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Abstract 
This project has combined tools from geospatial analysis, mathematical optimization theory, and 
computational geometry to study a routing paradigm that we call sidekick routing. A sidekick routing 
scheme is a logistical framework in which a large vehicle, such as a truck or van, serves as a mobile base 
for a fleet of small vehicles (the “sidekicks”), such as autonomous ground vehicles (AGVs) or unmanned 
aerial vehicles (UAVs). Systems of this kind have significant potential to simultaneously reduce vehicle 
miles travelled (VMT) – because the sidekicks are not restricted to streets – and to improve accessibility 
to goods, because the so-called “last mile” cost of transporting those goods is reduced. 
The sidekick paradigm has very recently seen use in many public and private sector organizations, both 

in California and elsewhere. However, although the requisite physical technology is reasonably mature, 

the requisite management technology (i.e. systems for determining efficient routing strategies) are 

relatively nascent. Moreover, the extent to which such services can provide a societal benefit are not yet 

understood, although the results from this report indicate that the potential is very high.  



The “sidekick” routing paradigm for VMT reduction and improved accessibility 
 

7 
 

 

The “sidekick” routing paradigm for VMT reduction and 
improved accessibility 

Executive Summary 
One of the more novel recent innovations in the logistics world, both in theory and in practice, 
is the use of small autonomous vehicles to facilitate last-mile delivery. One particular scheme 
that has received considerable recent attention is the a “sidekick” scheme, in which a large 
cargo truck acts as a mobile “base” that deploys smaller vehicles, such as drones or unmanned 
ground vehicles (UGVs).  The sidekicks alternate between visiting the truck to pick up items and 
visiting the customers, and the overall objective is to determine a coordinated set of routes for 
all vehicles in order to optimize system efficiency, such as minimizing the time to completion or 
the vehicle miles travelled (VMT). 

Although the hardware for these systems is fairly mature, the problem of determining efficient 
routes has not been considered until very recently. From the perspective of routing these 
systems pose an exceptionally difficult challenge due to the need to synchronize multiple 
vehicles that can all be traveling at the same time and at different speeds. We cannot consider 
vehicles’ routes separately as we must include the possibility of vehicles carrying other vehicles 
for periods of time and the need for intermittent meetings of vehicles at the same position at 
the same point in time. Thus we see that individual vehicles’ routes are highly interdependent, 
and any reasonable objective will be impacted by this interdependence, making the 
optimization very hard. Furthermore, the high-level attributes of these systems are not at all 
clear: how much more efficient can they be? When are they useful? What are the trade-offs 
inherent in such a scheme? In this report, we develop a continuous approximation model that 
estimates the improvements to efficiency that such a system provides, in the asymptotic limit 
as many demand points are drawn from a continuous probability distribution.  Our analysis 
indicates under what circumstances these sidekicks can offer the most benefit, as a function of 
their speeds and the number of sidekicks available.  
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  1 Introduction
One logistical paradigm that has received considerable attention in recent years is the sidekick
routing scheme. A sidekick routing scheme is a logistical framework in which a large vehicle, such
as a truck or van, serves as a mobile base for a fleet of small vehicles (the “sidekicks”), such as
autonomous ground vehicles (AGVs) or unmanned aerial vehicles (UAVs). The sidekicks alternate
between visiting the truck to pick up items and visiting the customers, and the overall objective
is to determine a coordinated set of routes for all vehicles in order to optimize system efficiency,
such as minimizing the time to completion or the vehicle miles travelled (VMT). A sketch of such
a system is shown in Figure 1.

Schemes of this kind have been deployed bymany public and private sector organizations very
recently, as described below and pictured in Figure 2:

• The California‐based startup companies Kiwi Campus, Dispatch (recently acquired by Ama‐
zon [29]), and Starship all use a hybrid system involving vans and ground vehicles to deliver
food and groceries.

• The Ohio‐based company AMP Electric Vehicles has introduced a system that they call the
“horsefly” scheme, in which a drone flies back and forth with a delivery van. The California‐
based startup MatterNet has also partnered with Mercedes‐Benz in designing a similar sys‐
tem for transporting blood samples; they call their system the “Vision Van”.

• The Swiss Post has been using a hybrid van‐and‐drone scheme to deliver goods from de‐
partment stores free of charge within the Zürich city center since 2017 [9].

Although the hardware for these systems is fairly mature, the problem of determining efficient
routes has not been considered until very recently. From the perspective of routing these sys‐
tems pose an exceptionally difficult challenge due to the need to synchronize multiple vehicles
that can all be traveling at the same time and at different speeds. We cannot consider vehicles’
routes separately as we must include the possibility of vehicles carrying other vehicles for peri‐
ods of time and the need for intermittent meetings of vehicles at the same position at the same
point in time. Thus we see that individual vehicles’ routes are highly interdependent, and any rea‐
sonable objective will be impacted by this interdependence, making the optimization very hard.
Furthermore, the high‐level attributes of these systems are not at all clear: how much more ef‐
ficient can they be? When are they useful? What are the trade‐offs inherent in such a scheme?
We employ a continuous approximation analysis as a means of answering these questions.

This report is organized as follows. In Section 2 we provide an overview of related work. In
Section 3 we formally define the sidekick routing problem. In Section 4 we introduce preliminary
results that will be of use in our analysis. In Section 5 we derive our main result concerning the
asymptotic behavior of the sidekick routing problem. In Section 6 we summarize the operational
implications of this result. In particular, we consider how much improvement in efficiency can be
gained by switching to the sidekick system and the tradeoffs that must be weighed in implement‐
ing the system. Finally, in Section 7 we consider the scaling behavior, and dependence on the
configuration of the sidekicks, that our result tells us we should expect. We empirically demon‐
strate that actual tour times, obtained by heuristically solving the sidekick problem on simulated
sets of customer points, corroborate our expectations.

8
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(a) (b)

Figure 1: The figure on the left shows a travelling salesman tour of a set of client destinations
and a central depot, that is, the shortest tour that visits a collection of points and starts and
ends at the central depot. The figure on the right shows the solution to a “sidekick” problem in
which the truck has a “helper” (such as a robot or a drone) that alternates between visiting the
truck and visiting the customer locations. Note that the truck’s tour with helpers is about half
the length of the tour with no helpers.

1.1 Remark on notational conventions
When it is necessary to specify that a map is injective, we use ↪→.

2 Related work
We begin by considering problems that pose similar fundamental questions to that of sidekick
routing. We then look at applications of the continuous approximation paradigm to other com‐
binatorial problems. Finally, we review past treatment of sidekick routing problems, comparing
these papers’ model assumptions and contributions to those of this work.

One of the basic phenomena that is of interest to us is the trade‐off between efficiency in
transportation along a backbone network (in this case, the route of the truck) versus direct trips
between locations (in this case, the direct trips taken by sidekicks); this is arguably one of the
fundamental dichotomies in transportation and logistics [11, 12]. In this sense, our problem of
interest is philosophically similar is [10], which asks whether small local retail stores are preferable
to “big‐box” retailers, with [81], which estimates the changes in net CO2 emissions that result by
introducing grocery delivery services, and with [82], which computes the optimal layout of a set
of facility locations that are themselves connected with a backbone network.

this report is concerned with a continuous approximationmodel for a transportation problem,
and is therefore philosophically similar to (for example) [8], which analytically determines trade‐
offs between transportation and inventory costs, [32], which shows how to route emergency relief
vehicles to beneficiaries in a time‐sensitive manner, and [33], which describes a simple geomet‐
ric model for determining the optimal mixture of a fleet of vehicles that perform distribution.
The basic premise of the continuous approximation paradigm is that one replaces combinatorial
quantities that are difficult to compute with simpler mathematical formulas, which (under certain

9
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  conditions) provide accurate estimations of the desired quantity. Such approximations exist for
many combinatorial problems, such as the travelling salesman problem [3, 21], facility location
[28, 30, 55], and any subadditive Euclidean functional such as a minimum spanning tree, Steiner
tree, or matching [63, 68, 69]. Our particular usage of the continuous approximation paradigm is
that we treat the customer demand as coming from a probability density function; in this sense
our work also shares some commonality with stochastic vehicle routing problems [14, 24].

In 2018Ottoet al. compiled a comprehensive review, [54], ofwork on optimization approaches
to systems employing drones for a wide range of applications, to include package delivery and
specifically package delivery using drones as sidekicks for trucks. We cover much of the same
territory to give a complete picture of the drone, and particularly sidekick, landscape and survey
even more recent developments in the area.

We are primarily interested in prior work in the area of continuous approximation and theoret‐
ical results bounding the objective or characterizing the improvement due to sidekick introduction.
For work on solving sidekick problems we concern ourselves principally with these papers’ formu‐
lations of the problem. There are many variants, each differing in the assumptions that are made
about the delivery system. Three critical questions, the answers to which change from model to
model, that need to be posed are given below.

• Does the truck also deliver packages or are packages only delivered by the sidekicks?

• Can the truck carry multiple sidekicks capable of making simultaneous deliveries?

• Are the sidekick launch and pickup locations restricted to customer points, or otherwise to
a discrete set of points that is specified a priori?

Table 1 provides a summary of how previous formulations have answered these questions and
the work that was done on the resulting problem. We can see that our formulation has the least
restrictive answers to these questions and thus addresses the problem in the greatest generality.
That is, in our model we have the following.

• We allow for both the case that deliveries must be made by sidekicks and the case that the
truck can also make deliveries.

• There can be any number of sidekicks on the truck and they are free to be launched and
picked up in any order.

• The sidekick launch and pickup locations can be any point in the plane.

Other factors that distinguish the models surveyed here are the treatment of a restricted drone
range and theway that the objective, be it completion timeor somemeasure of energy consumed,
is determined. This work assumes unlimited drone range and that drones make a single delivery
per trip from the truck. We take as our objective completion time. We assume for simplicity that
the time spent actually dropping a package at a customer node as well as the time spent capturing
a sidekick and preparing it for relaunch are negligible. Both the truck and the sidekicks travel at
fixed speeds along Euclidean distances. The specification of their relative speeds does however
allow one to build some knowledge of the underlying network into the objective. One additional
assumption that adds to the robustness of our formulation is that the sidekicks are allowed to be
slower than the truck. We are thus able to accurately model systems like the truck‐AGV schemes
discussed in the introduction, whereas some papers surveyed require that the sidekicks be faster.

10
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  2.1 Other Autonomous Vehicle Delivery Schemes and Applications
A lot of work is being done in the area of optimal coordination of autonomous vehicles. Appli‐
cations beyond just delivery include power network surveillance in response to extreme weather
events [43], fire detection and extinguishing [76], facilitating intervehicle communications after
disasters [35], and performing earth observation [80].

Other work has focused on drone‐specific operational aspects of making deliveries. These
include routing that considers the possibility of drones failing along their routes [73], routing that
takes into account uncertain air temperature’s impact on battery duration [38], and depot location
and route planning that takes into account battery consumption rates dependent on payload [74].

Examples of routing for delivery using a fleet of only autonomous vehicles can be found in
[67] and [16]. Kim et al. [39] give a drone fleet routing problem for medical deliveries with the
additional facet of depot location planning.

Heterogeneous vehicle delivery systemswhere the different types of vehicles work completely
in parallel, both making deliveries from a depot rather than being synchronized, are also studied.
Murray and Chu [51] give formulation of one such problem, the “Parallel Drone Scheduling Trav‐
eling Salesman Problem (PDTSP).” A truck makes a tour of some points while drones serve the
others by single‐customer trips from the depot. Murray and Chu provide a heuristic solution to
this problem. Another solution approach can be found in [50]. Li et al. [42] use a continuous ap‐
proximationmodel to derive the expected cost of a similar problemwhere trucksmove first from a
distribution center to depots that each serve a region. A PDTSP‐like system is then used within the
regions. In [71] drones provide an alternative delivery method to a cross‐docking system. In [75] a
Markov DecisionModel is developed for the problem of meeting dynamic customer demand with
either trucks or drones.

A problem that is similar to the sidekick problem in that it seeks to take advantage of the long
range of a truck as well as the benefits of autonomous vehicles appears often in the literature as
the Two Echelon Routing Problem. In it trucks start at a distribution center then take tours of, or
direct routes to, secondary drone depots. Trucks bring packages or packages and drones. Drones
then make deliveries from the secondary depots. In some cases trucks also visit customers on
their tour. Variations of this system can be found in [66, 37, 53, 19].

There are a number of problems that involve tandem delivery that do not quite fall into our
classification of a sidekick routing problem due to some restrictive assumptions. These assump‐
tions are the truck moves along a linear course [64], the truck’s route is predetermined [4], the
visit sequence is predetermined [23], and sidekicks must be picked up where they are launched
[47, 20]. A nondelivery application of a sidekick system is presented in [72]. A ground robot and
a drone are used in tandem to monitor nitrogen levels in an agricultural plot.

2.2 Exact Solutions to Sidekick Problems
In 2015 Murray and Chu [51] were the first to formally describe a sidekick system. They provide a
mixed integer linear programming (MILP) formulation of the “Flying Sidekick Traveling Salesman
Problem (FSTSP).” In it a single truck carries a single drone. The truck can, and for some customers
must, make deliveries. Sidekick launch and pickup locations are limited to customer points and the
depot. A time endurance range is imposed on the sidekicks. The objective is to minimize the time
to complete all deliveries. Another similar, widely cited, integer programming (IP) formulation,

11
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  the “Traveling Salesman Problem with Drone (TSP‐D)” is given by Agatz et al. [1]. Ha et al. [27]
introduce a cost based objective to these single‐drone models. Jeong et al. [34] present a mixed
integer programming (MIP) formulation extending this problem by letting drone range depend on
payload and introducing no fly zones. Additional modifications to the MIP model can be found in
[18] and [77]. Bouman et al. [5] give a dynamic programming solution to the problem.

Other extensions to the single‐drone problem involve allowing for drone launch and pickup at
a discrete set of points rather than, or in addition to, the customer points. Mathematical program‐
ming formulations of such problems can be found in [46] and [44]. Matthew et al. [49] present a
solution to this problem without truck deliveries by way of a reduction to the generalized travel‐
ing salesman problem. Poikonen and Golden [57] go a step further in freeing launch and pickup
locations. They formulate the “Mothership and Drone Routing Problem,” in which launches and
pickups can occur anywhere in the plane and drones are allowed to make multiple deliveries per
trip from the truck. The authors give a branch and boundmethod for solving this problem exactly.

Murray and Raj [52] extend the FSTSP model of [51] to allow for multiple heterogeneous side‐
kicks. They further develop a more sophisticated treatment of endurance that takes into account
payloads. A MILP model is presented. Kitjacharoenchai et al. [40] give a MIP formulation for a
more limitedmulti‐drone problem inwhich only one drone launch or pickup can occur at each cus‐
tomer point. Karak and Abdelghany [36] formulate a MIP that extends the multi‐sidekick model
to allow for a discrete set of non‐customer launch and pickup points. Boysen et al. [7] provide an
MIP formulation for a multi‐sidekick problem in which robots are launched from a predetermined
launch sites and return to a predetermined set of robot depots. The truck can refill to its capacity
of robots at any robot depot.

Another class of sidekick problems is sidekick vehicle routing problems (VRPs) involving fleets
of multiple, often‐capacitated, trucks and sidekicks. Wang et al. [78] provided the first formu‐
lation, the “Vehicle Routing Problem with Drones,” but their work is not concerned with exact
solutions. Wang and Sheu [79] give a MIP formulation. MIP formulations of the problem with the
addition of customer time windows can be found in [62] and [61].

All of these exact solutions are intractable on problems of practical size and are generally only
able to solve problem instances up to size 10 customer points in a reasonable amount of time.
Thus heuristic approaches are needed.

2.3 Heuristic Solutions to Sidekick Problems
Many of the papers given in the previous section also develop heuristic methods for the problems
they pose. Murray and Chu [51] give a solution to the FSTSP that begins with a truck TSP tour
and iteratively reassigns customers to drones. Likewise Agatz et al.’s [1] solution to the TSP‐D
begins with a TSP tour and then partitions the tour into truck customers and drone customers.
Poikonen et al. [58] develop a heuristic method for solving the TSP‐D that uses a branch and
bound procedure to explore possible sequences of deliveries. Tang et al. [70] present a constraint
programming formulation of the TSP‐D. Other heuristic solutions to the versions of the problem
with a single‐drone and launch and pickup locations restricted to customer points can be found in
[27, 26, 22, 45, 25, 60, 77, 34].

Heuristic solutions to the problem with the extension of launch and pickups allowed at a dis‐
crete, predetermined set of non‐customer points are given in [46] and [44]. Marinelli et al. [48]
provide a heuristic algorithm for the “en‐route” truck‐drone delivery system. In it the drone can

12
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  be launched and picked up at any point along the lines that make up the truck’s tour of the cus‐
tomers that it visits. Poikonen and Golden [57] develop a heuristic for the Mothership and Drone
Routing Problem which has totally free launch and pickup sites.

Murray and Raj give a heuristic solution to their FSTSP with multiple sidekicks model. Other
heuristic solutions to multi‐sidekick models with launch and pickup restricted to customer points
can be found in [6] and [40].

Karak and Abdelghany [36] and Boysen et al. [7] heuristically solve their problems with mul‐
tiple drones and a fixed set of non‐customer launch and pickup sites. Poikonen [56] provides a
heuristic solution to a new problem, the “Multi‐Visit Drone Routing Problem.” A single truck can
carry multiple drones, though their launch and pickup order is restricted to all must be launched
then all must be picked up. Launch and pickup locations are a given discrete set. Most notably, a
drone can deliver multiple packages per trip from the truck.

For heuristic algorithms to solve sidekick VRPs, Daknama and Kraus [17] assume launch and
pickups at customers, Wang et al. [79] assume launch and pickups at discrete set in addition to
customers, and Schermer et al. [65] assume launch and pickups at discrete locations along the
direct paths the truck travels between truck‐delivery points.

2.4 Theoretical Results and Continuous Approximation Models
Wang et al. [78] consider the Vehicle Routing Problem with Drones in which multiple vehicles
each carry multiple drones. They derive upper bounds on the improvement to be gained over
the optimal TSP and VRP solutions without drones as well as the improvement to be gained by
introducing faster drones. Poikonen et al. [59] extend the model of [78]. A battery life (time limit)
is imposed on the drones; the possibility of using different distancemetrics for the truck and drone
and the possibility of using cost rather than time based objectives are considered; and there is an
extension to the close‐enough vehicle routing problem. Their results are bounds on improvement
due to introduction of drones and due to different drone configurations.

Agatz et al. [1] produce a result that is a generalization of the results of [78] when applied to
the TSP‐D. That is they give an upper bound on the improvement over just‐truck routing allowing
different distance metrics to be used for the truck and drone distances. The authors further give
a lower bound to the TSP‐D and an approximation algorithm using minimum spanning trees.

Campbell et al. [13] study a continuous approximation model for a sidekick problem with
a truck carrying multiple drones. Demand is modeled as a continuous spatial density. Customer
points are visited in rectangular swaths. The authors provide the expected cost of delivery in terms
of the customer density and the truck and drone per‐unit‐distance and dropoff costs. Comparison
is made to the expected cost without drones. Unlike in our model, drone launch and pickup loca‐
tions are limited to customer points, and the sequence of deliveries is fixed to a truck delivery at
which all drones are launched followed by another truck delivery at which all drones are picked
up and relaunched.

In [15] Carlsson and Song consider the sidekick problem as formulated in this report except
restricted to only one sidekick and assuming that the sidekick is faster than the truck. Using a
continuous approximation model that assumes a smooth demand distribution they are able to
derive the asymptotic behavior of the optimal tour as the number of customers goes to infinity.
This then yields a characterization of the improvement to be gained by introducing a sidekick and
how this improvement depends on the relative speeds of the truck and sidekick.

13
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(a) BoxBot (b) Dispatch (c) Kiwi Campus

(d) HorseFly (e) Starship (f) Swiss Post (g) Mercedes Vision Van

Figure 2: Various hardware implementations of sidekick routing schemes.
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  3 Problem definitions
We begin by formally defining the problem of sidekick routing with multiple sidekicks. We as‐
sume that a single, uncapacitated truck must provide service to a collection of n customers in the
plane, using the assistance of k sidekicks having unit capacity, and that the goal is to minimize the
time to completion. To simplify exposition, we will first formulate our problem with an additional
constraint that the truck itself is not permitted to visit any customers:
Definition 1. Let p1, . . . , pn be a collection of points in the plane. Let k denote the number of
sidekicks. Let φ0 denote the speed of the truck, and let φ1 denote the speed of each sidekick (φ1
can be greater or less than φ0). Let variables x1, . . . , xn be the launch points for the sidekicks,
and let variables y1, . . . , yn be the pickup points for the sidekicks. That is, point pi is visited by a
sidekick that is launched at point xi and is retrieved at point yi.

Let variables zj , j ∈ {1, . . . , 2n}, be the location of the jth sidekick launch or pickup event,
and let variables tj , j ∈ {1, . . . , 2n}, be the time of the jth sidekick launch or pickup event. The
zj ’s take the same values as the xi’s and the yi’s; we introduce them only to make indexing easier
in the formulation. We let z0 be the initial position of the truck and let z2n+1 be its final position.
We require that the truck’s tour be a loop, i.e. z2n+1 = z0. We let t0, equaling zero, be the time at
which the truck starts its loop and let t2n+1 be the time at which the truck completes its loop.

Let σ : {1, . . . , n} ↪→ {1, . . . , 2n} map customer index i to the place of that customer’s side‐
kick launch event in the ordering of all launch and pickup events. Similarly let π : {1, . . . , n} ↪→
{1, . . . , 2n} map customer index i to the place of that customer’s sidekick pickup event in the or‐
dering of all launch and pickup events. Let F be the set of all pairs of mappings (σ, π) that induce
a valid sidekick tour. The conditions for inclusion in F are

σ(i) < π(i) ∀i ∈ {1, . . . , n} (launches occur before corresponding pickups)
|{i : σ(i) < j}| − |{i : π(i) < j}| ≤ k ∀j (never more than k sidekicks in use)
σ, π are injective (a launch and a pickup for each customer)
σ(i) 6= π(i′) ∀i, i′ ∈ {1, . . . , n}. (one event per place in the ordering)

The last two conditions say that themapsσ andπ have to jointly formabijectionbetween {1, . . . , n}
and {1, . . . , 2n} (to be precise, the two maps actually form a bijection between the multiset
{1, . . . , n} ] {1, . . . , n} and {1, . . . , 2n}, where ] denotes the multiset union [41]).

The sidekick problem problem is then given by

minimize
x,y,z,t,σ,π

t2n+1 s.t. (SK1)

tj ≥ tj−1 + 1
φ0

‖zj − zj−1‖ ∀j ∈ {1, . . . , 2n + 1} (1)

tπ(i) ≥ tσ(i) + 1
φ1

‖xi − pi‖ + 1
φ1

‖pi − yi‖ ∀i ∈ {1, . . . , n} (2)

zσ(i) = xi ∀i ∈ {1, . . . , n}
zπ(i) = yi ∀i ∈ {1, . . . , n}

t0 = 0
z2n+1 = z0

(σ, π) ∈ F ,
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(a) (b)

Figure 3: Solutions to the sidekick problem for n = 30 customers, k = 3 sidekicks, and a sidekick
speed, φ1, that is twice the speed, φ0, of the truck. The solid line is the truck tour; dotted lines
are the sidekicks’ routes; the square represents the starting and finishing point of the truck. In
the figure on the left all deliveries are made by the sidekicks (Problem SK1). In the figure on the
right the truck is also allowed to make deliveries (Problem SK2).

where the objective value is the time at which the truck completes its loop, (1) captures the time
needed for the truck to travel between launch and pickup points, and (2) captures the timeneeded
for a sidekick to travel from its launch point, to a customer, and then to its pickup point.

To extend (SK1) to the case where the truck is permitted to visit customers, some additional
notation is required:
Definition 2. We partition the set of customers into two sets S ⊆ {1, . . . , n}, representing those
customers visited by a helper, and its complement T = S̄, representing those customers visited
by the truck (these sets are optimization variables because we can choose which customers are
visited by the truck). The number of events is now equal to m := 2|S| + |T | because a truck
visiting a customer counts as only one event. This necessitates a third map θ : T ↪→ {1, . . . , m},
in addition to the maps σ, π : S ↪→ {1, . . . , m}. Let F be the set of all (σ, π, θ) that induce a
valid sidekick tour. We have the same conditions as in the previous problem that ensure σ and
π do not pickup before launching or use more than k sidekicks. In addition, in this case we must
require that each sidekick‐visited customer has a launch and a pickup event and each truck‐visited
customer has a truck visit event, with each of these events being mapped to a unique place in the
ordering of events. That is,

σ, π :S ↪→ {1, . . . , m}
θ :T ↪→ {1, . . . , m}

σ(S), π(S), θ(T ) are pairwise disjoint.

Put another way, the maps σ, π, and θ have to jointly form a bijection between S ∪ T and
{1, . . . , m} (to be precise, the threemaps actually form a bijection between themultisetS]S∪T
and {1, . . . , m}).
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  The extension to (SK1) is then a natural one:

minimize
x,y,z,t,σ,π,θ

tm+1 s.t. (SK2)

tj+1 ≥ tj + 1
φ0

‖zj+1 − zj‖ ∀j ∈ {1, . . . , m} (3)

tπ(i) ≥ tσ(i) + 1
φ1

(‖xi − pi‖ + ‖pi − yi‖) ∀i ∈ S (4)

zσ(i) = xi ∀i ∈ S
zπ(i) = yi ∀i ∈ S
zθ(i) = pi ∀i ∈ T

t0 = 0
zm+1 = z0

(σ, π, θ) ∈ F ,

where S is defined as the domain of σ and π and T is the domain of θ.
Figure 3 shows examples of solutions to the problems defined above for 30 customers with

multiple sidekicks that are faster than the truck.

4 Preliminaries
Having defined two variants of sidekick routing, we now turn to some preliminary results that will
be useful in our analysis of these problems. This section presents existing results from prior work
as well as some additional analysis of our own.

4.1 Existing results from related work
The following classical theorem, originally stated in [3] and further developed in [68, 69], is one of
the fundamental results of the continuous approximation paradigm; it relates the length of a TSP
tour of a sequence of points to the distribution from which they were sampled:

Theorem 3 (BHH Theorem). Suppose thatX1, X2, . . . is a sequence of random points i.i.d. accord‐
ing to an absolutely continuous probability density function f defined on a compact planar region
R. Thenwith probability one, the lengthTSP(X1, . . . , Xn) of the optimal travelling salesman tour
through all Xi’s satisfies

lim
n→∞

TSP(X1, . . . , Xn)√
n

= βTSP

∫∫
R

√
f(x) dx

where βTSP is a positive constant.

Although the exact value of βTSP is unknown, it has been shown that 0.6250 ≤ βTSP ≤ 0.9204;
see [2, 3].

The concept of a subadditive Euclidean functionalwas introduced in [68], which provides a key
insight that we will use in this report:
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  Definition 4. A function L(·) from the set of finite subsets of R2 to the non‐negative real num‐
bers is said to be a monotone subadditive Euclidean functional on R2 if it satisfies the following
properties:

1. L(∅) = 0.

2. Homogeneity: L(αx1, . . . , αxn) = αL(x1, . . . , xn) for all real α > 0.

3. Translation invariance: L(x1 + x, . . . , xn + x) = L(x1, . . . , xn) for all x ∈ R2.

4. Monotonicity: L(x ∪ A) ≥ L(A) for any x ∈ R2 and finite subset A ⊂ R2.

5. Geometric subadditivity: There exists a constant C > 0, such that for all positive integers
m, n and {x1, . . . , xn} ∈ [0, 1]2, we have

L(x1, . . . , xn) ≤
m2∑
i=1

L({x1, . . . , xn} ∩ Qi) + Cm

where {Qi}, 1 ≤ i ≤ m2 is the partition of [0, 1]2 into squares of edge length 1/m.

Examples of subadditive Euclidean functionals include the TSP tour and the Steiner tree. The
minimum spanning tree, the minimum matching, and the nearest neighbor graph are all “close”
to being subadditive Euclidean functionals, but violate the monotonicity requirement (though it
turns out that this can easily be overcome for all relevant applications). The monographs [69, 83]
are devoted tomore general settings for Theorem3, with themost prominent generalization being
the following:

Theorem 5 (basic theorem of subadditive Euclidean functionals). Suppose L is a monotone sub‐
additive Euclidean functional defined on R2. If the random variables {Xi} are independent with
the uniform distribution on [0, 1]2, then with probability one, we have

L(X1, . . . , Xn)√
n

→ βL

as n → ∞, where βL ≥ 0 is a constant.

We conclude with some additional problem definitions and convergence results that will also
prove key to our analysis:

Definition 6 (Medians Problem). Given a collectionof pointsx1, . . . , xn inR2 and a positive integer
p, the the p‐medians problem is given by

PMed(x1, . . . , xn; p) := min
S⊂{1,...,n}:|S|≤p

n∑
i=1

min
j∈S

‖xi − xj‖ ;

that is, the problem of selecting a subset S ⊂ {1, . . . , n} ofmedian points such that |S| ≤ p, that
minimizes the sum of the distances from all points to their nearest median.
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  Definition 7 (BalancedMedians Problem). The balancedmedians problemBMed(x1, . . . , xn; d) is
a further‐constrained variation of the p‐medians problem. We can equivalently express p‐medians
as the problem of selecting a set of medians S ⊂ {1, . . . , n} and an assignment of the points
xi to medians such that the sum of the distances from the points to their assigned medians is
minimized. With no constraint onour assignment selectionwehave that in the p‐medians problem
the optimal assignment for any median set is simply to assign a point to its nearest median. The
balancedmedians problem imposes an additional constraint on the assignment selection, namely
median xj ∈ S can have at most d ≥ 2 non‐median points assigned to it. It is further required
that each median is assigned to itself.

That is,

BMed(x1, . . . , xn; d) := min
S⊂{1,...,n}: |S|=p

µ:{1,...,n}7→S

n∑
i=1

‖xi − xµ(i)‖, (5)

where
p =

⌈
n

d + 1

⌉
,

xµ(i) is the median assigned to point xi, and for all j such that j ∈ S, xµ(j) = xj and xµ(i) = xj

for at most d of the i 6= j.

The following result is due to [83]:

Theorem 8 (Asymptotic convergence of the balanced medians problem). The balanced medians
problem satisfies the same convergence as in Theorem 5; that is, if X1, X2, . . . is a sequence
of random points i.i.d. according to an absolutely continuous probability density function f de‐
fined on a compact planar region R and d ≥ 2 is fixed, then with probability one, the cost
BMed(X1, . . . , Xn; d) satisfies

lim
n→∞

BMed(X1, . . . , Xn; d)√
n

= βBMed(d)
∫∫

R

√
f(x) dx

where βBMed(d) depends only on d.

4.2 Further notes on Theorem 8
This section describes a lower bound on the function βBMed(d) from Theorem 8.

Theorem 9. The function βBMed(d) satisfies

βBMed(d) ≥
√

2d(3/2)

e
√

π(d + 1)
.

That is, with probability one,

lim
n→∞

BMed(X1, . . . , Xn; d)√
n

≥
√

2d(3/2)

e
√

π(d + 1)

∫∫
R

√
f(x) dx.

Proof. See Section A of the appendix.

21



The “sidekick” routing paradigm for VMT reduction and improved accessibility 
 

11 
 

  4.3 Remark on the unconstrained p‐medians problem
In addition to serving as a useful model element for many applications, the restrictive assumption
of bounded degree of a median is necessary in order to arrive at a characterization of the lim‐
iting behavior of the medians problem for a general continuous demand distribution. However,
for uniformly distributed demand, Hochbaum and Steele [31] provide a convergence result for
the unbounded p‐medians problem of Definition 6. They need only assume that the number of
medians, p, grows linearly in n. That is, Hochbaum and Steele show the following.

Theorem 10 (Asymptotic convergence of the p‐medians problem). If X1, X2, . . . is a sequence of
points i.i.d. uniform on [0, 1]2 then for any α ∈ (0, 1), with probability one the cost
PMed(X1, . . . , Xn; bαnc) satisfies

lim
n→∞

PMed(X1, . . . , Xn; bαnc)√
n

= βPMed(α),

where βPMed(α) depends only on α.

This result does not provide information concerning the value of βPMed, and the authors note
that the question of determining exact values of such a constant is “usually hopeless.” Though it
will not be necessary for our analysis of the sidekick problem, we note that by applying the same
argument used in proving Theorem 9 we can obtain a lower bound for βPMed as a side conse‐
quence.

Theorem 11. The function βPMed(α) satisfies

βPMed(α) ≥
√

2(1 − α)3/2

e
√

πα
.

That is, if X1, X2, . . . is a sequence of points i.i.d. uniformly on [0, 1]2 then for any α ∈ (0, 1) then
with probability one,

lim
n→∞

PMed(X1, . . . , Xn; bαnc)√
n

≥
√

2(1 − α)3/2

e
√

πα
.

5 A continuous approximation analysis
This section describes a continuous approximation analysis of the sidekick routing problems (SK1)
and (SK2).

5.1 Naive asymptotic analysis
Relying solely on Theorem5, we can obtain the following partial characterization of the asymptotic
behavior of both problems (SK1) and (SK2).
Claim 12. For fixed values of k, φ0, and φ1, let T (p1, . . . , pn) denote the optimal objective value
of problem (SK1). Then if the customer points pi consist of random samples Pi independently
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  drawn from a uniform distribution on the unit square, then there exists a non‐negative constant
cSK1 = cSK1(k, φ0, φ1) such that

T (P1, . . . , Pn)√
n

→ cSK1

with probability one as n → ∞. The same statement holds when T (·) is the optimal objective
value of problem (SK2), with a different constant cSK2 ≤ cSK1.

Proof. This follows immediately from Theorem 5 because it is entirely straightforward to verify
that T (·) is a monotone subadditive Euclidean functional as defined in Definition 4.

Claim 12 describes the scaling behavior of our problem as n → ∞, namely that the cost
scales proportionally to

√
n, but it tells us nothing about cSK1 (or cSK2). For example, it is obvious

that both are decreasing with respect to the three fixed parameters φ0, φ1, and k (since making
things faster or increasing the number of helpers can only improve efficiency), and routine scaling
arguments establish that cSK1(k, φ0, φ1) = φ0cSK1(k, 1, φ1/φ0) for all k, φ0, φ1 (and similarly for
cSK2). We devote the remainder of this section to a more precise analysis of cSK1 and cSK2.

5.2 A lower bound for (SK2)
Of course, problem (SK2) is itself a lower bound of (SK1) by construction, so it will suffice to con‐
sider (SK2) only.

We derive a lower bound for (SK2) in terms of the Traveling Salesman tour and solution to a
Bounded Medians Problem on the pi.

Lemma 13. Let Tn denote the optimal objective value for Problem (SK2). We have

1. TSP(p1, . . . , pn) ≤ (φ0 + kφ1)Tn

2. BMed(p1, . . . , pn; d) ≤ (dφ0 + kφ1)Tn for all d ≥ 2.

Proof. For the first claim, we can construct a TSP solution from the (SK2) solution as follows. Con‐
sider an optimal solution (x, y, z, t, σ, π, θ, S, T ) to (SK2). For each i ∈ S, the set of customers
visited by the sidekicks, let

ui := argmin
u∈{xi,yi}

||u − pi||,

that is ui is the closer to the customer of its sidekick launch and pickup points. For each i ∈ T let

ui := pi.

We then construct a TSP tour of the points as follows. Let the tour follow the path of the truck,
visiting the customers in T along the tour. Whenever we reach one of the ui for i ∈ S , let the tour
travel from ui to pi and back, then continue along the truck path. It is clear that the length added
to our TSP tour coming from the truck’s route is less than or equal to φ0Tn, the truck’s speed times
to total time for our sidekick tour.

To bound the length from visiting points in S we let Pj be the set of points visited by sidekick
j. Then

Tn ≥ 1
φ1

∑
i:pi∈Pj

||xi − pi|| + ||pi − yi|| ∀j ∈ {1, . . . , k}.
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  That is the total sidekick tour time exceeds the time any given sidekick travels. Dividing by the
above by k and summing over all j yields

Tn ≥ 1
kφ1

∑
i∈S

||xi − pi|| + ||pi − yi||

≥ 2
kφ1

∑
i∈S

||ui − pi||.

Twice the sum of the ||ui − pi|| is precisely what we add to our TSP tour to visit S. Thus the
contribution of this part of our TSP tour is bounded by kφ1Tn. Adding together our truck and
sidekick pieces of the TSP tour and applying the triangle inequality gives the result.

For the second bound we can construct a balanced median solution from the (SK2) solution
as follows. Think of the truck as completing a tour on our ui defined as above. Group every
d + 1 of the customer points associated with the ui along this tour and choose as their median
the point which is closest to the tour. This construction is pictured in Figure 5. By the triangle
inequality, the distance from a point to its assigned median is less than or equal to the distance
of traveling from that point to its corresponding ui, then traveling along the truck tour to the
median’s corresponding ui, then traveling out to the assigned median. The cost of this balanced
medians solution, i.e. sumof these distances, is then less than or equal to the sumof the distances
from the non‐median points to their corresponding ui, plus d times the length of the tour of the
ui, plus the sum, over all medians, of d times the distance from the median’s corresponding u to
themedian. By our selection of themedians it is clear that this last sum is less than or equal to the
sum of all of the distances from non‐median points to their corresponding u. Then, noting once
again that

φ0Tn ≥ truck tour of the ui,

and

kφ1

2
· Tn ≥

∑
i∈S

||ui − pi||

=
n∑

i=1
||ui − pi||, (ui = pi for i ∈ T )

the length of the bounded medians solution is less than or equal to(
kφ1

2
+ dφ0 + kφ1

2

)
Tn.

5.3 An upper bound for (SK1)
To bound the objective value of (SK1), we describe a simple “zig‐zagging” heuristic in the unit
square:
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Figure 4: Constructing a TSP solution from a solution to problem (SK2). The horizontal line
represents the tour of the ui in the (SK2) solution. We follow the tour, traveling from ui to pi

and back for each i ∈ S . If Tn is the cost of the problem (SK2) solution then the total cost of the
resulting TSP solution is less than or equal to (φ0 + kφ1)Tn.

Figure 5: Constructing a balanced medians solution from a solution to problem (SK2). The hori‐
zontal line represents the tour of the ui in the (SK2) solution. Here we choose d = 4 and group
every 5 points along the tour. We choose as the median for these 5 points the point which is
closest to the tour. Using the paths pictured, it is clear that to connect all points to their medians
we need travel at most d times the length of the truck tour plus twice the total distance from
the points to their ui. If Tn is the cost of the problem (SK2) solution then the total cost of the
resulting Bounded Medians solution is less than or equal to (dφ0 + kφ1) Tn.
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(a) Input

h

(b) Output

Figure 6: The tour described in Lemma 14, assuming k = 3.

Lemma 14. For fixed φ0, φ1, and k and points p1, . . . , pn lying in the unit square, there exists a
routing strategy for problem (SK1) whose time to completion T (p1, . . . , pn) satisfies

T (p1, . . . , pn) ≤ 2
√

3√
φ0φ1k

·
√

n + C

where C is a constant that depends only on φ0, φ1, and k.

Proof. Assume without loss of generality that φ0 = 1 and divide the unit square into strips of
height h =

√
3φ1k/n (there may be one strip whose height is less than this due to rounding).

There are m =
⌈√

n/(3φ1k)
⌉

≤
√

n/(3φ1k) + 1 such strips. Further subdivide each strip into
rectangles so that each rectangle (except possibly the rightmost in each strip) contains k points.
There are at mostm+n/k rectangles in total. Finally, construct a tour for the truck and all helpers
by traversing each rectangle three times, releasing the helpers on the first traversal and retrieving
the helpers on the third traversal, as illustrated in Figure 6.

It is easy to see that for a rectangle having width w (and height h), it is possible to perform
three horizontal traversals and release and retrieve the helpers in at most 3w +h/φ1 time units. It
is also easy to see that the only remaining time needed is for the truck to perform vertical moves
tomove from one strip to the next, which is a constant amount of 2 time units, plus whatever time
is needed for the truck to return to its point of origin, which is also at most

√
2 time units. Hence,

if we let wi denote the width of rectangle i, then the total amount of time to complete this tour
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(a) yo (b) yo

Figure 7: The tour described in Lemma 15; it consists of the same kind of tour as in Figure 6, but
“scaled” with respect to the probability distribution that is indicated by shading.

is at most

(2 +
√

2) +
∑

i

(3wi + h/φ1) ≤ (2 +
√

2) + 3
∑

i

wi︸ ︷︷ ︸
=m

+(m + n/k)h/φ1

≤ (2 +
√

2) + 3
(√

n

3φ1k
+ 1

)
+ 1

φ1

(√
n

3φ1k
+ 1 + n/k

)√
3φ1k

n

= 2
√

3√
φ1k

·
√

n +
√

3k

φ1n
+ 1

φ1
+ (5 +

√
2)

as desired.

Lemma 14 is deterministic, but also implies the following:

Lemma 15. Let φ0, φ1, and k be fixed and let P1, . . . , Pn be independent samples from an abso‐
lutely continuous probability density f with compact support R. The optimal time to completion
T (P1, . . . , Pn) for problem (SK1) satisfies

lim sup
n→∞

T (P1, . . . , Pn)√
n

≤ 3.47√
φ0φ1k

·
∫∫

R

√
f(x) dx

with probability one.

Proof. This is a routine scaling argument, together with the law of large numbers and the fact T (·)
is a subadditive Euclidean functional (see Claim 12); see Section B of the appendix for details.

5.4 Convergence analysis for (SK1) and (SK2)
We have now collected enough supporting evidence for our main claim:
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  Theorem 16. Let φ0, φ1, and k be fixed. Let Tn denote the optimal objective value to problem
(SK1), where input points P1, . . . , Pn are independent uniform samples in the unit square. Then
there exists a constant βSK1 satisfying 0.1389 < βSK1 < 3.47 such that

Tn√
n

→ βSK1√
φ0 max{φ0, φ1k}

(6)

with probability one as n → ∞. Moreover, the same statement holds for a different constant
βSK2 ≤ βSK1 when Tn is the optimal objective value to problem (SK2), which also satisfies 0.1389 <
βSK2 < 3.47. Finally, when the points P1, . . . , Pn are independent samples from an absolutely
continuous probability density f with compact support R, we have

0.1389c ≤ lim inf Tn√
n

≤ lim sup Tn√
n

≤ 3.47c

with probability one as n → ∞, where Tn is the optimal objective value to either problem (SK1)
or (SK2), and

c =
∫∫

R

√
f(x) dx√

φ0 max{φ0, φ1k}
.

Proof. To simplify notation, assume without loss of generality that φ0 = 1 and set t = φ1k, and
rewrite the desired result (6) equivalently as

√
max{1, t} · Tn√

n
→ βSK1 .

TheexistenceofβSK1 andβSK2 was already established in Claim12 (setβSK1 = cSK1
√

φ0 max{φ0, φ1k}
and so forth); the real work lies in computing the bounds on these constants. Since βSK2 ≤ βSK1, it
will suffice to show that 0.1389 < βSK2 and that βSK1 < 3.47. To show that 0.1389 < βSK2, Lemma
13 says that

Tn ≥ TSP(P1, . . . , Pn)
1 + t

(7)

=⇒ lim
n→∞

Tn√
n

≥ lim
n→∞

TSP(P1, . . . , Pn)
(1 + t)

√
n

= βTSP

1 + t
(8)

=⇒
√

max{1, t} · lim
n→∞

Tn√
n

≥
√

max{1, t} · βTSP

1 + t
≥

0.625
√

max{1, t}
1 + t

=⇒ βSK2 ≥
0.625

√
max{1, t}

1 + t
> 0.1389 whenever t < 18.166, (9)

where in (8) we are justified in taking limits as we have seen such limits exists for problem (SK2)
(Claim 12) and for the TSP (Theorem 3).
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  In addition Lemma 13 tells us that, provided t ≥ 2,

Tn ≥ BMed(P1, . . . Pn; btc)
btc + t

(10)

=⇒ lim
n→∞

Tn√
n

≥ lim
n→∞

BMed(P1, . . . Pn; btc)
(btc + t)

√
n

= βBMed(btc)
btc + t

(11)

=⇒
√

max{1, t} · lim
n→∞

Tn√
n

≥
βBMed(btc)

√
max{1, t}

btc + t
≥

√
2btc(3/2)

√
max{1, t}

e
√

π(btc + 1)(btc + t)
(12)

=⇒ βSK2 ≥
√

2btc(3/2)
√

max{1, t}
e
√

π(btc + 1)(btc + t)
> 0.1389 whenever t ≥ 18.166, (13)

where in (11) we are justified in taking limits as we have seen such limits exists for problem (SK2)
(Claim 12) and for the balanced medians problem (Theorem 8), and in (12) we have applied The‐
orem 9.

The upper bound βSK1 < 3.47 is very simple. From Lemma 14, we have

Tn ≤ 2
√

3√
t

·
√

n + C (14)

=⇒
√

max{1, t} · lim
n→∞

Tn√
n

≤
√

max{1, t} · lim
n→∞

(
2
√

3√
t

+ C√
n

)
=⇒ βSK1 ≤ 2

√
3 < 3.47 for t ≥ 1,

and for t < 1, we simply eschew the helpers altogether and visit all of the Pi’s with the truck (to
be precise, since the truck is not allowed to visit any points in (SK1), we bring the truck within
arbitrarily small distance ε from each Pi and release and retrieve one of the helpers):

lim
n→∞

Tn√
n

≤ βTSP

=⇒
√

max{1, t} · lim
n→∞

Tn√
n

≤
√

max{1, t} · βTSP = βTSP

=⇒ βSK1 ≤ βTSP ≤ 0.9204 for t < 1
as desired. This completes the proof of the uniform case of Theorem 16.

The non‐uniform case of Theorem 16 follows the exact same logic; the only distinction is
that we are no longer guaranteed that Tn/

√
n has a limit, so we merely replace all instances of

“limn→∞ Tn/
√

n” with either a “lim infn→∞” or a “lim supn→∞” depending on whether we are
bounding from above or below. For example, the lower bound (7) becomes

Tn ≥ TSP(P1, . . . , Pn)
1 + t

=⇒ lim inf
n→∞

Tn√
n

≥ lim
n→∞

TSP(P1, . . . , Pn)
(1 + t)

√
n

=
βTSP

∫∫
R

√
f(x) dx

1 + t
≥

0.625
∫∫

R

√
f(x) dx

1 + t

=⇒
√

max{1, t} · lim inf
n→∞

Tn√
n

≥
0.625

√
max{1, t}

1 + t

∫∫
R

√
f(x) dx > 0.1389

∫∫
R

√
f(x) dx whenever t < 18.166

=⇒ lim inf
n→∞

Tn√
n

≥ 0.1389c whenever t < 18.166.
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  The same reasoning is applied for the bounded‐medians‐derived lower bound for t ≥ 18.166.
The upper bound that lim sup Tn/

√
n ≤ 3.47c is also immediate; we already proved this for

t ≥ 1 in Lemma 15, and when t < 1, we again eschew the helpers altogether and use the truck:

lim sup
n→∞

Tn√
n

≤ βTSP

∫∫
R

√
f(x) dx ≤ 0.9204

∫∫
R

√
f(x) dx < 3.47c ,

which completes the proof.

6 Remarks
Informally, Theorem 16 says that the time to completion of a sidekick routing problem satisfies

Time With Sidekicks ∝
√

n√
φ0 max{φ0, φ1k}

.

We see immediately that for (kφ1)/φ0 < 1, both the lower and upper bounds on the Sidekick
problems that produce our result are constantmultiples of the optimal TSP objective. We conclude
that the asymptotic behavior of the sidekick problem looks more or less like that of the TSP in this
case. This yields the managerial insight that there is no real benefit to introducing sidekicks if
we are not guaranteed (kφ1)/φ0 ≥ 1. If we will have sufficiently fast or sufficiently numerous
sidekicks to guarantee this then Theorem 16 tells us as that as we add more and more customer
points we can essentially say that

Time With Sidekicks ∝
√

n√
φ0φ1k

.

On the other hand in the limit the tour with just the truck has time

Time Without Sidekicks = TSP
φ0

∝
√

n

φ0
.

So there is certainly a boost in efficiency to be had by introducing sidekicks. The amount of im‐
provement due to using sidekicks is captured by

Time With Sidekicks
Time Without Sidekicks

∝
√

φ0

φ1k
.

We note that all of the above remarks hold in both the uniform and non‐uniform cases because,
as we have also seen in Theorem 16, the difference between these two cases merely amounts to
multiplication by a factor of

∫∫
R

√
f(x) dx.

7 Computational results
We run simulations with points drawn from a uniform distribution in the unit square to see how
the sidekick problem tours compare to our asymptotic expectations. In our computations the
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  number of points, number of sidekicks and the ratio of the truck and sidekick speeds vary. We
assume that the truck speed is always 1, letting the sidekick speed capture the ratio of the speeds.
We solve Problem (SK1), in which the truck does not make deliveries. Each result is an average
over 5 draws of customer points.

In order to approximately solve Problem (SK1) we use a heuristic to obtain σ and π specifying
the ordering in which we launch and pickup the sidekicks for each customer, and then solve the
resulting problem in the variables x, y, z, and t. To obtain the ordering, we first compute the op‐
timal TSP tour of the customers and break this tour into consecutive chunks of size k, the number
of sidekicks. To determine the launch and pickup ordering on each chunk we begin by assuming
as in [56] and [13] that in the case of fast sidekicks the improvement due to multiple sidekicks is
captured well by a sequence in which all sidekicks are launched and then all sidekicks are picked
up. Within each chunk the launches for all the customer points occur in the order specified by the
TSP tour, then the pickups occur in the order specified by the TSP tour. However, we recognize
that in the case of slow sidekicks, this strategy breaks down and we expect an optimal tour to
often use fewer than the full number of sidekicks at a given time, allowing the truck to cover large
distances with no sidekicks out. For this reason we also consider the ordering in which we follow
the TSP tour, launching for a customer and then picking up for that customer one at a time. We
take the minimum result of these two approaches to be our service time. It will be clear from our
plots that neither of these strategies sufficiently captures the benefits of having more and more
sidekicks when the sidekicks are slower than the truck. In fact the one launch one pickup option
reduces us to the one sidekick case. However, it is unreasonable to think that such a simplistic
heuristic solution to this difficult problem would come close to optimality in all cases.

Letting T denote the optimal service time for the Problem (SK1), Theorem 16 tells us that we
should have

T ≈ C

√
n√

φ0 max(φ0, φ1k)
,

for some constant C.
So we plot

F := T ·

√
φ0 max(φ0, φ1k)

√
n

,

for ranges of parameter values, expecting this value to be constant.

• In Figure 8 we fix the number of sidekicks and plot F over a range of values of φ1/φ0 and n.

• In Figure 9 we fix the ratio of the speeds and plot F for a range of values of k and n.

• In Figure 10 we once again fix the ratio of the speeds and plot F for a range of values of k
and n, now for higher values of the ratio.

• In Figure 11 we fix n and plot F over a range of values of k and φ1/φ0.

In addition, since the TSP can be approximated by a constant times
√

n for largenwewould expect
that, letting TSP denote the time for the truck to complete a TSP of the same points we should
have

T ≈ C ′ TSP√
φ0 max(φ0, φ1k)

,
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Figure 8: Value of the sidekick problem completion time times
√

φ0 max(φ0, φ1k)/
√

n plotted
over a range of values of φ1/φ0 and n for fixed k. We expect this value to be constant for large n.
We can see that our heuristic approach does not sufficiently capture the benefit of introducing
more and more sidekicks in the slow sidekick case, but otherwise these plots are near constant,
particularly as n becomes large.

for some constant C ′.
So we plot

F ′ := T ·

√
φ0 max(φ0, φ1k)

TSP
,

for ranges of parameter values, expecting this value to be constant.

• In Figure 12 we fix n and plot F ′ over a range of values of k and φ1/φ0.

8 Conclusions
Wehave studied the limiting behavior of sidekick‐assisted routing problems in the Euclidean plane
and found that the improvements introduced by adding sidekicks depend on

√
φ0 and

√
φ1k.

There remain many open questions: for example, what happens when sidekicks are able to visit
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Figure 9: Value of the sidekick problem completion time times
√

φ0 max(φ0, φ1k)/
√

n plotted
over a range of values of k and n for fixed φ1/φ0. We expect this value to be constant for large
n. As these values of φ1/φ0 are small our heuristic approach is not capturing the benefit due
to introducing more and more sidekicks, and thus these plots are not constant though they fall
within a range of about 1.
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Figure 10: Value of the sidekick problem completion time times
√

φ0 max(φ0, φ1k)/
√

n plotted
over a range of values of k and n for fixed φ1/φ0. We expect this value to be constant for large
n. We see the result is near constant as n becomes large.
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Figure 11: Value of the sidekick problem completion time, T , times
√

φ0 max(φ0, φ1k)/
√

n plot‐
ted over a range of values of k and φ1/φ0 for fixed n. We expect this value to be constant for
large n. When φ1/φ0 is small our heuristic approach does not sufficiently capture the benefit of
introducing more and more sidekicks, but otherwise these plots are near constant.
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Figure 12: Value of the sidekick problem completion time times
√

φ0 max(φ0, φ1k) divided by
the optimal time for a TSP with only the truck, plotted over a range of values of k and φ1/φ0
for fixed n. We expect this value to be constant for large n. When φ1/φ0 is small our heuristic
approach does not sufficiently capture the benefit of introducing more and more sidekicks, but
otherwise these plots are near constant.
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  more than one customer node before returning to the truck? What happens when the truck is
itself capacitated and must make returns to the depot? What happens when sidekick battery life
considerations come into play? We hope to resolve these questions in future work.
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Data Management Plan (Heading 1 style) 
Products of Research  
The data that were collected consist of uniformly sampled points in a geographic region as well as 
lat/lng pairs sampled from Southern California.  All origin-destination distances can be computed using 
OpenStreetMaps, Google Maps, or HERE Maps. 
 
Data Format and Content  
There are no files to share; all experiments can be reproduced using only the contents of this paper. 
 
Data Access and Sharing  
The general public can access the data from this paper by repeating the experiments that we conducted, 
which merely require a random number generator. 
 
Reuse and Redistribution  
No restrictions to report.  
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  Appendix
A Proof of Theorem 9
The following three lemmas are textbook‐level results that we state without proof:

Lemma 17 (Stirling’s approximation). The gamma function Γ(x) satisfies

log Γ(x + 1) = x log x − x + 1
2

log x + 1
2

log 2 + 1
2

log π + O(1/x).

Lemma 18. Let f : R 7→ R be a real‐valued function and let Bd(r) ⊂ Rd be the ball of radius r
centered about the origin. We have∫

Bd(r)
f(‖x‖)dx =

∫ r

0
Sd−1(t)f(t)dt,

where Sd−1(t) is the surface area of a (d − 1)‐sphere of radius t, which is given by

Sd−1(t) = 2πd/2

Γ(d/2)
td−1.

Lemma 19. The volume of a d‐dimensional ball of radius r is πd/2rd/Γ(d/2 + 1).

Our final lemma to be employed in the lower bound argument is a consequence of Lemmas
18 and 19.

Lemma 20. Let l > 0 and let D ⊂ R2n denote the set of all n‐tuples (u1, . . . , un) of points in R2

such that
n∑

i=1
‖ui‖ < l.

The volume of D, Vol(D), satisfies

Vol(D) = (2π)n

Γ(2n + 1)
· l2n.

Proof. This volume can be expressed as the integral∫
B2(l)

∫
B2(l−‖un‖)

· · ·
∫

B2(l−
∑n

i=3 ‖un‖)

∫
B2(l−

∑n

i=2 ‖un‖)
1du1du2 · · · dun−1dun,

which we then compute by induction and application of Lemmas 18 and 19.

We are now ready to prove Theorem 9:
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  Proof of theorem 9. As βBMed(d) is independent of the demand distribution, we can arrive at a
lower bound by first assuming we are in the case that the Xi are i.i.d. Unif([0, 1]2). We employ
the union bound.

P(BMed(X1, . . . , Xn; d) < l)
= P(some selection of, and assignment to, medians is of cost < l)
≤ sum over all selections and assignments of P(cost of selection, assignment < l)
= (# ways select medians)(# ways assign points)P(cost of arbitrary choice < l)

=
(

n

p

)
pn−pP(cost of arbitrary selection and assignment < l).

To obtain an upper bound on the probability that an arbitrary selection and assignment has cost
less than l we fix our median indices, S, and our assignment map µ and first recall that Xµ(i) is
the median assigned to point Xi. Because we can reorder and adjust µ and S accordingly, we
may assume without loss of generality that the Xi are ordered such that the medians we have
selected are the last p points, Xn−p+1, . . . , Xn. We then have the cost of a particular selection
and assignment is given by∑n−p

i=1 ‖Xi − Xµ(i)‖. We have

P

(
n−p∑
i=1

‖Xi − Xµ(i)‖ < l

)
=

∫
(xn−p+1,...,xn)∈[0,1]2p

P

(
n−p∑
i=1

‖Xi − Xµ(i)‖ < l

∣∣∣(Xn−p+1, . . . , Xn) = (xn−p+1, . . . xn)

)
dF(Xn−p+1,...,Xn)(xn−p+1, . . . xn).

Let

E(l, (xn−p+1, . . . , xn)) :=
{

x1, . . . , xn−p ∈ R2 :
n−p∑
i=1

‖xi − xµ(i)‖ < l

}
.

Then recalling that theXi are drawnuniformly from theunit squarewehave for all (xn−p+1, . . . , xn),

P
(n−p∑

i=1
‖Xi − Xµ(i)‖ < l

∣∣∣∣(Xn−p+1, . . . , Xn) = (xn−p+1, . . . xn)
)

= P((X1, . . . , Xn−p) ∈ E(l, (xn−p+1, . . . , xn)))

= Vol(E(l, (xn−p+1, . . . , xn)) ∩ [0, 1]2)
≤ Vol(E(l, (xn−p+1, . . . , xn)).

To compute this volume we make the volume preserving transformation ui := xi − xµ(i)
(that is, translate each median point to the origin and move its assigned set commensurately) and
consider

E ′(l) :=
{

u1, . . . , un−p ∈ R2 :
n−p∑
i=1

‖ui‖ < l

}
.

Clearly for all possible median locations (xn−p+1, . . . , xn) and all of our choices of µ, we have that
Vol(E(l, {xn−p+1, . . . , xn})) = Vol(E ′(l)) which is only dependent on l. By Lemma 19 we have

Vol(E ′(l)) = (2π)n−p

Γ(2(n − p) + 1)
· l2(n−p).
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  Thus for all selections of S and µ,

P
(n−p∑

i=1
‖Xi − Xµ(i)‖ < l

)
≤
∫

Vol(E ′(l))dF(Xn−p+1,...,Xn)

= Vol(E ′(l))

= (2π)n−p

Γ(2(n − p) + 1)
· l2(n−p).

Combining the above

P(BMed(X1, . . . , Xn; d) < l) ≤
(

n

p

)
pn−p · (2π)n−p

Γ(2(n − p) + 1)
· l2(n−p).

Taking logarithms then yields

logP(BMed(X1, . . . , Xn; d) < l) = log
((

n

p

)
pn−p · (2π)n−p

Γ(2(n − p) + 1)
· (c

√
n)2(n−p)

)

≤ log
(

Γ(n + 1)
Γ(p + 1)Γ(n − p + 1)

· pn−p · (2π)n−p

Γ(2(n − p) + 1)
· l2(n−p)

)

≤
[

log(p) + log(2) + log(π) + 2 log(l) + log(n) + 2 − log(n − p)−

2 log(2n − 2p)
]
n − 2p log(l) − p log(π) − 2p log(p) + log(n − p)p+

2 log(2n − 2p)p − p log(2) − log(π) − log(2) − 2p + O
( 1

n

)
,

where we have employed Lemma 17. It is clear that this upper bound goes to negative infinity
as n goes to infinity if and only if the coefficient of n is negative. For large n we are justified in
ignoring the ceiling and substituting n/(d + 1) for p. We then have as n → ∞,

P(BMed(X1, . . . , Xn; d) < l) → 0
⇑

log
(

n

d + 1

)
+ log (2) + log (π) + 2 log (l) + log (n) + 2 − log

(
n − n

d + 1

)
− 2 log

(
2n − 2 n

d + 1

)
< 0

m

l <

√
2d(3/2)

e
√

π(d + 1)
·
√

n.

The result then follows easily from the almost sure convergence to βBMed.

B Proof of Lemma 15
If f is absolutely continuous, then it can be approximated arbitrarily well with finitely many step
functions on R, and we therefore assume without loss of generality that f takes precisely this
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  form. To be more specific, we assume that f(x) = ∑m
i=1 fiδi(x), where δi(x) is an indicator

function representing membership in a square grid cell i. Let ε denote the area of each grid cell,
so that

∫∫
R f(x) dx = ∑m

i=1 εfi = 1, and let Ni denote the number of samples of {P1, . . . , Pn}
that belong to cell i (so that∑m

i=1 Ni = n).
It is clear that we can construct a feasible tour by applying Lemma 14 to each grid cell and then

“stitching” the tours within each grid cell together. Certainly, the amount of time needed to visit
all Ni points in grid cell i is at most

√
ε

(
2
√

3√
φ0φ1k

·
√

Ni + Ci

)

for some constant Ci, and the amount of additional time needed to “stitch” all of the tours to‐
gether is a constant C0 that does not depend on n. Summing all of these together and letting
C = ∑m

i=0 Ci, we have

T (P1, . . . , Pn) ≤
√

ε
m∑

i=1

(
2
√

3√
φ0φ1k

·
√

Ni + Ci

)
+ C0

=⇒ T (P1, . . . , Pn)√
n

≤
√

ε
m∑

i=1

 2
√

3√
φ0φ1k

·
√

Ni

n

+ C√
n

and since Ni/n → εfi with probability one, we see that

lim sup
n→∞

T (P1, . . . , Pn)√
n

≤
√

ε
m∑

i=1

2
√

3√
φ0φ1k

·
√

εfi = 2
√

3√
φ0φ1k

m∑
i=1

ε
√

fi = 2
√

3√
φ0φ1k

∫∫
R

√
f(x) dx

as desired.
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