Hydrogen Storage Systems for Transportation
Application

FINAL

Ted Yu, David B. Chang, and Reza Toossi
California State University Long Beach

METRANS contract number 03-13

June 16, 2005

METEAR S

Tmnxpurmtmn enter
Usg I CSULE



Disclaimer

The contents of this report reflect the views @& #uthors, who are responsible for the
facts and the accuracy of the information preseh&din. This document is
disseminated under the sponsorship of the Depattaidivansportation, University
Transportation Centers Program, and California Erepent of Transportation in the
interest of information exchange. The U.S. Goveminaed California Department of
Transportation assume no liability for the contesrtaise thereof. The contents do not
necessarily reflect the official views or policiglsthe State of California or the
Department of Transportation. This report doescoostitute a standard, specification,
or regulation.

Disclosure

Project was funded in entirety under a contra€abfornia Department of
Transportation.

Acknowledgments

The authors would like to thank the United Statepd&tment of Transportation,
California Department of Transportation, and METR&Mr their interest and provision
of grant support to make this project possible.Wéeild also like to thank Roy Ganzer
and team at Mechanic Refrigeration Company for tineialuable technical and
operational support during the activation of thpeximental system.



Abstract

The binding energy per hydrogen atom is calculaggdus the surface density of hydrogen
molecules on graphite using mathematical modehatjtakes into account the cooperative effect
of neighboring carbon atoms and hydrogen molecélesaged approach is followed with four
simple models in order to gain insight into the giby of the binding. The effort was prompted by
both the large range of estimates in the publisit@cture, and by the importance of the binding
energy in determining amount of hydrogen that aastbred in a given weight of graphitic
material. The storage capacity is exquisitely gamsto the value of the binding energy,
depending exponentially (through a Boltzmann fgaborthe energy.

As a first approximation, we estimated the bindeéngrgy following the dielectric dispersion
formalism developed by Landau and Lifshitz (196@),the binding energy of two interacting
systems is estimated from the zero point enerdigsedwo systems as a function of their
distance of separation.

The advantage of calculating the binding energhimway is that it takes into account collective
(cooperative) effects when several hydrogen moéscafe present. Past work on the calculation
of van der Waals forces has shown that the bindivaygy for a collection of molecules is not
simply the sum of the binding energies of pairmofecules considered individually. In an
ensemble of interacting molecules the molecules\ekooperatively to enhance the
interactions. This appears to be especially prooed when one of the systems is conducting.

In our approach, we have compared the zero poarg@s of a collection of hydrogen molecules
separated at a large distance from a piece of geapfth the zero point energies when the
hydrogen molecules are juxtaposed to the graphite.results indicate that the binding energies
of hydrogen are strongly dependent on the surfaosity of the hydrogen bound to the graphite,
with the binding energy per hydrogen molecule iasheg as the surface density of hydrogen on
the graphite increases.
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1. Introduction

Hydrogen is a low molecular weight, renewable amdrenmentally friendly energy source. Its
exothermic reaction with oxygen yields water inrage reaction: H+ 1/2Q <& H,O. Oxygen

is readily available in air and only hydrogen netdle stored to harness its energy. In addition,
the water product can be readily expelled intogiv@ronment with little consequence to the
users and their environment. The reactants maphwwusted as conventional fossil fuel, but as
the efficiency of combustion is limited, a greagfficiency may be harnessed through a fuel cell.
Fuel cells are electrochemical devices that corsletnical energy directly into electricity.

Due to the low molecular weight of hydrogen, it Wsbseem an ideal fuel. However, hydrogen is
a gas at room temperature and has a very low gewpital of gases, and takes up a large
volume to store. In order for hydrogen to be dManergy source, and competitive with fossil
fuel, technologies need to be developed to recue@mount of volume hydrogen takes up.
Current technologies include compressed gas, kaptieh, metal hydride, and physisorption.

Physisorption is an area of research interest Isecdis the least mature technology that possibly
has the greatest potential. It involves the adgmrmf hydrogen through van der Waals binding
forces on typically a carbon material with highfage areas. There has been much discussion
recently about the use of carbon nanostructures &fficient hydrogen storage mechanism
[Atkinson, 2002]. Several reports indicate thesganals have high hydrogen storage capacities
at room temperatures. Other reports suggest the temperature storage capacities are near zero
weight percent. The discrepancies of the repotm@ige capacities may be due to the different
methods of measuring weight percent, as well agdkevariety of carbon nanostructure
materials with different geometrical configuratighat are under research and development. In
addition, modifications such as doping with alkabtals can further enhance its adsorption
properties.

The present model shows an alternative methodlatfileéing the binding energy of hydrogen
adsorption by graphite, by approximating the bigdémergy of physical adsorption between a
sheet of graphite and a sheet of hydrogen molecdlbe physical adsorption occurs by the lower
overall electrostatic zero point energies that oeethen the two sheets are interposed; as
opposed to the higher overall energy when the tveets are independent. Unlike previous
models [Wang, 1999], the present model takes intowant the cooperative effect of the entire
sheet of hydrogen molecules rather than measwisigj individual hydrogen molecule’s
attraction to an individual carbon.

2. Background

There has been much discussion recently abouts#hefucarbon nanostructures as an efficient
hydrogen storage mechanism. Several reports itedibase materials have high hydrogen
storage capacities at room temperatures. Othertsepuggest the room temperature storage
capacity of near zero percent. The increasingésten hydrogen as a fuel prompts a need for a
greater understanding of these carbon nanostrustor@ge materials.

2.1 Orbital structure of graphitic carbon

Electrons that are in different energy levels diffem each other in having different probability
distributions Atomic orbitals represent the ways that electrons can arrangestieas in
isolated, individual atoms. Carbon has 2 election§ shell (n=1), and 4 valence electrons in L



shell (n=2), two in 2s orbital and two in 2p orkstethus the electron configuration of2s2p%.
1s electrons have the lowest energy levels (-308\)&nd are tightly bound to the nucleus by

electrostatic forces. 2s electrons have sligltiyer energy (-19.20 eV) than 2p electrons (-11.79
eV) and spend more of their time close to nuclduss they are bound more tightly to the nucleus

than 2p electrons. The spatial distribution of ahestron is spherically symmetrical, whereas p
electrons are found in certain directions more thasthers. When atoms bond to one another,
the electrons have to change their arrangementlgr ¢o accommodate the influence of other
atoms (Figure 1). v

When a carbon atom bonds to other atoms, the fo
orbitals in the second shell are somehow mixed
together and rearranged to give four riexarid
orbitals. Each of the four hybrid orbitals is
equivalent to the others and contains one electron.
These orbitals point out from the center of therato
toward the corners of a tetrahedron (Figure 2).

Figure 1. Atomic orbitals: s (left) and p (right)
orbitals

Hydrogen has only one electron in its outer shell
therefore it can donate only one electron to carbon
by a single bond. This kind of bonding is called
sigma-bondingand the space occupied by bonded
electrons is called a bonding orbital. Figure 3a !
represents sigma-bond orbitals formed by sharing| rigure 2. sP3 (left) and SP2 (right) hybrid
electrons between two S-orbitals. orbitals.

When carbon bonds with other carbon atoms, thatsiuis more complicated. The p-orbitals
can share electrons by overlapping directly betwhemuclei of the atoms making the sigma-
bond (Figure 3b), but may also share the leftoveleptrons. These overlap sideways to their
internuclear axis, forming what are commonly cabsdi-bonds. Figure 3c shows tiie
bonding occurring off axis and parallel to the sigma-bevidch connects two carbon atoms.
Depending on whether no pi-electrons, one pi-ebactr two pi-electrons are shared, carbon
bonds with other carbons by single, double, otdrippnds.

2D -

(a) (b) ©

Figure 3. Sigma bonds formed as a result of sharing electrons by two S-orbitals (a) and two P-orbitals (b).

2.2 Properties of carbon nanostructures
The nanostructures take various forms, but havéetitere that the stronger binding of hydrogen
occurs in nanostructures that contain stacks gqfigra

For example, nanofibers containing graphite hawnlyeported in which graphite platelets are
evenly spaced with the planes of the graphite pelipalar to the fiber axis and separated by 3.4



angstroms. Other nanofibers [called ribbons] hheestacked graphite sheets arranged parallel to
the fiber axis. Yet others have a herringbone irecin which the graphite sheets are stacked at
an angle with respect to the fiber axis. Furtheravdas occur in that the fibers can be straight,
branched, twisted or helically coiled. The partisdbrm seems to depend in part on the type and
size of catalyst used for the formation of the ffifsem the decomposition of hydrocarbons or
carbon monoxide. Fiber lengths as long as 100 mécvath diameters in the range of 7.5-10,000
angstroms have been reported [Baker, 1997].

Carbon nanotubes represent yet another form. giesimalled nanotubes, a single roll of graphite
forms a hollow cylinder of 10-20 angstrom diametemulti-walled nanotubes, several
concentric rolls of graphite form the walls, with averall diameter in the range of 35-1000
angstroms. The nanotubes can have lengths 5-1@8 timeir diameter [Rodriguez, 1997]. Carbon
nanoshells also form, in which polyhedral layeredctures composed of multiple layers of
closed shells surround a void, taking a varietghapes and sizes.

2.3 Nanostructure storage of hydrogen

The interest in carbon nanostructures for storiydydgen arises from their large surface areas.
For example, Rodriguez and Baker [Ibid (1997)] répoeas of 0.2-3000 #igm, as determined
from N, adsorption studies at 77K. The large areas, wiiftél interstice spacing in the range of
3.4-6.7 Angstroms, provide the potential for laageounts of hydrogen to be bound to their
surfaces.

To date, the experimental data is quite mixed, witine experiments showing considerable
hydrogen storage, but others showing low amounssasfige. Typical results for carbon
nanotubes are in the range of 2-4 wt%, and thasedioofibers is less than 1 wt% -- although
some much higher values (50-60%) have also be@mteghin the literature [Atkinson, 2002]

2.4 Need for an improved theoretical understanding

Theoretical estimates of hydrogen storage giveltesuthe 4-14% wt range [Meregalli, 2001].
Although the theoretical situation leaves muchealbsired, there is no agreement as to what the
adsorption/desorption mechanism is — even as téhghéhe process is primarily chemisorption

or physisorption.

Strict chemisorption — e.g. the formation of comtlleonds — would give large binding energies,
and would require high temperatures for hydrogésase. On the other hand, conventional
estimates of physisorption —i.e. van der Waalpeadison force bonding — would give weak
binding, and would correspond to large releasds/dfogen at moderate temperatures. Either
extreme is not desirable for a hydrogen storagédev

This poor understanding of the storage mechanianskates into a large uncertainty in estimating
the maximum hydrogen storage capacities of carlamostructures.

3. Objectives

The purpose of the proposed research is to attenmipiprove the state of understanding of the
adsorption/desorption mechanism for hydrogen ib@ananostructures, and thereby to improve
the estimate of the hydrogen storage capacity iorananostructures.

We propose to do this by taking into account thiquen polarizability properties of graphite
associated with the collective plasma effects efghelectrons. From past work, we have reason



to believe that these collective effects enhanegttysisorption binding forces, resulting in
binding energies intermediate between chemisorptanlarge] and conventional physisorption
[too small] estimates.

The implications of the intermediate binding enesdior a practical hydrogen storage device will
also be discussed. We believe that the intermebiatBng energies are just what are needed for
an effective hydrogen storage device.

4. Approach

The proposed program can be divided into threeasextthe first addressing the hydrogen
binding energies, the second applying the hydrdujeding energies to adsorption/desorption
dynamics, and the third using the results to bagiengineering design of a practical storage
device.

The present model shows an alternative method &sune the binding energy for the case of
hydrogen adsorption by graphite. This method apprates the binding energy by determining
the collective physical adsorption between a sbkgtaphite and a sheet of hydrogen molecules.
The physical adsorption occurs because the owagaltrostatic zero point energies that occur
when the two sheets are interposed is lower thasuim of energies of the individual isolated
sheets. Unlike previous models [Wang, 1999] thegmemodel takes into account the
cooperative effect of the entire sheet of hydrog@hecules, rather than measuring an individual
hydrogen molecule’s attraction to an individualbzar. Previous works by Chang et al. have
measured the physical adsorption energy betweerdwducting chains [Chang, 1972], while
other works have measured the physical adsorptiergg between two non-conducting chains
[Salem, 1962; Zwanzig, 1963; Yasuda, 1969]. Thegmemodel approximates the physical
adsorption energy between two planes, one conduatid one non-conducting, and differs from
previous works in the following ways. The planedebdetermines the two-dimensional
interaction between two bodies, rather than theé-dimensional interaction. Two-dimensional
interaction is a more realistic model for carboecduse carbon exists as layers of two-
dimensional sheets. The modeling of two planes isx@ension of the modeling of two chains.
The chain model is an infinite collection of atoateng one axis, while the plane model assumes
these chains are distributed on a surface. By ubisgapproach, this model can determine the
cooperative effect of a plane of hydrogen moleclyliesy along graphite on the physical
adsorption energy.

Other than physical adsorption models, there drera@pproaches to measure the binding energy
between graphite and hydrogen. Wang et al compadedrption isotherms for quantum fluids
[Wang, 1998]. The method is used to compute thedfesdsorption as a function of coverage for
several different graphite-hydrogen potentialseyruote experimental values that after
conversion from a different energy unit turns @ubé between W = 0.039 eV and W = 0.055 eV.

Ye and Ahn (1999) use a chemical potential forntolastimate the binding energy. They give a
“characteristic chemical potential for hydrogen gisgrption” of W = 0.038 eV. Using this
estimated binding energy, this group gave encongagisults: 8% by weight storage density of
hydrogen at a temperature of 80 K. In another wibrix,group gave a low experimental storage
density for carbon nanofibers of less than 1% bigt¢Ahn, 1998].



An advantage to modeling the physical adsorptionwofplanes is that it is possible to determine
how the energy varies with changing topologieseftivo planes. It is possible to see what the
binding energies are by varying the thickness dsageother geometrical factors in the model.

The goal of this model is to estimate the bindingrgy and the hydrogen storage capacity by
calculating the binding energy between carbon aulidgen and taking into account the
cooperative effect a sheet of hydrogen will havemvimteracting with a sheet of graphite.
Because a big discrepancy exists between the wamadels as well as the experimental results,
a different modeling approach is justified to suppo refute the different arguments that exist in
the vast array of literature there is on this scibjd he tasks proposed for this study are:

o0 Task 1. Literature review of binding energy of hygkn to carbon

0 Task 2. Estimate of binding energy taking intocact cooperative processes in the
carbon

o Task 3. Modeling of essential solid state processtermining the binding energy, from
a variety of experimental data on carbon

o0 Task 4. Validation of model and estimate from mit#d data with most consensual
agreement

0o Task 5. Engineering design of variable temper&uhennius plotting experimental
apparatus to obtain reliable measurements of bipelrergy.

4.1 Hydrogen binding energies
In the first section, the objective is to calculttte binding energy of hydrogen to a graphite
structure, taking into account the cooperativembagffects of the pi electrons.

This will be done by a continuum Drude model of ginaphite’s pi electrons. The cooperative
plasma effects will be calculated using a self-gsiagt field molecular orbital calculation, along
the lines discussed in Chang (1970). This modal {ag groundwork for site-specific binding,
since the continuum treatment of the first mod&uation is replaced by a site-dependent
calculation in which the polarizability of a specisite is enhanced by the cooperative pi electron
effects.

4.2 Adsorption/desorption dynamics
In the second section, the binding energies fraarfitat section will be used to predict the
parameter dependence of desorption/adsorption urve

This will also be done by treating the graphiteistiure as providing an “effective work function”
for hydrogen molecules, using the result from fts {continuum Drude) model described in
Section 5.1. Adsorption/desorption curves can theeastimated by an analogue of the
Richardson-Dushman equation for electron emissiam electrodes. The result of this section
should be estimates of the parameter dependenmpaise for designing a practical hydrogen
storage device.

4.3 Engineering design

This section uses the results generated in thgtexous studies to do a preliminary engineering
design of a practical storage device. In additeosanity check is performed to be sure that the
results are in fair agreement with published data.



5. Enhanced hydrogen binding energies from coopetige plasma
effects

As described above, the proposed work is basebtehytpothesis that the cooperative plasma
effects in the graphite structures should enhahgsigorption by increasing the physisorption
(dispersion-van der Waals) binding energies. Tise®éor this hypothesis are Drude’s model and
two papers by Dr. David Chang, a consultant onghagect.

5.1 Drude’s Model

In an attempt to explain the electrical propergéssulators and conductors, Drude proposed a
simple model where free electrons in conductiordbasf atoms, through the action of an
external electric field, traveled through matted aollided with the atoms of the lattice or other
electrons causing them to accelerate. The steatly atirrent flow was only possible when a
resistive force, proportional to the velocity, wamposed. That is, electrons except for a small
drift velocity are held in position by restoring¢es, but set in motion by the electric field agtin
on them. Drude’s classical model worked only whHenwavelengths of electrons were small
compared to other characteristic lengths, sucheastean free paths between collisions. When
size of the device is small or comparable to tieetebn wavelength, the Drude model must be
expanded to include quantum effects. This condigorery unlikely in metals, but more
plausible in semiconductors in which electrons haweh smaller momentums. The Drude
model and related equations are described in ddtaivhere [Slater, 1967].

A simple Drude model for dielectrics involves oktihg dipoles, but no free electrons. In metals
however, electric conduction is the result of feéectrons accelerated by the oscillating
electromagnetic fields. Briefly, the electron isdted as a spring in an oscillating electric fiéfid.
we assume both the electric fidtdand displacementoscillates with frequenay, then the
equation of motion for an electron is given as:

e

eE — kx = —m,aw’x
vz~ eE/m,
k/m, -’
The dipole moment defined as the product of eledtroharge e and displacement x:
_ _ €Em
P=eX=—7F—
@ -

WherekE is the electric fielde is the electronic charge fis the mass of electrogy is the

angular frequency of the oscillation, angl= (k/m)"’2is the natural oscillation angular frequency

of the bound charge in the insulator, k is thergpdonstant representing the restoring force
proportional to the displacement of the bound ederst

Total electric dipoles per unit volume is calledgpization



p= E(—a'\)'f_/ar;)

Where,N is the volume density of electrons in a solid.

It is well known that the polarizability of a conttar can be much greater than that of an
insulator, because the mobility of the electrona @donductor can result in a much larger
displacement in response to a given electric fi&écalling from Maxwell's equation, the
frequency-dependent dielectric constafth) which describes the polarizability of an insufag

4P _ W [1a]

Here w, = (4rne?/m”? is the plasma angular frequency of the chargeispec
Free, conductive electrons behave similarly, btiheit the friction spring termog=0).

2
¢ =1—% [1b]

Semiconductors, both free and bound electrons giviél additional terms in the dielectric
constant so that the whole dielectric constant balbf the form.

4rrnoe2/m _4mn e’/m 1c
P )= ( 7 ) [1c]
Where, g and n are the number densities of bound and feetrens, respectively.

e=1-¢(

Because of the absence of thgn the denominator of eq. [1b] and fewer collisidretween
mobile electrons in a conductor comparedddhe resulting polarization can be much greater in
the conductof.

5.2 A continuum estimate of the modification of biding energy due to plasma effects

The van der Waals forces responsible for the pbysi®n of hydrogen to graphite result from
the mutual polarization of the graphite and therbgdn. Essentially, two mutually induced
oscillating dipoles interact; each induced dip@suiting from the polarization due to the
oscillating electric field of the other dipole. Awdingly, anything that increases the polarization
of either entity should result in a stronger force.

For a two-dimensional conductor, although the garemhancement of the dispersion force
should occur, Chang [1973] applied the fluctuatiissipation theorem to calculate the van der
Waals dispersion force between two blocks of grtgpdund concluded that eq. [1b] is not the
correct expression for determining the enhancenitoever, for smaller distances of
separation, the interaction between two, three-dgomal conductor blocks is due primarily to
the excitation of surface plasmons, whereas forgvephite-like blocks, no surface plasmons
exist, and the interaction is due to the excitatbdamped charge fluctuations.

Each sheet will be treated as planar and infimitextent, and will be characterized by a
frequency-dependent Drude model dielectric function

!t is interesting to note that the dispersion éocannot be calculated by looking at thé itfreraction of a
dipole with its image dipole in the conductor. IRat the effect of the image needs to be calculatetthe
dispersion relation, giving both a larger force ané that drops off more slowly with distance.



For the present application this work is extenaetivb sheets of materials, one insulator and one
conductor. Specifically, the hydrogen sheet wilkteated as an insulating layer with a dielectric
of the form:

en = 1 —on’ [0* 0or]™ (2]
2
Where of; :m#e is the square of the “plasma frequency” of hydrogkeatrons is the

frequency of interest, aneby is the natural restoration frequency of the elewro a hydrogen
molecule, p denotes the volume density of the hydrogen moéecin the sheet, e is twice the
electronic charge (since there are 2 electronsnoégcule), and gis twice the mass of an
electron. The plasma and restoration frequencybeastetermined from experimental data.

For the graphite sheet, the dielectric functiodifferent for electric fields parallel to the plaok
the sheetc. and for electric fields perpendicular to the jelarf the sheed:

gc: = 1 —0c” [0* woc’] ™ — 0o’ [3a]
gco = 1 —oc’ [0* 0oc]™? [3b]
2

4mnc €

In these expressionsy? = is the square of the “plasma frequency” of the &eetrons,

mcoiS the natural restoration frequency of the coeetebns, andy’is the square of the plasma
frequency of the graphite conduction electronswih the quantities for the hydrogen
molecules, these values can be determined fronriexpatal data.

For our purposes, we need only the frequency-degrgrielectric functions that result from the
Drude model. These are listed in Table 1 below.

Table 1. Drude dielectric constants

| sotropic carbon insulator

g(®) = 1 —occ’ [0° - oco]™ [4]
Fictitious isotropic conductor with same conductiviy as graphite
e (0) = 1 —of /o? [5]
Graphite
Dielectric perpendicular to graphite planes
&0 (0) = 1 -0’ [0* - ool [6a]
Dielectric parallel to graphite planes
£ () =& (o) + 4T [6b]
4 = - op” lo” [6c]
Hydrogen
&n (0) = 1 -0y’ [0° - ouo]™ [7]

The numerical values of various parameters useduations 1-3 above are estimated in the next
section.



5.3 Zero point energy approach with Drude model

The approach used for estimating the binding easrgonsists of calculating the electrostatic
normal modes of the system of interacting entitiesl assigning the appropriate amplitude to
each of the normal modes.

The normal modes of a system are those perturlzadibtine system that oscillate at some
frequency natural to the system. Thus, they cattelb@ed by assuming a disturbance of the form
exp[-iwt] into the equations of motion, and seeing whatftrm of the perturbation must be to
sustain the disturbance and what the resulting-alafrequency must be.

A normal mode can be considered to be a giant hamuscillator. The allowable energy levels
of a harmonic oscillator are known from quantum haagcs to be:

E, = (n+ %) (h/2)w (8]

Where h = 6.625 x 18 erg sec is Planck’s constant, anés the angular frequency of the
harmonic oscillator.

Thus, the lowest energy state of the harmonic lasailhas a “zero point” energy of

E, = hw/4m [9]
Each of the normal modes will be assumed to hasgezdro point energy.
The rationale for assigning the zero point eneoggach normal mode is provided by the
fluctuation-dissipation theorem. A good discussbithis theorem is provided in Landau and

Lifshitz (1969) and repeated in Appendix A.

In the next Section, we shall summarize the Druddehresults to be used in calculating the
normal mode frequencies.

5.3a Hydrogen molecule volume

We shall approximate the molecular volume by festimating the atomic hydrogen volume, and
then simply multiplying that by 2.

The radial distribution of the electron (1s growwtate) about the hydrogen nucleus is:

3 = I [4Ttme’]t=5.29 x 10" m

Where h is Planck’s constant, ia the electron mass, and e is the electron ctarge

We approximate the hydrogen molecule volume by

Vy =2 (4v3) a8’ =1.24x16°m® [10]

2 For unit conversion use38.988x10 kgm®C?s? which is the Coulomb’s constant.



5.3b Hydrogen plasma frequency
The plasma frequency is given by

Wy’ = 4Tt ne yem [11]

Where R is the number density of electrons in the molecahel can vary between 0 angd n
The number density can be best estiméiased on the Langmuir isotherm equation

N /Ns = a_angmuirp [1+ b_angmuirp]-:L [12a]

In this expression, N denotes the surface densitydrogen and Nlenotes the saturation
surface density. For graphite with an intercarbmacgng of 1.42 angstroms, if we assume that the
saturation density is the same as the surfacetgiafsiarbons, then \= 5.7 x 16° cmi®.

The Langmuir coefficients are expressed in ternmtb@temperature T and the van der Waals
adsorption energy V. Specifically,

a_angmuir: bLangmuir: h exp(V/lﬁT)[Ns(Sm)llz(kBT)SIZ]-l [12b]

m denotes the mass of a hydrogen molecule. Fgrieatypublished value for V of 0.04 eV, and
the pressure of 100 atmospheres and the tempeddttoem temperature, 300K, then M1.7 x
10" cm®. Assume a monolayer of hydrogen molecules omthphite surface. Taking the size
of the hydrogen molecule to be twice the van deaM/eadius of a hydrogen atom, the thickness
of the monolayer is 2.6 angstroms. Thus, a surdacsity of 1.7 x 1t cm” corresponds to a
volume density of n = 6.6 x {ocm®. Substituting these values in equation [11], we g

oy’ = 1.96x16" se [typical for a binding energy of 0.04 eV at 100 anu 300 K] [13]
wy = 4.43x16° sec

The value ofoy”will of course vary as the surface density varsesthat a range of values will be
considered in the following.

To estimate the binding energy per unit area dbset the zero point energies of the different
normal modes need to be summed over the numbearafah modes per unit area. Designating a

normal mode by its surface wave number k, the nurmbeormal modes in a wave number
interval 2kdk is simply 2kdk/(2m)>.

Thus, the number of normal modes per unit are@ tsunmed over is
Nom = | 2rkdk / (2m)?= (1/410) Kmas [14a]

Where the integral is taken from k = 0 g,k Since the number of normal modes per unit area
must be equal to the surface density of hydrogelecntes N,

Kinax = (47IN) ™ [14b]
For the binding of hydrogen to the surface of agmal, the electric fields responsible for the

binding are large only near the surface. Thusntirenal modes that are of interest for
calculating the binding energies are not the maadse bulk of the material and of the external
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space, but only those that are confined to theregi the surface. That is, the normal modes that
are to be summed over are only shieface normal modes

5.3c Hydrogen natural oscillation frequency

From the correspondence principle, the naturallaon frequency corresponds to the frequency
associated with the energy level transition fooa-mero dipole matrix element. For hydrogen,
this occurs between the n = 1 and n=2, where meisadial quantum number.

For hydrogen the ionization energy is 13.6 eV, Wtdorresponds to a transition betweenn =1
and n =o. For a transition between n=1 and n=2 we have:

AE = (1/F-1/2) 13.6 eV = 0.75 x 13.6 x 1.6 x 1 = 1.63x16°%J

and
Wo’ = 2.4 x 16 seé [15]
Who = 1.55 x 16° sec'

5.3d Carbon plasma frequency

Crystalline graphite consists of parallel sheetsasbon atoms. Each sheet consists of hexagonal
arrays of carbon atoms (See Figure 4). Each catmmn is in sp2 hybridization and is connected
to three neighboring atoms within a sheet by a lemtaigma bond, separating them by a
distance of 1.41%\.. Sheets are held together by weak Van der Waate$, separated from each
other by a distance of 3.35®4 These sheets are staggered by half a bond lethgttefore

graphite configuration is repeated by a distandsvimfe the separation distance between adjacent
sheets. The graphitic structure can be seen aatsegiecarbon cells made of parallelepipeds with
sides identified by the lattice parameters by aa@rithe cell volume is calculated as

V = &.c.sin (2/3)
For graphite we have a = 2.46%2and ¢ = 6.7079A, giving a cell volume of 35.189xT0m".

There are 4 atoms of carbon in each cell so eatiogatom occupies a volume one quarter of
the cell volume (V= 8.797 x1G°m®).2

Figure 4. Crystalline structure of graphite

The ionization energies for the first four elecgan the n=2 level (2s and 2p electrons), and the
first two electrons in the n=1 level (1s electrohtarbon are: 1086.5, 2352.6, 4620.5, 6222.7,
37831, and 47277 kd/mole. Since it is much costirmrgetically for the 1s electrons to

3 Alternatively carbon atoms can be approximated @s MW/(Nay.p), wherep is x-ray density equal to
2.2670 g/cm
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participate in dipole transitions that it is foetBs and 2p electrons, we can safely make the
approximation that the plasma frequency of carlsasimply determined by four (4) sigma
electrons occupying the volumeV

In that case,

W = 41 (4IVy) €1m
we>=1.08 x 16° se¢ [16]
we= 3.29x10° sect

Carbon plasma frequency of sigma electrons

In graphite, there are 3 localized n = 2 (sigmagtebns per carbon atom that have orbitals in the
plane of the graphite sheet. These do not paatieijm the conduction phenomenon. Since the
plasma frequency of carbon in its insulating skete already been assumed to involve only the
four n = 2 electrons, the plasma frequency of thma electrons is given by

W = (3/4)c?
e, o = 3.08 x 16° sec’ [17a]

Carbon plasma frequency of pi electrons

In graphite, there is one unlocalized n = 2 elatper carbon atom. This occupies-arbital

that protrudes above and below the graphite sis&st Figure 4). Pi electrons are responsible for
the electrical conductivity of graphite. Accordingl

w’ = (1/4) o’ [17D]
e, = 1.90 x 16° sec'

Carbon natural oscillation frequency
To estimatac, we note that the zero frequency limit of the Brwckpression (Equation 2) for
the dielectric constant of carbon is simply

£(w=0) = 1 +wc/uxpc’

The dielectric constant of carbon at low frequesisegiven &b
€(w-0)=2.5-3.0

Let's assume(w- 0) = 3,wc/tuc’= 2 0runc = w:/2. This gives plasma frequency of the
graphite conduction electrons:

Weo’ = 7.24 x 16 seé [17c]
Weo= 2.69 x 18° sec

The summary of results is given in Table 2.

* See for example ASI Instrumentation Websitatat://www.asiinstr.com/dc1.html
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Table 2. Numerical values of squared frequencies
appearing in dielectric constants [(radians/se@)
occ 14.4 x 1§

0o’ 7.24 x 162

o 1.10 x 182

oc 10.80 x 16

op’ 1.10 x 16

on’ 0.20 x 16°

OHO 2.40 x 16
6. Modeling

The objective of this model it to calculate thediimg energy of a layer of hydrogen on a sheet of
graphite, while taking into account cooperativeeet§ due to the presence of multiple hydrogen
molecules and multiple carbon atoms in the grapfite approach will be to compare the sum of
the zero point energies of the electrostatic serfaodes of two juxtaposed dielectric sheets with
that for two dielectric sheets separated by amitiefidistance. The dielectric functions are chosen
so that one represents a graphite sheet and teerefiresents a layer of hydrogen molecules.

The modeling is carried out in four easier steps:

Case 1. The van der Waals binding energy betwdsboc of carbon in its insulating form and a
block of hydrogen.

Case 2. The van der Waals binding energy betwdsboci of carbon in its insulating form and a
thin sheet of hydrogen

Case 3. The van der Waals binding energy betwdsoch of a fictitious material with isotropic
conductivity, and a thin sheet of hydrogen

Case 4. The van der Waals binding energy betwédoch of graphite and a thin sheet of
hydrogen.

We felt that it was important to treat the thin hygen sheet case in three of the four cases, since
the hydrogen block case is quite artificial anddoet permit a realistic variation of hydrogen
density. The block case applies only to condensédiduid hydrogen, since it does not permit a
larger density at the interface with carbon thathianhydrogen bulk volume itself.

The first two cases enable us to see the differenisetween two blocks of material and a block
and a sheet. In particular, it showed for thispgéemsotropic situation, why there appears to a
change in the sign of the binding energy betweeadhwo cases.

The second and third cases show us what the differis between binding to an isotropic

insulator and binding to an isotropic conductohey show that binding is larger for the isotropic
conductor than for the isotropic insulator.
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The fourth case gives us the desired result. #trialisplays the effect of hydrogen density in the
sheet on the binding energy of each hydrogen mi@eBy approaching this answer by simpler
stages, insight is also provided as to why thegegicalculated in our earlier work have been so
large.

In each case our approach consists of comparingeiftepoint energies of the first configuration
with the sum of the zero point energies of theefativo configurations. The difference is the
desired binding energy of the hydrogen sheet t@thphite sheet.

6.1 Case 1. Interface of a block of isotropic cadm insulator with a block of hydrogen

Consider first the simple case of a block of hy@émmterfacing with a block of an isotropic
carbon insulator. In accordance with the discussidSection 2, the binding energy between the
two blocks can be obtained from the zero point giesrof the surface modes existing at the
interface.

Before considering the surface energy at the iaterbf the two blocks, consider first the simpler
case of the surface modes at the interface ofekldbcarbon and air (Section 6.1a), and the
surface modes at the interface of a block of hyelnognd air (Section 6.1b). The systems treated
in Sections 6.1a, 6.1b, and 6.1c are depictedguareis.

carbon air air hydrogen carbon hydrogen

(1a) (1b) (1c)
Figure 5. Blocks of (a) isotropic carbon insulator interfacing with air, (b) condensed hydrogen interfacing
with air, (c) isotropic carbon insulator interfacing with condensed hydrogen
6.1a Surface mode of a block of carbon and air

In keeping with Figure 5.1a, assume that a bloakanbon is separated from air by an interface at
x=0, and search for electrostatic surface modes.

Assume that the electrostatic potendidias a disturbance of the form

d(xy,t) = o(y) expli(wt - ky)] [18]
Where y is a coordinate parallel to the interfaoe &is the time.
The equation for thé in each of the two regions is Laplace’s equation

dd/dx®-Kd =0 [19]
For a surface mode, the relevant solutions are

¢ = A exp[kx] when x<0 [20a]
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¢ = B exp[-kx] when x>0
as these give fields that are large only nearrtezface.

At the interface, the boundary conditions are

$(0-) = ¢(0+)

€ dd(0-)/dx = dp(0+)/dx
Thus,

A=B
and

&+1=0

Equation [22] indicates that a surface mode e¥istsd only if it is possible to have
€<0 [Necessary condition for surface mode]

From the expression fagfrom eq. [4] of Table 1, eq. [22] becomes
2 —ocd [032 - Cl)coz]-l =0

This gives as the frequency (squared) of the senfacmal mode:
©° = 0o’ + 02

6.1b Surface mode of a block of hydrogen and air
For the situation depicted in Figure 5.1b, thevate solutions are once again

¢ = A exp[kx] when x<0
¢ = B exp[-kx] when x>0

At the interface, the boundary conditions are

$(0-) = ¢(0+)
d¢(0-)/dx = &4 ddp(0+)/dx
Thus,
A=B
and
ey t+ 1=0

From the expression fay; from eq. [7] of Table 1, eq. [26] becomes
2 —on’ [032 - (DHOZ]-l =0

This gives as the frequency (squared) of the senfacmal mode:

[20b]

[21a]

[21b]

[22]

[23]

[24a]

[24b]

[25a]

[25b]

[26]
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(,02 = (DH02+ (DHZ/Z [27]
6.1c Surface mode between carbon and hydrogen
Next consider the situation depicted in Figurevifsere a block of condensed hydrogen is
juxtaposed to the block of carbon.

The boundary condition for this situation is

¢(0-) = ¢(0+) [28a]

€.dd(0-)/dx = g ddp(0+)/dx [28Db]
ie.

e tey=0 [29]

For this caseg. andsy must have opposite signs. From the forms @ndey, this can occur only
if eg. [29] has a solution fas® in the range

OHo' + O < 0 < Oco + Occ [30]

©° = Opo + mHzl(Sc +1) [31]
For the typical values shown in Table 2, we see tha

occ >>0Ho, O

Thus, for a solution close to that for a surface&lenof hydrogen with air, a good approximation
to eq. [30b] is obtained by substituting &ithew = 0 limit &.(0):

©” = oo’ + onl(gc (0) +1) [32]
The solution of eq. [32] clearly outside the ran§eq. [30] required for a surface mode. Thus,
there is no surface modedif has a value close to that of the surface modebtdek of hydrogen
in air.
Eq. [29] may also be written

0° = 0co2 + occl(en+1) [33a]

For o close to the value for a surface mode of carbairirwe see from the typical values of
Table 2, we see thay; is very close to unity. Thus, a good approximatmeq. [33a] is obtained
by replacing the»”in theg,, by the zeroth order iteration value

®(0) = ocd’ + oc/(1+1)
In that case, the approximate solution is
®° = 0co’ + occ/(€x(w(0) ) +1)

Where
SH((D(O)Z ) =1 '(DH2 [(x)co2 + ((DCCZ/Z) - (DHOZ ]_l
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Since(l)coz >> (DHZ,
o’ =oco + 0ccl2 + (Occor )| oco’ + occ T2 —ono’] ™ [33D]
This satisfies the surface mode existence requimenfesq. [30].

Thus, for a block of carbon juxtaposed to a blotkamdensed hydrogen, the surface mode that
exists has practically the same zero point enesghat of carbon in air.

To summarize, the zero point energy frequenciethimsurface modes are:
o = [weo’ + wcc/2]Y? carbon/air interface [34a]

o = [ono’ + op/2]? hydrogen/air interface  [34b]

0= [0ce’ + 0cc2 + cCon )] oco’ + 02 —ono] MM

carbon/hydrogen  [34c]
The frequency to be associated with the binding energy of cadomhhydrogen is the sum of
the first two frequencies [those existing whenhitexks are widely separated] minus the third
frequency [the surface mode frequency when thekBlace juxtaposed]:

6(,0 — [(DCOZ+ (DCC2/2]1/2+ [(DH02+ (DH2/2]1/2
- [(DCOZ + (DCCZ/Z + (O)CCZO)HZ/4)[ (DC()2+ (DCCZ/Z —O)Hoz]_l] 12

or on expanding the third term using the fact thaf* >>o
30 = [ono? + 0n/2]Y2 - (@clfwn?l8)] wco? + wccd2 — ool Hweo’ + wec2] 2

The corresponding binding energy is practicallyed®ined by the first term in this expression.
The binding energy is essentially due to the flaat the surface mode that exists when bulk
hydrogen interfaces with air is eliminated whenligdrogen interfaces instead with carbon.

This has a large value. However, this is a vetifi@al case, since it assumes that hydrogen
exists in a block rather than condensed at theooasbrface. Hence, we use this only for
illustrative purposes to show the essential ingnetdi of calculating the frequencies of surface
modes.

A more realistic case is considered in the nextiGac

6.2 Case 2. A block of isotropic carbon with a ih sheet of hydrogen on a surface

A more realistic situation is that of a block abti©pic carbon insulator on one surface of which

is deposited a thin sheet of hydrogen. This cpomrds to hydrogen condensing on the surface of
the carbon due to adsorption.

The approach to calculating the binding energy ftbenzero point oscillation frequencies is:

a. Determine the frequencies of the surface normalesad carbon and air
b. Find the frequencies of the normal modes of ashiet of hydrogen in air
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c. Determine the frequencies of the surface normalenad carbon with a deposited
thin sheet of hydrogen between it and air

d. Subtract the frequencies from the third step frbenfirst two steps, and integrate
over wave numbers to obtain the zero point enefggbesion per unit area.

The situations for the four steps are depicteddguiie 6.

carbon air ar H, air carbonH, air
(2a) (2b) (2¢c)

Figure 6. A block of isotropic carbon insulator in air [2a]; a thin sheet of hydrogen of width w in air [2b]; and
a block of carbon insulator coated with a thin sheet of hydrogen of width w in air [2c]

6.2a Surface mode of a block of carbon and air

The calculation of the zero point frequencies far $urface modes for a block of carbon
interfacing with air has already been calculatethenprevious Section. The answer is given in
eq.[23]

©° = 0co + 0?2 [[23]]

6.2b Two modes of a thin sheet of hydrogen in air
Next consider a thin sheet of hydrogen of widthvair.

In each region the potentidlsatisfies Laplace’s equation. Assume(@,y,t) = ¢(y) expli(ot —
ky)] , the surface modes of interest will have fibrens

¢ =Aexp[kx] x<0 [35a]
¢ = Bcosh[kx] + Csinh[kx] O<x<w [35b]
¢ = Dexp[-kx] X>W [35¢]

The boundary conditions at the interfaces are
¢ continuous [36a]

d$(0-)/dx =g, dd(0+)/dx
[36b]

gq db(w-)/dx = do(w+)/dx [36c]

Since the width w of the hydrogen layer is very Bntlae cosh and sinh may be approximated by
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cosh[kx]~ 1
sinh[kx] = kx
With these approximations, eq. [36] then gives
ey’ +(2/kw) gy +1 =0 [37]

To lowest order in kw, this has two solutions:

en =- kw/2 [oddd solution] [38a]
giving

0~ Opo’+ on’ - oy (kw/2) [odd¢ solution]
i.e.

o~ [ono?+ 0n]" - opono’ + on’] ™M (kw/4) [oddd solution H in air] [38b]
and

&y = - 2/kw [evenp solution] [39a]
which gives

0~ opo” + op (kw/2) [ evend solution]
i.e.

o~ opo+ (OnTono)(kw/4) [ evend solution H in air] [39b]

6.2¢ Modifications of the three modes for hydrogesheet on carbon
For the situation depicted in Figure 6.2c, the Bohs in the three regions have the same form as
before, but now the boundary conditions at therfates are modified slightly:

¢ continuous [40a]
€cdd(0-)/dx =g dp(0+)/dx [40Db]
€n dd(w-)/dx = dd(w+)/dx [40c]

Equation [37] is replaced by
enlec +(2Ikw)[(Lkc) +1] g4 +1 =0 [41]

Solving this quadratic equation énto lowest order, this gives the two solutions aréding from
the thin hydrogen sheet modes

e = -kw [1+ (1kQ)]™? [422]
en = - (1/kw) [14ed] [42b]

On the other hand, solving eq. [41] &ygives a third solution originating from the carbon
surface mode with air:

€ct+ 1=-[n+ (ec/en)lkw [42c]
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Consider first the hydrogen sheet mode of eq. [#2a] corresponds to the odidnode of the
hydrogen sheet in air. Since kw<<1, the coeffic[ém (1kc)] " of kw on the RHS of the
equation can be evaluated by inserting into ifftbguency obtained by setting kw = 0:
(D(WZO)Z ~ (DHOZ + (DH2
The resulting frequency is to lowest order:
o~ [ono?+ 04" - on? [ono” + on?] M2 (kw/d) & [odd H, sheet mode]  [43a]
Where
&= [COHO2 + (DHZ_ COco2 - (DCCZ)][ (DHOZ + (DH2 - COcoz— (Cl)ccz/z)]-l

The frequency for the odd,lheet modeecreaseswith juxtaposition to the carbon.

Next, consider the hydrogen sheet mode of eq. [#&ii]corresponds to the eweimode of the
hydrogen sheet in air. The solution to this eiguas

® = 0po + (04 lono) (kw/2)[1+ed]™

Again, since kw<<1, thec in the coefficient of kw can be evaluated as ifwere zero, i.esc
can be approximated by

ec(W=0) = 1 —occwno’ — oco]™
This gives

O = 0o T (COH2 lono) (kw/4) [(DHOZ_ (Dcoz][COHoz— wco’ — ((0002/2)]-l
[even Hsheet mode] [43Db]

The frequency for the even,ldheet modencreaseswith juxtaposition to the carbon block.

Finally, consider eq. [42c]. If the right handesigere zero, this would give the frequency for the
surface mode of carbon in air, i.e. it would give

(,l)(W:O)2 = (,!)COZ + (,0(302/2

Since kw<<1, this frequency may be used to evalitmtoefficient §, + (ec/eq)] to give an
approximate solution

o= [C*)co2 + el 2]1/2 + (COH2 ®cc2/4)kW[0)c02+ wccl2 - O)Hoz]_l[ﬂ)co2 + o] 2]_1/2 [43c]
Note that the carbon surface mode frequenaycieasedby the presence of the hydrogen layer.
To summarize, the relevant zero point frequenaeshie surface modes are:

o = [oco’+ wccd2]M? [carbon-air] [[23]]

o~ [ono?+ 04" - opono’ + on’] ™2 (kw/4) [oddd solution H in air] [[38b]]
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® % opo+ (OnTono)(kw/4) [evend solution H in air] [[39b]]

o~ [COHo2 + (OHZ] V2 - o [COHO2 + COHZ]-llz(kWM) &
[odd H sheet mode modified by C] [[43a]]

&= [O)Ho2 + O — Oco - O)ccz)][ OHo + O’ - Oco — (60002/2)]_1

O~ Opo T (COH2 lono)(kw/4) [(DHOZ_ (Dcoz] [(OHOZ_ wco’ — (60002/2)]-1
[even H sheet modified by C] [[43b]]

o ~ [0co’ + 0ccd2]M? + (n” occdb)kwoce’ + 02 - oo [oco? + occd2]™?

[carbon —air modified by H sheet] [[43c]]

Thus, the binding energy corresponds to the diffegdrequency formed by summing the first
three frequencies (for the infinitely separated porents) and subtracting from those the sum of
the last three frequencies (for the juxtaposed corapts):

dw = - (COH2 O)ccz/ 4)kW[0)co2 + G)ccz/ 2- COHoz]_l[COco2 + G)ccz/ 2]_1/2
+on’ [opo” + o] 2 (kw/4)(E-1)
+ ((OHZ/ ono)(kw/4) [1- [(DHOZ_(OCOZ] [(OHOZ_ COco2 - (wccz/ 2)]'1 ] [44]
Where
&= [COHO2 + (DHZ_ (Dcoz' (DCCZ)][ (DHOZ + (DH2 - COcoz— (Cl)ccz/z)]-l

Equation [44] may be rewritten:
dw = (kw/d) @’ 0cc’) [- {ocd’ + 0cc2 - 0ne’t {oco’ + 012} 7
+ (1/2){<DH02 + con} '1/2{-coH02- o’ + 0co” + (Ct)ccz/z)}-1
+ (L/2op0){- 0o’ + oco” + (©cc72)} ] [45]
The binding energy per unit area is
E, =] 2rkdk / (2m)? ( hdw/4m) = (h/8e)jkdkdm
E; = (h/ 8"l2)(kmax3/ 3) (w/4) @Hz COccz) [- {Cl)co2 + ocd2 - (DHOZ}-l{ oco + ocd! 2}-1/2
+ (1/2){0)H02 + (DHZ} _1/2{'0)H02‘ oH + Oco + (60002/2)}_1
+ (U2opo){- 0no’ + oco + (0cc72)}
On using kax= (41t Ng)¥?from eq. [14b], we find
By = (h/ 8“2)((4“ Ns)3/2/ 3) (w/d) @Hz COccz) - {Cl)co2 + COccz/ 2 - wHOZ}-l{ cOcoz + (DCCZ/ 2}-1/2
+ (1/2){0)H02 + (DHZ} _1/2{'0)H02‘ on + Oco + (60002/2)}_1
+ (1/2ono){- ®Ho™ + 0co” + (0cc ’ 46a
(L/2or0){- oro” *+ (0ccl2)} ] [46a]
The binding energy per hydrogen molecule is then
Es = Eo/Ns
EB — hT[-l/Z Nsl/2 (W/12) @HZ (DCCZ) [_ {(DC02+ (DCCZIZ '(DHOZ} -l{ (DC02+ mcc2/2}-1/2

+ (1/2){0)H02 + (DHZ} _1/2{'0)H02‘ on + Oco + (60002/2)}_1
+ (U2opo){- ono” + 0co’ + (0cc2)}] [46D]
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Note the strong dependence on the surface deriditydoogen, especially sineg’is itself
proportional to N

| 6.3 Case 3. A block of isotropic conductor with &in sheet of hydrogen on a surface

The case of an isotropic conductor of plasma fraque”with a thin sheet of hydrogen on the
surface can be obtained directly from the resdlte® previous sect ion by the replacements:

(Dcoz =0 [47&]
occ => 0f [47b]

Equation [47a] corresponds to the absence of armegtforce on the conduction electrons, except
that associated with the plasma properties desthpe:".

By inspection, then, the binding energy of a hy@rogiolecule to the isotropic conductor is

EB — hT[-:I./Z Nsl/Z (W/12) @)HZ (DFZ) [_ {(DFZ/Z '(DHOZ} -1{ mF2/2}-1/2
+ (U2)oro” + on’} P {-ono’ - on” + (@F12)}" + (L 2ouo)f- ono’ + (0F12)} 1] [48]

In the limit where
OF >> Opo’, OF
only the hydrogen sheet modes are important. dhdase,
Es=> Ht"’Ng"” W/12)oy’ [{ono’+ on’t 2+ (Liono)]

Whenowo >> o’ — i.e. when the surface density of hydrogen igrfam saturation, eq. [88]
simplifies further to

Es=> htY2N"? (w/6) o2 /oo [49a]

As a numerical example, suppose we take the viuEable 2 with the assumed surface density
of 1.7x16* cm?and w = 2.6 x 1®cm. Then eq. [49a] gives

Es =>0.018 eV [49Db]
This is comparable to the oft cited value of 0.4 &lowever, the expression of eq. [49a] is
proportional to N2 (sincew,?is itself proportional to . Thus, the magnitude is sensitive to

the surface density.

In the next Section, we shall consider bindingraphite itself.

6.4 Case 4. A block of graphite with a thin sheetf hydrogen on a surface

Since graphite is anisotropic, the foregoing resoitist be modified. In addition, graphite has a
dielectric constant different from unity. BothtbEse effects are accounted for in the Drude
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model by introducing a different dielectric condtparpendicular to the graphite planes from that
parallel to the planes. Specifically, we shall treeexpressions of Table 1:

€n ((D) =1 —(DCZ [(,02 - (Dcoz]-l [[Ga]]
£ (@) =& (o) + 4o ([6b]]
4T = - @p° lw? [[6cl]

The perpendicular dielectric constant is due pritpéo the 3 sigma core electrons (assuming that
the two 1s electrons are so tightly bound that theyot contribute appreciably.

The parallel dielectric constant contains the poddion contribution of the 3 sigma electrons,
and in addition has the polarization term due @dbnduction electrons.

Within the graphite, Laplace’s equation is no langtisfied because of the difference of the
dielectrics perpendicular and parallel to the stefalnstead the equation for the electrostatic
potentiald is

dd /A -V =0 [50]
Where

Y = (e fen)k®
and where again we have assumed a disturbance frth ¢(x) exp[i (@t-ky)].
Note that for a surface mogamust be real. This imposes the necessary condition

€ andeg must have the same sign [condition for surface hodg51]

6.4a Surface mode of a block of graphite and air
Suppose that the graphite block occupies the regiGnand that the air is in the region x>0.

Then¢ has the form
¢ = A expiyx] x<0 [52a]
¢ = B exp[-kx] x>0 [52b]
and the boundary condition at x =0 is
¢ continuous [53a]
yen=-k [53Db]
Equation [53b] imposes the requirement
eg<0 [in order to satisfy continuity of electdisplacement] [54]

On combining the conditions of egs. [51] and [54] see that the necessary condition for a
surface mode is that
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Bothe andemmust be less than zero [condition for surface rhodg55]

This is a significant condition, because it indésathat the solution cannot be determined by the
pi conduction electrons, i.e. a surface mode caexist for

4o = O(1)
for that would give
o= Ow,)
and with the typical values of Table 2, this woungly
€ (w) =1 -0 [602 - C!)coz]_1 ~1+od [C*)coz]_1 >0

This means that the solution of eq. [53b] is deteeah primarily by the&s(w) contribution in both
the parallel and perpendicular directions.

From the definitions of the parallel and perpenidicdielectrics, we can write
V' = [1 + 4m/eg] K

and since the desired surface mode solution igipaily determined by i.e. by e5+1~ 0, we
can treat #im/eg as being much less than unity and write approaiyiat

vy=[1 + 2m/eq] k
On substituting this in eq. [53b] and iterating @mu/eg, we find to lowest order
o = [oce’ + o’ 2]+ (0®,716) [oco” + o’ /2] [56]

This is very similar to the isotropic carbon case;ept that the conducting pi electrons increase
the zero point frequency of the surface mode.

6.4b Modifications of graphite mode and hydrogen maes for juxtaposition
As with the isotropic carbon case with a thin lagehydrogen on the surface, assume ¢hat
takes on the forms

¢ =Aexplkx] X <0 574]
¢ = Bcosh[kx] + Csinh[kx] 0<xX<W [57b]
¢ = Dexp[-kx] X>W [57c]

The dispersion relation giving the surface mod® paint oscillation frequencies is obtained
from the boundary conditions

¢ continuous [58a]
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€0dg(0-)/dx =g, dd(0+)/dx [58b]
endp(w-)/dx = dp(w+)/dx [58c]
6.4c Modification to carbon-air surface mode
On using the small argument approximations forsihb and cosh, we find in the lowest order in
kw:

€0~ ~(kfy) [1+ {en-(1/en)tkw] [59]

This equation can be solved by iteration on bath/d; and kw. We find

o= [{oco + od 121+ (02w, 716) (0co” + oc” 12)*?][1- SIRZ] [60]
Where

S = (kwi2pcq e ?-(Leq @)} [ 1- (CUCZO)pZ/ 8){ wco +wc 12} [61a]

Z = ocotoc{2- o, {20co+oct ! [61b]

R = [2 -0p{20co +oc} [61c]
and where

{ex0-(Llen)} = - 20 Toco” + (oc 2){1"'((%2/4){(0002"‘(002/ 2} - ono 1t [61d]

Note that
{e:2-(1/e )} < 0. [62]

so that — as in the isotropic carbon case — thedggsh sheet actually raises the zero point
oscillation frequency of the carbon-air surface mod

We note also that when,-> 0, eq. [62] reduces to eq. [43c] for the isotcagarbon case, as it
should.

6.4d Modification to hydrogen sheet modes
As in the isotropic carbon case, a quadratic egnatan be written fog, from the boundary
conditions:

en” (kwien)(KIy) + €1 + (Kive)] + kw = 0 [63]
To lowest order in kw, this has two solutions:

en~ -(kw)[1+ {k/(yer)]™* [odd H sheet solution] [64a]

en~ -(L/kw)[1+ (ye/K)] [even H sheet solution] [64b]
The frequency associated with eq. [644] is:

® = [ono +or][1-(kw/2)on’ [ono +on’] [1+k/(ver)] [65a]
and the frequency associated with eq. [64b] is

® = no[1-(kwW/2)on? [ono] 1+ (Yeo/k)] ™ [65b]
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As with the isotropic carbon case, these two equoatcan be solved by iteration, in which all the
quantities in the coefficients multiplying kw cae bvaluated as if kw = 0.

When this is done, we find
® = [opo +on]" - (kwi2)oy’ [ono +on’] 21 F [66a]

Where

F= 1_[1€0p2{ (DHOZ+(DH2} -1{1_ Q)CZ(Q)H02+C0H2_(0C02 )-1} -l]-1/2

[1- oc{ ono™+or’ —oco’ } ™
[for odd¢$ hydrogen sheet mode] [66b]
and o= opo + (kw/2)ow? [ono] */ G [67a]
Where
G =1+ {l-oc(wuo+or’) H1- (0 o)) (@Ho” — 0co) (@Ho —0co’ - oc” ) 2
[for evend hydrogen sheet mode]  [67b]

Wheno,-> 0, these equations reduce to the isotropic cacase, as they must.

To summarize, for graphite, the relevant zero poatillation frequencies of the surface modes
are:

3/2

o = [oce’ + oc” 2]+ (0°®,716) [oco” + oc” 12 graphite in air [[56]]
o= [ou’ + 0n]"? - opfouo’ + on]™? (kw/4) [odd¢ solution H in air] [[38b]]
®~ opo+ (OnTono)(kw/4b) [evend solution H in air] [[39Db]]

o = [{oco’ + oc® 122+ (020, 116) (oo’ + oc’ 12)*?][1- SIRZ]
[C-air modified by H sheet] [[60]]

S = (kw/2)oc{ e -(Len)} [ 1- (0w 18} oo +oc 12} 7] [[61a]]
Z = wco +oc’{2- oy {20co™+oc’} [[61b]]
R = [2 -0,{20co+oc} [[61c]]
{en®-(Ler )} = - 2017 wcd? + (OH2){1+ (04 {0+ 0c2} ) — wnodl ™ [(62]]

o = [opo? o] - (kw/2)oy’ [onc’+or?] ™2/ F  [odd H sheet modified by C] [[66a]]

F = 1-[1-0.{ oo +on’} {1- ocX(ouo’+or’ —oco’ ) '} 1 1-0c” ono +on’ —oco” } T
[for odd¢$ hydrogen sheet mode] [[66Db]]

® =~ opo + (kw/2)oy” [ono] 1/ G [even H sheet modified by C] [[67a]]
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G=1+ {1-cocz(coHoz+c0H2)'l}{1- ((DpZ/(DHOZ)((DHOZ —O)coz) (COHO2 —0)002 - COC2 )l} 12
[for evend hydrogen sheet mode]  [[67D]]

The binding energgorrespondingo a surface mode of wave numbas lobtained by adding the
first three of these frequencies (representingsthmtion where the components are separated by
a very large distance) and subtracting from thieeddst three frequencies. This gives the
difference frequenc®w from which the mode’s zero point energy is obtdias Rw/4TT

As with the isotropic carbon case, the binding gngrer hydrogen molecule is then given by
summing over all the surface normal modes in aaneia and dividing by the surface density of
hydrogen molecules, i.e.

Es = (1/Ny) | 2rkdk / (29 ( hdw/4) = (1/N) (h/8m)[kdkdew [68]
The result is

[Es = N h (Bo)J/(37) | [69]
Where

(3w)o = (0’0, 716) (oco’ + wc” 12) % (Wi2)[S'IRZ]
+ (W/4) oy’ [ono?+on’] Y2 [UV-1][UV+1]+ (W/4) (o lono? )[HK-1][HK+1] [70a ]

S’ = (W2)ocqeq@-(1en)} [ 1- (00,18 oco’+oc2} ] [70b]
Z = 0oco+ 0c{2- 0 {20co+oc} [70c]
R= [2 -copz{2 (DCOZ"‘(DCZ} _1]2 [70d]

{en®-(Uen)}= - 20 0co” + (0cT2){1H (0 1) wco+0c T2} '} - owo? - [70€]

U = [1- op{ ono +or’} ™ [1- oc{ omo+or” —oco” } 117 1z [70f]
V = 1-oc{ opo +on’ —oco” } [70g]
H = 1-0cf{ om0’ —oco” } [70n]
K = [1- (@p/ouo’) (@ —0co’) {ono-oc” —oco” } 7] 12 [70i]

Note that of the constants in egs. [70b] -[70i] aa¢ positive except for S’. The significance of
this is that the hydrogen layer increases the genat energy of the carbon-air surface mode, but
the carbon decreases the zero point energy ofytdpen sheet modes. The hydrogen sheet
modes are both of @(* /mno) Whereas the carbon surface mode is @6 w,’ /oco').
Sincencois so large, this indicates that the binding enésgssentially due to the modification
of the hydrogen sheet modes by the presence gfréphite.

Figure 7 displays the binding energy per hydrogetenule (in eV) predicted by eq. [69] plotted
vs the surface density of hydrogen molecules (imlmer of molecules per square centimeter).
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Figure 7. Binding energy vs. the surface density of hydrogen

6.5 Adsorption of hydrogen on graphite
The fractional hydrogen occupancy can be calculfited Langmuir adsorption isotherm derived
earlier as:

fu=N/Ns = aangmurP [1 + Qangmuirl:)]_l [[12a]]

Where the constants can be expressed in terme ¢éithperature T and the van der Waals
adsorption energy V; specifically:

aLangmuir: bLangmuir: h exp(V/lﬁT)[Ns(Sm)llz(kBT)SIZ]-l [[12b]]
The Langmuir isotherm equation can be used totp®pressure, temperature, and adsorption
energy dependence of the occupancy of adsorpties: si

To estimate the percentage weight added to thehgeagheet, we need to know the area of the
sheet A, the thickness of the sheet d, the surfao@er density of adsorption siteg,Nind the
densityp. of graphite

Then, if both sides of the sheet are exposed tbyHeogen, and the thickness of the sheet is
small compared to the linear dimensions comprifliegarea A, we have the fractional gain in
weight due to the adsorption of the hydrogen:

SWIW = fy Ns m(2A) / [pAd] = 24 Ns m / [pd] [71]
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7. Discussion

7.1. Comparison with other experiment
There appears to be a range of experimental vadyested in the literature for the adsorption
energy of molecular hydrogen on a carbon surfiaeo examples follow:

Ye [1999] gives a “characteristic chemical potdrfoa hydrogen physisorption” of W = 0.038

eV. [Wang, 1999] quotes an experimental value of ®10 cal/mole = 910 x 4.18 x 16rgs/

6.025 x 16°= 631 x 10° erg/atom = 631 x 18/ 1.6 x 10> = 0.039 eV, although they show a
range of estimates up to 1293 cal/mole, i.e., W33®-0.055 eV. They also give the depth of the
potential well for adsorbing hydrogen to carbowas 0.052 eV.

The binding energies calculated here fall in thegeaof published values, when reasonable
assumptions are made about operating pressurderapdratures. For example, the Langmuir
isotherm relation of eq. [12] would give a surfaemsity of close to 3xi®molecules per square
centimeter at about 30 atmospheres of pressune ddrresponding binding energy were 0.04 eV.
It is interesting that Figure 7 shows that a bigddmergy of close to 0.04 eV corresponds to a
surface density of 3x10cni®.

At the same time, the binding energies are seéigure 7 to depend sensitively on the surface
density of the adsorbed hydrogen, and to incregtber dramatically as the surface density
increases. This bodes well for high storage diessif hydrogen in graphite-likeystems.

7.2. Estimate hydrogen storage capacity
Using equation [71], the hydrogen storage capaedy estimated by comparing the population of
the states at the different energies:

Given a binding energy of 0.038 eV (6.1%10)

Ratio = exp [E/KT] = exp [6.1 x10° J/(1.4x10° J/K x 300 K)] = 4.34 ratio of juxtaposed to
isolated sheets

% of hydrogen adsorbed = 4.34/(1 + 4.34) = 81%.

Weight percent of hydrogen = 0.81x (M.W)H.W.Carbon = 0.81 x (1 g/mol)/12 g/mol = 6.8%.

7.3 Engineering design considerations

The analysis presented above showed that the fimediof binding energy agree well with the
portion of the published data that is more widalgepted. The analytical results on sorption
energies and storage capacities will be used &inpinary estimates of required pressures,
temperatures, and containment vessel sizes. hbiddlay the groundwork for a more
ambitious program that could lead to an actualresgging prototype for demonstrating the
superiority of this type of hydrogen storage systewe

This section outlines an experimental setup foemeining the rate of hydrogen adsorption on
sheet of nanofibers carbon materials to preparelanary engineering design of a practical
storage device. In addition, a sanity check isqgraréd to be sure that the results are in fair
agreement with published data. The proposed sstgipén in Figure 8.
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Briefly samples of carbon fiber sheets are plaosile a housing where temperature and pressure
can be accurately controlled and monitored. Togméewxidation, the housing will be kept under
inert atmosphere by allowing helium from a botddill the chamber. Similarly hydrogen is

allowed to fill a container to a specified pressame room temperature. The sample will be

cooled to liquid nitrogen temperatures (77K) wheieximum rate of adsorption is expected.
Hydrogen will be allowed to fill the chamber atr@gcribed pressure until no more drop in
hydrogen chamber is observed, i.e. graphite is&@&d. The test chamber is then isolated from
hydrogen and helium gas and is gradually broughtaeon temperature. The rise in pressure of

the test chamber is directly related to the amofihydrogen desorbed. A matrix of 9

experiments (three pressures and three temperpwitelse conducted to determine temperature

and pressure dependency of adsorption rates.

Schematic of Experimental Set-up for Gaseous Hydrogen Adsorption on Small
Carbon Sample
I RVO01

MVO3  RGO1 MV04

PGO1

GH2 Sample Supply 7
Gauging Tank, GT01 TS0l

% MVO05 Thermal Environment Apparatus

Carbon

Experimenta%

Ij Sample TS02
MVO1 RGO2 MV02

l XRVOZ

Temperature Pressure Pressure  Pressure /50 Regulator  Relief Valve

Sensor Gage Sensor Transducer
COMPONENT P -
KEY: < ® Vv ['Ij D>

Figure 8. Experimental setup for measuring the rate of adsorption of hydrogen on carbon

GH2 K-Bottle

GHe K-Bottle

8. Future Works

Perhaps the most interesting finding here is thabinding energy per hydrogen molecule
depends sensitively on the surface density of yldedgen molecules: the larger the surface
density, the larger the binding energy per hydragefecule. This prediction should be testable
experimentally and sets the stage for future aatuti work.

Currently, the experiment envisioned for future kvoonsists of (1) putting some graphite
material in a container, (2) filling the evacuatexhtainer with hydrogen gas from some known
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pressure [e.g. atmospheric pressure]; (3) measutiagressure in the vessel after the hydrogen
is introduced at three different temperatures.

From the change in pressure with temperature,ititiriy energy can be deduced from a
modified Langmuir isotherm equation in which thading energy itself is dependent on the
surface density of adsorbed hydrogen.

Commercial sources are available for three typeslafively inexpensive graphite material: (1)
graphite flakes, (2) graphite powder, and (3) nabbetsoot. Of these, the most promising is the
third, since it has a much larger surface areasom the hydrogen than the first two.
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Appendix A

The fluctuation-dissipation theorem states thagfeystem with a Hamiltonian

H=H"+2F(t) Q [A-1]
where H”is the unperturbed Hamiltonian of the system aedéhmZ F(t) Q represents the
interaction of the system observablgs@h external driving forces;), the spectra (gw) of the
Qs in thermal equilibrium may be expressed in teahthe response functions of the system
which gave the time rates of change of the expectatlues of the system observables d©
which result when external forcegtfare applied.
If the time-Fourier-transforms of <d@t> and Kt),

oj(w) = [1/(2m*"7] | dt exp[-tat] <dQ /dt> [A-2]

yi(e) = [1/(2)"7] [ dt exp[-uat] Fi(t) [A-3]
are related by the response functiguc,

0j(w) =2 Yi()yi (0)
then the fluctuation-dissipation theorem statestti@power spectra (&), defined as the

Fourier transforms of the correlation function®2j [Q ,Q(T)]. > of the observables;&d Q
in thermal equilibrium,

Gj(w) = [1/(2)*7 ] dt exp[-w] (1/2) <[Q,Q(T)]. > [A-4]

Are given in terms of the blackbody function

E(@) = (/4 coth (Burdn) [A-5]
and Y;(c) by
9G;(0) = - (2 [E(wB)/e?] Re® V(0 [A-6a]
G, (w) = - (2 [E(@B)/6?] Im @ Y;(e) [A-6b]

In these equations, the superscripts (s) and {@&) teethe portions of the function which are
symmetrical and asymmetrical, respectively, inghbscripts and j., and

B = (l/ksT)
where kg is Boltzmann’s constant and T is the temperature.
Consider, then, a damped harmonic oscillator fackvkthe equation of motion is

Md?x/df = - Kx - Mudx/dt + F [A-7]
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Here, M denotes the mass of the oscillator, xsislisplacement, K is the restoring force constant,
v is the frictional drag coefficient that descriltee dissipative force on the oscillator, and F is
the external force acting on the oscillator.
For this oscillator, the response function is sympl
Y() = (M) [(w” - o) - ion] ™ [A-8]
where
W’ = KIM
It is straightforward to apply equation [14] toglesponse function. In the limit where
<<y,
and
hBow, /4T) >>1
the equations simplify considerably. Specifically,
E(w,B) = (hw/4m) coth (IBw/4m) => (hw/4m) [A-9]
and we find that the average energy <W> of thellagai is simply
<W> = (Y2 M) <(dx/dtf> + (Y2 K) <¥> = hwy/4T [A-10]
This is the zero point energy result assumed iptheious section.
An interesting situation develops, however, ingheation where
W, =0 [Special case were there is no restoringeforc
In that case, the main contribution comes frorior which
hBw/4m<<1
in which case,
E@,B) = (hay4m) coth (Bw/dm) => (1B) = keT
In that special case,

(Y2 M) <(dx/dtf> = (ks T/m)dw [+ VY™ = ke T/2 [A-11]

When the restoring force disappears, the zero poietgy l,/4ttis replaced by the thermal
energy kT/2.

It is interesting that the theorem shows that enfitst approximation it is not necessary to

include dissipation in the expressions for the oesp functions. Accordingly, in the following,
we shall ignore the resistivity in the conductingterial.
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