region of a RM policy
is defined as the set of vector of arrival rates λ for which the queue sizes at all the on-ramps remain
bounded in expectation 2. The boundary of the under-saturation region is called the throughput.
We are interested in finding RM policies that “maximize" the throughput for any given R. We will
formalize this in Section 5.1.2.

The remainder of this section is organized as follows: in Section 5.1.1, we discuss the vehicle-
level rules. We specify the demand model and formalize the notion of throughput in Section 5.1.2.
We summarize the RM policies in Section 5.1.3.

1By this numbering scheme, we do not mean to imply that the location of an on-ramp must be close to the next
off-ramp as in practice, the opposite is usually the case; see Figure 7. In fact, our setup is quite flexible and can also
deal with cases where the number of on- and off-ramps are not the same. For simplicity of notation, we have used
the same number of on- and off-ramps.

2Note that λ and R are macroscopic quantities. In order to specify vehicle arrivals and their destination at the
microscopic level, a more detailed (probabilistic) demand model is required; see Section 5.1.2. The expected queue
size is defined with respect to the probabilistic demand model.
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(a)

(b)

Figure 7: Example of a (a) straight road, (b) ring road.

5.1.1 Vehicle-Level Objectives

We consider vehicles of length L that have the same acceleration and braking capabilities, and are
equipped with V2V and V2I communication systems. We use the term ego vehicle to refer to a
specific vehicle under consideration, and denote it by e. Consider a vehicle following scenario and
let ve (resp. vl) be the speed of the ego vehicle (resp. its leading vehicle), and Se be the safety
distance between the two vehicles required to avoid collision. We assume that Se satisfies

Se = hve + S0 +
v2
e − v2

l

2|amin|
, (12)

which is calculated based on an emergency stopping scenario with details given in [30]. Here,
h > 0 is a safe time headway constant, S0 > 0 is an additional constant gap, and amin < 0 is
the minimum possible deceleration of the leading vehicle. For simplicity, we assume a third-order
vehicle dynamics. We consider two general modes of operation for each vehicle: the speed tracking
mode and the safety mode. The main objective in the speed tracking mode is to adjust the speed
to the free flow speed Vf when the ego vehicle is far from any leading vehicle. The main objective
in the safety mode is to avoid collision when the ego vehicle gets close to a leading vehicle.

We define the acceleration lane of an on-ramp as the section of the network starting immediately
downstream of the ramp meter and ending on the mainline, such that if the ego vehicle is in the
speed tracking mode throughout the entire section, it achieves the speed Vf at the end of it. With
this definition, the acceleration lane may or may not overlap with the mainline, depending on the
distance from the ramp meter to the point where the merging occurs on the mainline, i.e., the
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Figure 8: A merging scenario. For each vehicle, the dotted arrow indicates its leading vehicle while the
solid arrow indicates its virtual leading vehicle. Note that vehicle l is both the leading and the virtual
leading vehicle of vehicle e.

merging point; see Figure 8. We assume that all the vehicles coming from an on-ramp merge at a
fixed merging point. We define the merging speed of an on-ramp as the speed of the ego vehicle at
the merging point, if the ego vehicle is in the speed tracking mode between release and reaching
the merging point. Note that the merging speed of an on-ramp is at most Vf .

Consider a merging scenario as shown in Figure 8. An ego vehicle entering the merging area is
assigned a virtual leading vehicle, which is the vehicle that is predicted to be in front of the ego
vehicle once the ego vehicle has crossed the merging point. The virtual leading vehicle is determined
(and continuously updated) as follows: the ego vehicle predicts (and continuously updates) its speed
and the time it will cross the merging point, and communicates this information to all other vehicles
in the merging area using V2V communication. Other vehicles communicate the same information
to the ego vehicle. We assume that the ego vehicle uses the following speed prediction rule: if
in the speed tracking mode, the ego vehicle assumes that it remains in this mode in the future;
if in the safety mode, it assumes a constant speed trajectory. At each time t before crossing the
merging point, let tm|t be the time the ego vehicle predicts to cross the merging point based on the
information available at time t. According to the prediction received from other vehicles at time t,
the virtual leading vehicle is the vehicle that is to be in front of the ego vehicle at time tm|t. We
assume that vehicles obey the following rules:

(VC1) the ego vehicle maintains the constant speed Vf at time t if:

(a) it is at a safe gap with respect to its leading vehicle, i.e., ye(t) ≥ Se(t), where ye is the
gap between the two vehicles. Note that if the leading vehicle is also at the constant
speed Vf , then ye ≥ Se = hVf + S0. This gap is equivalent to a time headway of at
least τ := h + (S0 + L)/Vf between the front bumpers of the two vehicles. This rule
is believed to be widely adopted by human drivers as well as standard adaptive cruise
control systems ( [30]).

(b) it predicts to be at a safe gap with respect to its virtual leading vehicle in merging

areas, i.e., ŷe(tm|t) ≥ Ŝe(tm|t) := hv̂e(tm|t) + S0 +
v̂2e(tm|t)−v̂2

l̂
(tm|t)

2|amin| , where ŷe(tm|t) is
the predicted gap between the two vehicles at the moment of merging based on the
information available at time t ≤ tm. Similarly, v̂e and v̂l̂ are the predicted speeds of the
ego vehicle and its virtual leading vehicle, respectively.

(VC2) the ego vehicle is initialized to be in the speed tracking mode upon release. It changes mode
at time t if ye(t) < Se(t) or ŷe(tm|t) < Ŝe(tm|t). Also, if two vehicles are released from the
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same on-ramp at least τ seconds apart, and neither change mode because of other vehicles,
then the following vehicle remains in the speed tracking mode.

(VC3) there exists Tempty such that for any initial condition, vehicles reach the free flow state after
at most Tempty time if no other vehicle is released from the on-ramps. The free flow state
refers to a state where: (i) if a vehicle is in the safety mode, then it moves at the constant
speed Vf and maintains this speed in the future, and (ii) if a vehicle is in the speed tracking
mode, then it remains in this mode in the future.

Remark 1. Note that we intentionally do not specify the total number of submodes within the
safety mode, the exact control logic within each submode, or the exact logic for switching back to
the speed tracking mode. Such details will be introduced only if and when needed for performance
analysis of RM policies in the paper. Also, note that the control logic in the safety mode during the
transient is allowed to be different for different vehicles.

5.1.2 Probabilistic Demand Model and Throughput

It will be convenient for performance analysis later on to adopt a discrete time setting. Let the
duration of each time step be τ , representing the minimum safe time headway between the front
bumpers of two consecutive vehicles that are moving at the constant speed Vf ; see (VC1) in Sec-
tion 5.1.1. Let vehicles arrive to on-ramp i ∈ [m] according to an i.i.d. Bernoulli process with
parameter λi ∈ [0, 1] independent of the other on-ramps. That is, in any given time step, the
probability that a vehicle arrives at the i-th on-ramp is λi independent of everything else. Note
that λi specifies the arrival rate to on-ramp i in terms of the number of vehicles per τ seconds. Let
λ := [λi] be the vector of arrival rates. The destination off-ramp for individual arriving vehicles is
i.i.d. and is given by the routing matrix R = [Rij ], where 0 ≤ Rij ≤ 1 is the probability that an
arrival to on-ramp i wants to exit from off-ramp j. Note that Rij specifies the (long-run) fraction
of arrivals at on-ramp i that want to exit from off-ramp j. Naturally, for every on-ramp i we have∑

j Rij = 1. Finally, we let R̃ = [R̃ij ] be the cumulative routing matrix, where R̃ij is the fraction of
arrivals at on-ramp i that need to cross link j in order to reach their destination. Note that λiR̃ij
is the rate of arrivals at on-ramp i that need to use link j in order to reach their destination, i.e.,
the load induced on link j by on-ramp i. Let ρj :=

∑
i λiR̃ij be the total load induced on link j by

all the on-ramps, and let ρ := maxj∈[m] ρj be the maximum load.

Remark 2. The current demand model, i.e., Bernoulli arrivals and Bernoulli routing, is chosen
to simplify the technical details in the proofs. We believe that our results are far more general and
hold for more practical demand models used in the literature, e.g., see [32] for an example of arrival
models.

Example 1. Let the routing matrix for a 3-ramp freeway, i.e., m = 3 as in Figure 7b, be given by

R =



R11 R12 R13

R21 R22 R23

R31 R32 R33


 .

Then, the corresponding cumulative routing matrix is

R̃ =




1 1−R11 1− (R11 +R12)
1− (R22 +R23) 1 1−R22

1−R33 1− (R31 +R33) 1


 =




1 R12 +R13 R13

R21 1 R21 +R23

R31 +R32 R32 1


 .
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Figure 9: An illustration of the under-saturation region of some policy π (dark grey area) and the DRR
policy (dark + light grey areas) from Example 2

We now formalize the notion of “throughput" which is the key performance metric in this work.
For i ∈ [m], let Qi(t) be the vector of destination off-ramps of the vehicles waiting at on-ramp i,
arranged in the order of their arrival, at t. We use |Qi(t)| to denote the queue size at on-ramp i
at time t. Let |Q(t)| = [|Qi(t)|] be the vector of queue sizes at all the on-ramps at time t. For a
given routing matrix R, the under-saturation region of a RM policy π is defined as follows:

Uπ,R = {λ : lim sup
t→∞

E|Qi(t)| <∞ ∀i ∈ [m] under policy π}.

This is the set of λ’s for which the queue sizes at all the on-ramps remain bounded in expectation.
The boundary of this set is called the throughput of the policy π. We are interested in finding a
RM policy π such that for every R, Uπ′,R ⊆ Uπ,R for all policies π′, including those that have
information about λ and R. In other words, for every R, if the freeway remains under-saturated
using some policy π′, then it also remains under-saturated using the policy π. In that case, we say
that policy π maximizes the freeway throughput. One of our main results is to introduce policies
that maximize the saturation limit for all practical purposes but do not require any information
about λ or R, i.e., they are reactive.

Remark 3. A rigorous definition of the throughput should also include its dependence on the initial
condition of the vehicles on the freeway and the initial queue sizes. We have removed this dependence
for simplicity as the performance results given for our proposed policies do not depend on the initial
condition.

Example 2. Consider a 3-ramp freeway with

R =




0.2 0.7 0.1
0 0.8 0.2

0.5 0 0.5


 , λ3 = 0.5 [veh/time step],

and suppose that the merging speed at all the on-ramps is Vf . Let us consider one of the policies
introduced in Section 5.2, called the Dynamic Release Rate (DRR) policy. According to Theorem 2,
the under-saturation region of this policy is given by

UDRR,R = {(λ1, λ2) : λ1 < 0.75, 0.8λ1 + λ2 < 1}.
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This set is illustrated in Figure 9. Moreover, according to Theorem 4, for any policy π we
have Uπ,R ⊆ UDRR,R, except maybe at the boundary of UDRR,R; see Figure 9. Also, note that the
boundary of UDRR,R has zero volume, which implies that the vector (λ1, λ2) lies either inside or
outside UDRR,R in practice. More generally, Theorem 2 and Theorem 4 state that the previous
conclusions hold for any other choice of the routing matrix. Therefore, the DRR policy maximizes
the throughput for all practical purposes.

5.1.3 Ramp Metering

To conveniently track vehicle locations in discrete time, we introduce the notion of slot. A slot is
associated with a particular point on the mainline or acceleration lanes at a particular time. We first
define the mainline slots. Let nc be the maximum number of distinct points that can be placed on
the mainline, such that the space gap between adjacent points is hVf +S0 +L. This gap is governed
by the safety distance Se as explained in Section 5.1.1. In particular, nc is the maximum number
of vehicles that can safely travel at the constant free flow speed Vf on the mainline. Consider a
configuration of these nc points at t = 0. Each point represents a slot on the mainline that moves
at the free flow speed; without loss of generality, we let the length of the mainline P be such that
each slot replaces the next slot at the end of each time step τ .

We next define the acceleration lane slots. Suppose that the ego vehicle is released from the
i-th on-ramp at t = 0 such that it remains in the speed tracking mode in the future. Consider the
ego vehicle’s location at the end of each time step τ until it exits the acceleration lane. Each of
these location points represents a slot for the i-th acceleration lane at t = 0. For example, if the ego
vehicle exits the acceleration after 2.5τ seconds upon release, there are three slots corresponding
to its location at times τ , 2τ , and 3τ . Let ni be the number of i-th acceleration lane slots, and
na =

∑
i ni. Note that by definition, the last acceleration lane slot of every on-ramp is on the

mainline. Without loss of generality, we consider a configuration of slots at t = 0, such that all
the last acceleration lane slots coincide with a mainline slot. The details to justify the no loss in
generality are given as follows: for a given configuration of mainline slots at t = 0, there exists
ti ∈ [0, τ) such that the last acceleration lane slot of on-ramp i coincides with a mainline slot at
time ti. Thereafter, the last acceleration lane slot coincides with a mainline slot at the end of every
time step τ , i.e., at times kτ + ti for all k ∈ N0. The times kτ + ti, k ∈ N0, are the release times
of on-ramp i in the proposed RM policies. Therefore, the assumption that all the last acceleration
lane slots initially coincide with a mainline slot (which corresponds to ti = 0 for all i ∈ [m]) only
means a shifted sequence of release times, which justifies the no loss in generality.

Consider an initial condition of the vehicles on the freeway, where the vehicles are in the free
flow state such that the location of each vehicle coincides with a slot for all times in the future.
For this initial condition and under the proposed RM policies, the following sequence of events
occurs during each time step: (i) the mainline slots rotate one position in the clockwise direction
and replace the next slot; similarly, the acceleration lane slots of each on-ramp replace the next
slot with the last slot replacing the first slot; the numbering of the slots is reset with the new
first mainline slot after on-ramp 1 numbered 1, and the rest of the mainline slots numbered in an
increasing order; the acceleration lane slots are numbered similarly; (ii) vehicles that reach their
destination off-ramp exit the freeway without obstructing the upstream vehicles; (iii) if permitted
by the RM policy, a new vehicle is released; for the given initial condition and under the proposed
RM policies, the location of the newly released vehicle coincides with a slot for all times in the
future.

The information available to the proposed policies will be a combination of |Q| and the state
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(or part of the state) of all the vehicles X := (xe)e∈[n], where n is the number of vehicles on the
mainline and acceleration lanes, and xe = (pe, ve, ae, Ie) is the state of the ego vehicle, where pe is
its location, ve is the speed, ae is the acceleration, and Ie is a binary variable which is equal to one
if the ego vehicle is in the safety mode, and zero otherwise. These information are communicated to
the on-ramps using V2I communication systems. Table 1 provides a summary of the communication
cost of the RM policies. In Table 1, nm is the total number of slots in all the merging areas, Tper is
a design update period, and Qi, i = 1, 2, is the contribution of the queue size to the communication
cost.

Table 1: Summary of the RM policies studied in this project.

Ramp Metering Policy Worst-case
Communication Cost

Renewal (nc + na)m+Q1

Dynamic Release Rate (DRR) m(nc + na)/Tper + nm +Q2

Distributed Dynamic Release Rate (DisDRR) (nc + na)/Tper + nm +Q2

Dynamic Space Gap (DSG) (nc + na)m+Q2

Greedy nm

5.2 Ramp Metering Policies and Performance Analysis

In this section, we provide traffic-responsive RM policies subject to vehicle following safety con-
straints and analyze their performance. This is done in Sections 5.2.1-5.2.6. In Section 5.2.7, we
discuss the extension of the results to the straight road geometry.

For easier navigation, we briefly review the proposed policies here. The policies in Sections 5.2.1,
5.2.2, and 5.2.4 are coordinated, the one in Section 5.2.3 is a distributed version of the coordinated
policy in Section 5.2.2, and the one in Section 5.2.5 is a local policy. In all of our policies, the
on-ramps work in synchronous cycles during which an on-ramp does not release more vehicles than
its queue size at the beginning of the cycle. The synchronization of cycles is done in real time
in Section 5.2.1, whereas it can be done once offline in Sections 5.2.2-5.2.5. Furthermore, all of
our policies operate under vehicle following safety constraints, where the on-ramps release new
vehicles only if there is enough gap on the mainline at the moment of release (cf. (VC1)). The
policies differ in using the vehicle information to either pause release for a time interval at the
end of a cycle (Section 5.2.1), to modulate the time between successive releases during a cycle
(Sections 5.2.2-5.2.3), or to adopt a conservative dynamic safe gap criterion for release during a
cycle (Section 5.2.4). The actions of all the three policies in Sections 5.2.2-5.2.4 at the free flow
state is equivalent to that of the local policy in Section 5.2.5. All the policies are reactive, meaning
that they do not require any information about the vector of arrival rates or the routing matrix.
An inner estimate to the under-saturation region is provided for each policy, and is then compared
to an outer estimate in Section 5.2.6.

5.2.1 Renewal Policy

The first policy is inspired by the queuing theory literature in the context of communication net-
works, e.g., see [33, 34]. Once an on-ramp releases all the vehicles waiting at the beginning of a
cycle, it pauses release until all other on-ramps have done so, and these vehicles exit the freeway,
i.e., until the mainline and acceleration lanes are empty – hence we refer to it as the Renewal policy.
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Definition 1. (Renewal ramp metering policy) No vehicle is released until all the initial ve-
hicles exit the freeway, i.e., until the mainline and acceleration lanes are empty, say at time t1.
Thereafter, the policy works in cycles of variable length. At the beginning of the k-th cycle at time
tk, each on-ramp allocates itself a “quota" equal to the queue size at that on-ramp at tk. At time t
during the cycle, an on-ramp releases the ego vehicle if:

(M1) t = kτ for some k ∈ N0.

(M2) the on-ramp has not reached its quota.

(M3) ye(t) ≥ Se(t), i.e., there is a safe gap in front of the ego vehicle (cf. (VC2)).

(M4) it predicts that the ego vehicle will be at a safe gap with respect to its virtual leading and
following vehicles between merging and exiting the acceleration lane.

Once an on-ramp reaches its quota, it does not release a vehicle during the rest of the cycle. The
next cycle begins when the mainline and acceleration lanes are empty.

Remark 4. A simpler form of this policy, called the Quota policy, is analyzed in [33]. Direct
adaptation of the Quota policy to the current transportation setting requires additional analysis
because of the vehicle dynamics.

We need an additional notation for future results. Consider a situation where on-ramp i releases
the ego vehicle under (M1)-(M4), its virtual leading and following vehicles are at the constant speed
Vf , and their location coincides with a mainline slot. We let τi be the minimum time headway
between the front bumpers of the virtual leading and following vehicles such that they maintain a
safe gap with respect to the ego vehicle after merging. Note that τi is an exact multiple of τ and
τi ≥ 2τ , where the equality holds if and only if the merging speed of on-ramp i is Vf .

Theorem 1. For any initial condition, the Renewal policy keeps the freeway under-saturated if
( τiτ − 1)ρi − ( τiτ − 2)λi < 1 for all i ∈ [m].

V2I communication requirements: the Renewal policy uses information about |Q| and X.
Its worst-case communication cost is calculated as follows: at each time step during a cycle, any
vehicle that is on the mainline or an acceleration lane must communicate its state to all on-ramps.
After a finite time, the number of these vehicles is no more than nc + na. Furthermore, at the
beginning of every cycle, all the vehicles in an on-ramp queue must communicate their presence in
the queue to that on-ramp. The contribution of the queue size to the communication cost is

Q1 := lim sup
K→∞

1

K

∑

tk≤Kτ

∑

i∈[m]

|Qi(tk)|,

where tk is the beginning of the k-th cycle in the Renewal policy. Hence, the communication cost
C is upper-bounded by (nc + na)m+Q.

Remark 5. Under the constant time headway safety rule in Section 5.1.1, the flow capacity of the
mainline is 1 vehicle per τ seconds. Theorem 1 provides an inner estimate of the under-saturation
region in terms of the induced loads ρi, arrival rates λi, and the mainline capacity. In particular,
if for every i ∈ [m], (τi/τ − 1)ρi − (τi/τ − 2)λi is less than the capacity, then the Renewal policy
keeps the freeway under-saturated.
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Figure 10: An inner estimate of the under-saturation region of the Renewal policy (grey area) from
Example 3.

Remark 6. The interplay between safety during merging and throughput is captured using the
parameter τi, i ∈ [m]. In particular, as the merging speed of an on-ramp decreases, the required
safety distance Se in (12) increases. This puts a limit on the rate at which the on-ramp can release
new vehicles under the vehicle following safety constraint, which in turn decreases the throughput.

Remark 7. Under the Renewal policy, vehicles that arrive during a cycle cannot enter the freeway
until the next cycle begins. This increases the chance that these vehicles enter the freeway in platoons,
rather than individually, once the next cycle begins. The platoon formation increases the release rate
of other on-ramps as compared to the individual formation, when the merging speeds are less than
Vf . As a consequence, the inner estimate of the under-saturation region of the Renewal policy is
larger than the ones of other policies described in the following sections.

Example 3. Consider a 3-ramp freeway with τ1 = τ3 = 2τ , τ2 = 3τ , i.e., the merging speed
of on-ramps 1 and 3 are Vf and is lower for on-ramp 2. Suppose that R and λ3 are the same as
Example 2. Then, the inner estimate of the under-saturation region given by Theorem 1 is illustrated
in Figure 10.

5.2.2 Dynamic Release Rate Policy

This policy imposes dynamic minimum time gap criterion, in addition to (M1), between release of
successive vehicles from the same on-ramp. Changing the time gap between release of successive
vehicles by an on-ramp is akin to changing its release rate, and hence the name of the policy.

Definition 2. (Dynamic Release Rate (DRR) ramp metering policy) The policy works in
cycles of fixed length Tτ , where T ∈ N. At the beginning of the k-th cycle at tk = (k − 1)Tτ , each
on-ramp allocates itself a “quota" equal to the queue size at that on-ramp at tk. At time t ∈ [tk, tk+1]
during the k-th cycle, on-ramp i releases the ego vehicle if (M1)-(M4), and the following condition
is satisfied:

(M5) at least g(t) time has passed since the release of the last vehicle from on-ramp i, where g(t) is
a piecewise constant minimum time gap, updated periodically at t = Tper, 2Tper, . . . as described
in Algorithm 1.
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Figure 11: An illustration of the update rule for the minimum time gap g in Algorithm 1.

Once an on-ramp reaches its quota, it does not release a vehicle during the rest of the cycle.
In Algorithm 1, Xf (t) := Xf1(t)+Xf2(t), where Xf1 and Xf2 are defined as follows: let Xf1(t) :=∑
e∈[n](|ve(t)−Vf |+ |ae(t)|)Ie(t), where n is the number of vehicles on the mainline and acceleration

lanes. Furthermore, for t ≥ Tper, let Xf2(t) :=
∑

(δe(t)+δ̂e(t)), where the sum is over all the vehicles
that either: (i) violated the safety distance Se at some time in [t− Tper, t], or (ii) predicted at some
time in [t− Tper, t] that they would violate the safety distance once they reach a merging point. The
terms δe and δ̂e are, respectively, the maximum error and predicted error in the relative spacing,
and are given by

δe(t) = max
t′∈[t−Tper,t]

|ye(t′)− Se(t′)|1{ye(t′)<Se(t′)},

δ̂e(t) = max
t′∈[t−Tper,t]

|ŷe(tm|t′)− Ŝe(tm|t′)|1{ŷe(tm|t′)<Ŝe(tm|t′)},

where 1 is the indicator function, and tm|t′ is the time the ego vehicle predicts to cross a merging
point based on the information available at time t′ ≤ tm. If δe + δ̂e is non-zero, then the ego
vehicle communicates it either right before leaving the freeway, or at the update times Tper, 2Tper, . . .,
whichever comes earlier. Otherwise, it is not communicated by the ego vehicle.

Algorithm 1 Update rule for the minimum time gap between release of vehicles under the DRR
policy
Require: design constants: Tper > 0, α>0, γ2 > 0, θ◦ > 0, β > 1

initial condition: g(0) = 0, θ(0) = θ◦, Xf (0) = Xf1(0)
for t = Tper, 2Tper, · · · do
if Xf (t) ≤ max{Xf (t− Tper)− α, 0} then

θ(t)← θ(t− Tper)
g(t)← max{g(t− Tper)− γ2, 0}

else
θ(t)← βθ(t− Tper)
g(t)← g(t− Tper) + θ(t)

end if
end for
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Figure 12: An inner estimate of the under-saturation region (dark grey area) of the DRR policy from
Example 4. The light grey area indicates the additional under-saturation region if we use the Renewal
policy.

Remark 8. Recall the safety distance Se in (12). Since the speed of the vehicles are bounded, Se is
also bounded. Hence, δe (and similarly δ̂e) in Xf2 is bounded. We use this in the following theorem.

Theorem 2. For any initial condition, T ∈ N, and design constants in Algorithm 1, the DRR
policy keeps the freeway under-saturated if ( τiτ − 1)ρi < 1 for all i ∈ [m].

V2I communication requirements: This policy uses information about |Q| (for T > 1) and
X. Its worst-case communication cost is calculated as follows: after a finite time,X is communicated
to all on-ramps only at the end of each update period Tper. After such finite time, the number of
vehicles that constitute X is no more than nc + na. Furthermore, at each time step during a cycle,
the vehicles in the merging area of an on-ramp communicate their state to that on-ramp for safe
gap evaluation (cf. (M3)-(M4)). The number of vehicles in all the merging areas is at most nm.
Finally, if T > 1, then all the vehicles in an on-ramp queue must communicate their presence in
the queue to that on-ramp at the beginning of every cycle. The contribution of the queue size to
the communication cost is

Q2 :=


lim sup

K→∞

1

K

∑

k≤K/T+1

∑

i∈[m]

|Qi((k − 1)Tτ)|


1{T>1}.

Hence, C is upper bounded by m(nc + na)/Tper + nm +Q2.

Remark 9. Similar to Theorem 1, Theorem 2 provides an inner estimate of the under-saturation
region of the DRR policy in terms of the induced loads ρi and the mainline capacity. The region
specified by this estimate is the same for all T ∈ N and is contained in the one given for the Renewal
policy in Theorem 1. However, this does not necessarily mean that the throughput of the DRR policy
is the same for different cycle lengths, or the Renewal policy gives a better throughput as the inner
estimates may not be exact. A simulation comparison of the throughput of the DRR policy for
different cycle lengths is given in Section 5.3.2.

Example 4. Let the freeway parameters be as in Example 3. Then, the inner estimate of the
under-saturation region given by Theorem 2 is illustrated in Figure 12, and is compared with the
one in Figure 10. Also, comparing with Example 2 where the merging speed of on-ramp 2 was also
Vf , one can see that the region specified in this example is smaller.

31



5.2.3 Distributed Dynamic Release Rate Policy

This policy imposes dynamic minimum time gap criterion, just like its coordinated counterpart.
However, each on-ramp only receives information from the vehicles in its vicinity and the down-
stream on-ramps.

Definition 3. (Distributed Dynamic Release Rate (DisDRR) ramp metering policy)
The policy works in cycles of fixed length Tτ , where T ∈ N. At the beginning of the k-th cycle at
tk = (k−1)Tτ , each on-ramp allocates itself a “quota" equal to the queue size at that on-ramp at tk.
At time t ∈ [tk, tk+1] during the k-th cycle, on-ramp i releases the ego vehicle only if (M1)-(M4),
and the following condition is satisfied:

(M5) at least gi(t) time has passed since the release of the last vehicle from on-ramp i, where gi(t) is
a piecewise constant minimum time gap, updated periodically at t = Tper, 2Tper, . . . according
to Algorithm 2.

Once an on-ramp reaches its quota, it does not release a vehicle during the rest of the cycle.
For i ∈ [m], let Xi

f be the part of Xf associated with all the vehicles located between the i-th
and (i + 1)-th on-ramps. Thus, Xf =

∑
i∈[m]X

i
f . We assume that Xi

f is available to on-ramp i.
Furthermore, if gi+1(t) > Tmax for some design constant Tmax, then all the on-ramps j downstream
of on-ramp i communicate Xj

f to on-ramp i. In that case,
∑

j>iX
j
f is available to on-ramp i, where

the notation “j > i" means that on-ramp j is downstream of on-ramp i. Note that for the ring
road geometry, all the on-ramps downstream of on-ramp i is equivalent to all the on-ramps. Hence,∑

j>iX
j
f = Xf for the ring road geometry. Informally, when gi+1 ≤ Tmax, gi depends only on

the traffic condition in the vicinity of on-ramp i, whereas when gi+1 > Tmax, it also depends on the
downstream traffic condition. Naturally, higher values of Tmax make the policy more “decentralized",
but it may take longer to reach the free flow state.
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Algorithm 2 Update rule for the minimum time gap between release of vehicles under the DisDRR
policy
Require: design constants: Tper > 0, Tmax > 0, α>0, γ2 > 0, θ◦i > 0, β > 1

initial condition: (gi(0), gi(Tper)) = (0, 0), (θi(0), θi(Tper)) = (θ◦i , θ
◦
i ), Xi

f (0) =

Xi
f1

(0), i ∈ [m]
for t = 2Tper, 3Tper, · · · do the following for each on-ramp i ∈ [m]
if Xi

f (t) ≤ max{Xi
f (t− Tper)− α,0} then

if gi+1(t− Tper) ≤ Tmax or
∑

j>iX
j
f (t) ≤ max{∑j>iX

j
f (t− Tper)− α,0} then

θi(t)← θi(t− Tper)
gi(t)← max{gi(t− Tper)− γ2, 0}

else
θi(t)← βθi(t− Tper)
gi(t)← gi(t− Tper) + θi(t)

end if
else

if Xi
f (t− Tper) ≤ max{Xi

f (t− 2Tper)− α,0} then
θi(t)← βθi(t− Tper)

else
θi(t)← θi(t− Tper)

end if
gi(t)← gi(t− Tper) + θi(t)

end if
end for

Proposition 1. For any initial condition, T ∈ N, and design constants in Algorithm 2, the DisDRR
policy keeps the network under-saturated if ( τiτ − 1)ρi < 1 for all i ∈ [m].

V2I communication requirements: This policy uses information about |Q| (for T > 1) and
X. Its worst-case communication cost is calculated similar to the DRR policy, except that at the
end of each update period Tper, X is not communicated to all on-ramps. Instead, for all i ∈ [m], only
the part X associated with the vehicles between the i-th and i+ 1-th on-ramps is communicated to
on-ramp i. The contribution of the queue size to the communication cost is the same as the DRR
policy because of the same cycle mechanism. Thus, the worst-case communication cost is reduced
to (nc + na)/Tper + nm +Q2.

5.2.4 Dynamic Space Gap Policy

In this policy, on-ramps require an additional space gap, in addition to the safe gaps in (M3)-(M4),
before releasing a vehicle. This additional space gap is updated periodically based on the state of all
vehicles. Recall that the DRR policy enforces an additional time gap between release of successive
vehicles, which is updated based on the current state of the vehicles as well as their state in the
past. The dynamic space gap policy only requires the current state of the vehicles. However, it
requires additional assumptions on the vehicle-level rules: consider n vehicles over a time interval
during which at least one vehicle is in the speed tracking mode, and no vehicle leaves the freeway.
Then, during this time interval:

(VC4) each vehicle changes mode at most once.
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(VC5) if no vehicle changes mode, then Xg := Xg1 +Xg2 converges to zero globally exponentially,
whereXg1 andXg2 are defined as follows: letXg1(t) :=

∑
e∈[n](|ve(t)−Vf |+|ae(t)|)Je(t), where

Je is a binary variable which is equal to zero if the ego vehicle has been in the speed tracking
mode at all times since being released from an on-ramp, and one otherwise. Moreover,

Xg2 :=
∑

e∈[n]

(
|ye(t)− Se(t)|1{ye(t)<Se(t)} + max

s∈[t′,tf ]
|ŷe(s|t)− Ŝe(s|t)|1{ŷe(s|t)<Ŝe(s|t)}

)
,

where the second term in the sum is set to zero if the ego vehicle is not in a merging area. If
the ego vehicle is in a merging area but has not yet crossed the merging point, then t′ = tm.
Otherwise, t′ = t. Furthermore, recall from Section 5.1.1 that the acceleration lane of an
on-ramp ends either at the merging point (if the merging speed is Vf ), or on the mainline (if
the merging speed is less than Vf ). The term tf |t is the time the ego vehicle predicts to cross
the endpoint of the acceleration lane based on the information available at time t ≤ tf .

Definition 4. (Dynamic Space Gap (DSG) ramp metering policy) The policy works in
cycles of fixed length Tτ , where T ∈ N. At the beginning of the k-th cycle at tk = (k − 1)Tτ , each
on-ramp allocates itself a “quota" equal to the queue size at that on-ramp at tk. At time t ∈ [tk, tk+1]
during the k-th cycle, on-ramp i releases the ego vehicle if (M1)-(M2), and the following condition
is satisfied:

(M6) at time t, ye(t) ≥ K1(X(t)), ŷe(tm|t) ≥ K2(X(t)), and ŷf̂ (tm|t) ≥ K3(X(t)), where ŷf̂ is
the predicted gap between the ego vehicle and its virtual following vehicle, K1(·) is the safety
distance Se(·) plus an additional gap f1(·), K2(·) and K3(·) are the gaps in (M4) required to
ensure safety between merging and exiting the acceleration lane, plus additional gaps f2(·) and
f3(·), respectively.

Once an on-ramp reaches its quota, it does not release a vehicle during the rest of the cycle. The
additional gaps fi(X(t)), i = 1, 2, 3, are piecewise constant and updated periodically at each time
step according to some rule which will be determined in the proof of Theorem 3.

Theorem 3. There exists fi(·), i = 1, 2, 3, such that for any initial condition, and T ∈ N, the DSG
policy keeps the network under-saturated if ( τiτ − 1)ρi < 1 for all i ∈ [m].

V2I communication requirements: This policy uses information about |Q| (for T > 1)
and X. Except for an initial finite time, X is communicated to every on-ramp at each time step.
Moreover, the contribution of the queue size to the communication cost is the same as the DRR
policy because of the same cycle mechanism. Thus, the communication cost is upper bounded by
(nc + na)m+Q2.

Remark 10. The choice of the additional gaps fi, i = 1, 2, 3, in the DSG policy is not limited to the
expressions found in the proof of Theorem 3. An alternative expression is simulated in Section 5.3.4

5.2.5 Local and Greedy Policies

The performance analysis of the three policies in Sections 5.2.2-5.2.4 can be divided into two phases.
The first phase concerns the transient from the initial condition to the free flow state where each
vehicle occupies some slot, and the second phase is from this free flow state onward. Since the
performance index of throughput is an asymptotic notion, it is natural to examine the policies
specifically in the second phase. Indeed, in the second phase, the actions of all the three policies
can be shown to be equivalent to the following policy:
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Definition 5. (Fixed-Cycle Quota (FCQ) ramp metering policy) The policy works in cycles
of fixed length Tτ , where T ∈ N. At the beginning of the k-th cycle at tk = (k−1)Tτ , each on-ramp
allocates itself a “quota" equal to the queue size at that on-ramp. During a cycle, the i-th on-ramp
releases the ego vehicle if (M1)-(M4) are satisfied. Once an on-ramp reaches its quota, it does not
release a vehicle during the rest of the cycle.

V2I communication requirements: This policy uses information about |Q| (for T > 1) and
part of X. At each time step during a cycle, the vehicles in the merging area of every on-ramp
communicate their state to that on-ramp. Moreover, the contribution of the queue size to the
communication cost is the same as the DRR policy because of the same cycle mechanism. Hence,
C is upper bounded by nm +Q2.

Note that the FCQ policy is local, except for synchronizing the beginning of the cycles which
can be done once offline. In the special case of T = 1, the FCQ becomes the simple greedy (and
local) policy under which the on-ramps do not need to synchronize cycles with other on-ramps or
keep track of their quota. Therefore, the communication cost of the greedy policy is upper bounded
by nm. One can see from the proof of the DRR policy that, starting from the aforementioned second
phase, the freeway is under-saturated using the FCQ policy if (τi/τ − 1)ρi < 1 for all i ∈ [m]. It is
natural to wonder if such a result holds if we start from any initial condition, or under any other
greedy policy (not just the slot-based). In Section 5.3.3, we provide intuition as to when the former
statement might be true.

5.2.6 An Outer Estimate

We now provide an outer estimate to the under-saturation region of any policy, against which we
benchmark the inner estimates derived in the previous sections for the proposed policies. This
outer estimate can be thought of as the network analogue of the flow capacity of a single on-ramp.
To formalize this, let D̄π,p(kτ) be the cumulative number of vehicles that has crossed point p on
the mainline up to time kτ , k ∈ N0, under the RM policy π. Then, the crossing rate at point
p is defined as D̄π,p(kτ)/k and the “long-run" crossing rate is lim supk→∞ D̄π,p(kτ)/k. Note that
D̄π,p((k+1)τ)−D̄π,p(kτ) represents the traffic flow at point p in terms of the number of vehicles per
τ seconds. Macroscopic traffic models suggest that the flow is no more than the mainline capacity,
which is 1 vehicle per τ seconds. Hence, D̄π,p((k + 1)τ)− D̄π,p(kτ) ≤ 1 for all k ∈ N0 and any RM
policy π. This implies that

lim sup
k→∞

D̄π,p(kτ)/k ≤ 1, (13)

for any RM policy π. We take (13) as an assumption to the next Theorem.

Theorem 4. If a policy π keeps the freeway under-saturated and satisfies (13) for at least one point
on each link, then the demand must satisfy ρ ≤ 1.

Remark 11. In all of the policies studied in previous sections, vehicles move at the constant speed
Vf at some point pi on the i-th link, i ∈ [m], after a finite time. This and the constant time
headway rule imply that the number of vehicles that can cross pi at each time step is no more
than one. Therefore, lim supk→∞ D̄π,pi(kτ)/k ≤ 1 for all i ∈ [m], and the long-run crossing rate
condition in (13) holds.

Remark 12. If the merging speed at all the on-ramps is Vf , then the minimum time headways
τi, i ∈ [m], are all equal to 2τ . In this case, one can check that the inner estimate of the under-
saturation region given in Theorem 1, Theorem 2, and Proposition 1 become ρ < 1. Comparing with
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Theorem 4, this implies that the Renewal, DRR, and DisDRR policies give the maximum possible
throughput for all practical purposes.

5.2.7 Discussion of the Straight Road Geometry

In this section, we discuss how the previous results can be extended to the straight road geometry
withm−1 on- and off-ramps. The on- and off-ramps are placed alternatively, and they are numbered
in an increasing order along the direction of travel. The on-ramps are numbered from 2 to m, and
the off-ramps are numbered from 1 to m− 1. The upstream entry point and the downstream exit
point are numbered 1 and m, respectively; see Figure 7a.

The vehicle-level rules discussed in Section 5.1.1 remain unchanged, except that, at the free flow
state, we require the vehicles from the upstream entry point to enter at the constant speed Vf . One
can also relax (VC3) as follows:

(VC3) there exists Tempty such that for any initial condition, if no vehicle is released from on-ramps
2, . . . , j for some j ∈ {2, . . . ,m}, and all the vehicles downstream of link j are at the free flow
state, then all the vehicles reach the free flow state after at most Tempty time.

Note that condition (VC3) imposes macroscopic-level constraints on the inflow from the up-
stream entry point before reaching the free flow state. This is justified if, e.g., the on-ramps
upstream of the entry point are also controlled. We also need to specify vehicle arrivals and their
destination at the microscopic level after reaching the free flow state. To this end, we may adopt an
i.i.d Bernoulli process with parameter λ1 and an i.i.d Bernoulli routing process that are independent
of the on-ramp processes discussed in Section 5.1.2. The routing matrix, the cumulative routing
matrix, and the induced loads are defined accordingly. However, this choice of demand model may
be generalized to include practical cases as noted in Remark 2.

Since the vehicle arrivals from the upstream entry point is not controlled, e.g., by a ramp meter,
the mainline may never become empty even if all the on-ramps pause release. Hence, we need to
modify the description of the Renewal policy. In particular, the first cycle of the Renewal policy
begins when the vehicles reach the free flow state. Thereafter, the k-th cycle, k > 1, begins when
all quotas of the (k − 1)-th cycle reach their destination. The description and performance of the
DRR policy remains the same. In the description of the DisDRR policy, X2

f is modified to include
all vehicles between the upstream entry point and on-ramp 2. The performance of this policy also
remains the same.

5.3 Simulations

The following setup is common to all the simulations in this section. We consider a ring road with
P = 1860 [m] and m = 3 on- and off-ramps. Let h = 1.5 [s], S0 = 4 [m], L = 4.5 [m], and
Vf = 15 [m/s]. For these parameters, we obtain nc = 60. The on-ramps are located symmetrically
at 0, P/3, and 2P/3; the off-ramps are also located symmetrically 155 [m] upstream of each on-
ramp. The initial queue size of all the on-ramps is set to zero. Vehicles arrive at the on-ramps
according to i.i.d Bernoulli processes with the same rate λ; their destinations are determined by

R =




0.2 0.7 0.1
0 0.8 0.2

0.5 0 0.5


 .
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Note that, on average, most of the traffic wants to exit from off-ramp 2. Thus, one should
expect that on-ramp 3 finds more safe gaps on the mainline than the other two on-ramps. As a
result, on-ramp 3’s queue size is expected to be less than the other two on-ramps.

5.3.1 Greedy Policy for Low Merging Speed

Figure 13: On-ramp queue size profiles when all the on-ramps are long, under the FCQ policy.

The mainline and acceleration lanes are assumed to be initially empty in this section and Sec-
tion 5.3.2. The on-ramps use the greedy policy, i.e., the FCQ policy with T = 1, from Section 5.2.5.
When the merging speed of all the on-ramps is Vf , then for the given R, the throughput is given by
λ = 5/9 [veh/time step]. Note that since the arrival rates are the same, the throughput is a single
point. The queue size profiles for λ = 0.5 [veh/time step], which corresponds to ρ = 0.9 (heavy
demand), is shown in Figure 13. As expected, |Q3(·)| is generally less than the other two on-ramps.

We next consider the case when the merging speed of on-ramps 1 and 3 are Vf , i.e., τ1 = τ3 = 2τ ,
and is approximately Vf/3 = 5 [m/s] for on-ramp 2 which corresponds to τ2 = 3τ . In the heavy
demand regime, i.e., ρ = 0.9, |Q2(·)| increases steadily which suggests that the freeway becomes
saturated even though ρ < 1. The throughput in this case is estimated from simulations to be
λ = 0.44 [veh/time step]. The estimates of the throughput of the Renewal and FCQ policies,
given by Theorems 1 and 2 are λ = 0.5 [veh/time step] and λ = 0.33 [veh/time step], respectively.
Combining this with the simulation results, we see that the Renewal policy performs better than
the greedy policy in terms of its throughput.

5.3.2 Effect of Cycle Length on Queue Size

The long-run expected queue size, i.e., Q := lim supk→∞ E
∑

i |Qi(kτ)|, are compared under the
FCQ policy for different T . The expected queue size is computed using the batch means approach,
with warm-up period of 105, i.e., the first 105 observations are not used, and batch size of 105. In
each case, the simulations are run until the margin of error of the 95% confidence intervals are 1%.

Figure 14a shows Q vs. ρ for different T when the merging speed of all the on-ramps is Vf .
The plot suggests that for all ρ, Q increases monotonically with T . However, this does not hold
true when the merging speeds are low. For example, Figure 14b shows Q in log scale vs. T for
λ = 0.455, which corresponds to ρ ≈ 0.82, when the merging speed of on-ramps 1 and 3 is Vf , and
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(a) (b)

Figure 14: Effect of cycle length T on the long-run expected queue size (a) for different ρ when both
on-ramps are long, (b) for a fixed ρ when on-ramp 2 is short. Both plots are under the FCQ policy. In
plot (b), the logarithm of the expected queue size is set to 20 whenever the freeway becomes saturated.

is Vf/3 for on-ramp 2. The plot shows that the freeway may become saturated depending on the
choice of T , and that the dependence of Q on T is not monotonic.

5.3.3 Relaxing the V2X Requirements

In this scenario, we evaluate the performance of the greedy policy for ρ = 0.9 (heavy demand) when
the merging speed of all the on-ramps is Vf , and the mainline is initially not empty. The safety
mode only consists of the following submode: in a non-merging scenario, the ego vehicle follows the
leading vehicle by keeping a safe time headway as in, e.g., [29]. In a merging scenario, it applies
the aforementioned control law with respect to both its leading and virtual leading vehicles. The
most restrictive acceleration is used by the ego vehicle. For this control law, platoons of vehicles
are stable and string stable ( [29]).

The initial number of vehicles on the mainline, their location, and their speed are chosen at
random such that the safety distance is not violated. The initial acceleration of all the vehicles is
set to zero. We conducted 10 rounds of simulation with different random seed for each round. It is
observed in all scenarios that vehicles reach the free flow state after a finite time using the greedy
policy. We conjecture that this observation holds for any initial condition if platoons of vehicles are
stable and string stable. The intuition behind this statement is as follows: using the greedy policy,
vehicles are released only if there is enough space gap on the mainline, and successive releases are
at least τ seconds apart. In between releases, vehicles on the mainline try to reach the free flow
state because of platoon stability. Once a vehicle is released, it may create disturbance, e.g., in
the acceleration of the upstream vehicles. However, string stability implies that such disturbance
is attenuated. Therefore, it is natural to expect that vehicles will reach the free flow state after a
certain finite time. Thereafter, by Theorem 2, the greedy policy keeps the freeway under-saturated
if (τi/τ − 1)ρi < 1 for all i ∈ [m].
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Figure 15: The total travel time (TTTn), where n is the number of completed trips, under the fixed
demand ρ = 0.82. The vertical lines in the Safe-ALINEA, Renewal, and DRR policies represent the
standard deviation. The standard deviation of the DisDRR, DSG, and greedy policies are similar to the
DRR policy and are omitted for clarity.

5.3.4 Comparing the Total Travel Time

We evaluate the total travel time under the Renewal, DRR, DisDRR, DSG, and greedy policies
and compare them with the ALINEA ramp metering policy under vehicle safety constraints. The
ALINEA policy was introduced in [19] and, for a given on-ramp, can be expressed as follows:

r(k) = r(k − 1) +Kr(ô− o(k)).

Here, r(·) is the on-ramp outflow, Kr is a positive design constant, o(·) is the occupancy of the
mainline downstream of the on-ramp, and ô is the desired occupancy. For the ALINEA policy, we
use time steps of size 60 [s], Kr = 70 [veh/h] ( [19]), and ô = 13 % corresponding to the capacity
flow. We also add the following safety filter on top of ALINEA: the ego vehicle is released only if it
predicts to be at a safe gap with respect to its virtual leading and following vehicles at the moment
of merging. We use the name Safe-ALINEA to refer to his policy. For the DRR and DisDRR
policies, we use the following parameters: T = 12, Tper = 2τ , α=50, γ2 = 10, θ◦i = 0.1, β = 1.01,
and Tmax = 100 [s]. Informally, γ1 is set to a high value so that the release times gi(·) increase
if the traffic condition, i.e., the value of Xf , does not improve significantly in between the update
periods; γ2 and θ◦i are set to low values so that the jump sizes in gi(·) are small; Tmax is set to a
high value so that on-ramps update their release time in a completely decentralized way. For the
DSG policy, we set T = 12 and use the additional gap κ(Xf1 +

∑
e∈[n] |ye − (hve + S0)|Ie) on top

of (M3)-(M4), where κ = 0.01 is chosen so that the additional gap is relatively small (≈ 8 [m] for
the initial condition described next).

We let the merging speed of on-ramps 1 and 3 be Vf , and Vf/3 for on-ramp 2. We let λ = 0.455,
and consider a congested initial condition where the initial number of vehicles on the mainline is
100 > nc; each vehicle is at the constant speed of 6.7 [m/s], and is at the distance h × 6.7 + S0 ≈
14.1 [m] from its leading vehicle.

We evaluate the Total Travel Time (TTTn), which is the average travel time of the first n
completed trips. In order to show consistency, for each policy we conducted 10 rounds of simulations
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with different random seed for each round. In each round, we used the same seed across different
policies. We use the average and standard deviation of the 10 simulation rounds for illustration.

For the aforementioned setup, the freeway becomes saturated under the Safe-ALINEA and
greedy policies, but remains under-saturated under the other policies. Figure 15 and Table 2 show
the simulation results. From the results, we can see that the DRR policy provides significant
improvement in the TTT as compared to the Safe-ALINEA (approximately 83%) and Renewal
(approximately 80%) policies. The DisDRR, DSG, and greedy policies show similar improvements.
However, as shown in Section 5.3.2, the freeway becomes saturated under the greedy policy for long
enough simulation time (not shown in Figure 15). This implies that the current improvement in
the TTT will disappear as the number of completed trips grows. On the other hand, the choice of
T = 12 in the DRR, DisDRR, and DSG policies will show steady improvement.

Table 2 also provides the time average queue size, i.e., Q(Kτ) = 1
mK

∑
i,j |Qi(jτ)|, where |Qi| is

the average queue size over the 10 simulation rounds, and Kτ is the simulation time. It can be seen
that the Safe-ALINEA policy has the largest queue size as compared to the other policies. This is
mainly because of the safety filter added on top of the ALINEA policy. Without the safety filter,
ALINEA releases vehicles more frequently, which results in shorter on-ramp queues on average.
However, the safety distance is violated more often and more congestion is created on the mainline,
which results in higher travel time compared to the DRR policy. In conclusion, with proper choice
of design parameters, our proposed policies create and maintain the free flow state on the mainline,
which improves the travel time.

Table 2: Performance of the policies.

Ramp Metering Policy Renewal DRR DisDRR DSG Greedy Safe-ALINEA

max
n

TTTn [min] 10.2 2 2 1.8 1.7 11.7

Average queue size 101 6 10 7 12 127

6 Conclusion

In this project, we exploited the departure time-based equilibrium formulation to design pricing
profiles under budget and price cap constraints that achieve the system optimum for a single bot-
tleneck. Our approach for the single bottleneck case under inelastic demand is based on the bilevel
non-convex optimization problem that has a special structure, which can be analytically solved
under a reasonably weak assumption on the schedule delay cost function. In the case of the single
bottleneck under the elastic demand, we converted the bilevel non-convex optimization problem into
a single level mathematical program with equilibrium constraints, which was approximately solved.
The designed pricing profile allows for decentralized control of the commuters’ departure times from
their homes and further allows for effective management of the transportation infrastructure with
a single bottleneck under an elastic or inelastic demand setting.

We provided a RM framework at the microscopic level subject to vehicle following safety con-
straints. This allows to explicitly take into account the V2X communication scenarios into the RM
design, and study the impact on the freeway performance. We specifically provided RM policies
for a few such scenarios, and analyzed performance in terms of the throughput of the freeway.
There are several avenues for generalizing the setup and methodologies initiated in this project. Of
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immediate interest would be to consider a general network structure, and to derive sharper inner
estimates on the under-saturation region for the low merging speed case. We are also interested in
expanding performance analysis to include travel time, possibly by leveraging waiting time analysis
from queuing theory.

7 Implementation

Not applicable.
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9 Data Management Plan

Products of Research

No new data was collected for this project. Only simulation data was generated.

Data Format and Consent

All the simulations were done in Matlab.

Data Access and Sharing

The input/output data for the simulations in this report is available at https://viterbi-web.
usc.edu/~ksavla/code.html.

Reuse and Redistribution

The data can be reused freely for non-commercial purposes. Its usage, in original or after modifi-
cation, in publications is to be done with due acknowledgement to the authors of this report and
by citation of relevant publications by the authors.
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