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Abstract 
 
The binding energy per hydrogen atom is calculated versus the surface density of hydrogen 
molecules on graphite using mathematical modeling that takes into account the cooperative effect 
of neighboring carbon atoms and hydrogen molecules. A staged approach is followed with four 
simple models in order to gain insight into the physics of the binding. The effort was prompted by 
both the large range of estimates in the published literature, and by the importance of the binding 
energy in determining amount of hydrogen that can be stored in a given weight of graphitic 
material. The storage capacity is exquisitely sensitive to the value of the binding energy, 
depending exponentially (through a Boltzmann factor) on the energy.   
 
As a first approximation, we estimated the binding energy following the dielectric dispersion 
formalism developed by Landau and Lifshitz (1969), i.e. the binding energy of two interacting 
systems is estimated from the zero point energies of the two systems as a function of their 
distance of separation.    
 
The advantage of calculating the binding energy in this way is that it takes into account collective 
(cooperative) effects when several hydrogen molecules are present.  Past work on the calculation 
of van der Waals forces has shown that the binding energy for a collection of molecules is not 
simply the sum of the binding energies of pairs of molecules considered individually. In an 
ensemble of interacting molecules the molecules behave cooperatively to enhance the 
interactions.  This appears to be especially pronounced when one of the systems is conducting. 
 
In our approach, we have compared the zero point energies of a collection of hydrogen molecules 
separated at a large distance from a piece of graphite with the zero point energies when the 
hydrogen molecules are juxtaposed to the graphite. The results indicate that the binding energies 
of hydrogen are strongly dependent on the surface density of the hydrogen bound to the graphite, 
with the binding energy per hydrogen molecule increasing as the surface density of hydrogen on 
the graphite increases.   
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Notation 
aLangmuir first coefficient in Langmuir isotherm equation 
bLangmuir second coefficient in Langmuir isotherm equation 
eV electron volt (1.6x10-19 J) 
E Electric field      
E(ω,β)  blackbody function 
h Planck’s constant (6.626x10-34 J.s) 
h/2π       Νormalized Planck’s constant (1.5443 x 10-34 J.s 
H  Hamiltonian 
H(o)  Unperturbed Hamiltonian 

Fi(t)  External force 
m mass of hydrogen molecule 
Qi System observable        
Gij(ω) correlation function of Qi  and Qj     
(s)Gij(ω) symmetric portion of Gij(ω)      
(a)Gij(ω) antisymmetric portion of Gij(ω) 
kB Boltzmann’s constant (1.38 x 10-23 J/K) 
k wavenumber (m-1) 
kmax maximum wavenumber (m-1) 
K force constant of harmonic oscillator 
M  mass of harmonic oscillator 
me Electron rest mass (9.11x10-31 kg) 
n Volume number density of hydrogen molecules (m-3) 
N Surface number density of hydrogen molecules (m-2)  
Ns Saturation number density of hydrogen molecules (m-2) 
P pressure of hydrogen (N/m2) 
T temperature 
V van der Waals adsorption energy 
w Thickness of hydrogen sheet (m) 
x harmonic oscillator coordinate       
Y ij(ω) response function relating  αj(ω) to γi (ω) 
4πα Contribution of pi electrons to ε�  
αj(ω)   time Fourier transform of <d Qi /dt>      
β 1/ kBT 
ε Dielectric constant  
ε⊥ Dielectric constant of graphite perpendicular to conducting plane 
ε�  Dielectric constant of graphite parallel to conducting plane 
εH Dielectric constant of hydrogen molecules  
εC Dielectric constant of (isotropic) carbon insulator 
εF Dielectric constant for fictitious isotropic conductor with same plasma frequency as carbon 
γj(ω)   time Fourier transform of  Fi(t) 
γ wavenumber in graphite perpendicular to graphite planes 
υ damping frequency of harmonic oscillator 
φ Electric potential (volts) 
ωo natural oscillation frequency of harmonic oscillator 
ωCC  Plasma frequency of 4 2s and 2p electrons in carbon  (radians/sec) 
ωC Plasma frequency of 3 core sigma electrons in graphite (radians/sec) 
ωCO  Natural oscillation frequency of 3 core sigma electrons in graphite (radians/sec) 
ωp Plasma angular frequency of. pi electrons in graphite (radians/sec) 
ωH Plasma frequency of hydrogen molecules (radians/sec) 
ωHO Natural oscillation frequency of electrons in hydrogen molecule (radians/sec) 
ω Frequency of a normal mode (radians/s
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1.  Introduction 
 
Hydrogen is a low molecular weight, renewable and environmentally friendly energy source.  Its 
exothermic reaction with oxygen yields water in a simple reaction:  H2 + 1/2O2 � H2O. Oxygen 
is readily available in air and only hydrogen needs to be stored to harness its energy.  In addition, 
the water product can be readily expelled into the environment with little consequence to the 
users and their environment.  The reactants may be combusted as conventional fossil fuel, but as 
the efficiency of combustion is limited, a greater efficiency may be harnessed through a fuel cell.  
Fuel cells are electrochemical devices that convert chemical energy directly into electricity. 
 
Due to the low molecular weight of hydrogen, it would seem an ideal fuel.  However, hydrogen is 
a gas at room temperature and has a very low density typical of gases, and takes up a large 
volume to store.  In order for hydrogen to be a viable energy source, and competitive with fossil 
fuel, technologies need to be developed to reduce the amount of volume hydrogen takes up.  
Current technologies include compressed gas, liquefaction, metal hydride, and physisorption.   
 
Physisorption is an area of research interest because it is the least mature technology that possibly 
has the greatest potential.  It involves the adsorption of hydrogen through van der Waals binding 
forces on typically a carbon material with high surface areas.  There has been much discussion 
recently about the use of carbon nanostructures as an efficient hydrogen storage mechanism 
[Atkinson, 2002].  Several reports indicate these materials have high hydrogen storage capacities 
at room temperatures. Other reports suggest the room temperature storage capacities are near zero 
weight percent. The discrepancies of the reported storage capacities may be due to the different 
methods of measuring weight percent, as well as the vast variety of carbon nanostructure 
materials with different geometrical configurations that are under research and development.  In 
addition, modifications such as doping with alkali metals can further enhance its adsorption 
properties.   
 
The present model shows an alternative method of calculating the binding energy of hydrogen 
adsorption by graphite, by approximating the binding energy of physical adsorption between a 
sheet of graphite and a sheet of hydrogen molecules.  The physical adsorption occurs by the lower 
overall electrostatic zero point energies that occurs when the two sheets are interposed; as 
opposed to the higher overall energy when the two sheets are independent. Unlike previous 
models [Wang, 1999], the present model takes into account the cooperative effect of the entire 
sheet of hydrogen molecules rather than measuring just an individual hydrogen molecule’s 
attraction to an individual carbon.   
 

2. Background 
 
There has been much discussion recently about the use of carbon nanostructures as an efficient 
hydrogen storage mechanism.  Several reports indicate these materials have high hydrogen 
storage capacities at room temperatures.  Other reports suggest the room temperature storage 
capacity of near zero percent. The increasing interest in hydrogen as a fuel prompts a need for a 
greater understanding of these carbon nanostructure storage materials.    
 
2.1 Orbital structure of graphitic carbon 
Electrons that are in different energy levels differ from each other in having different probability 
distributions. Atomic orbitals  represent the ways that electrons can arrange themselves in 
isolated, individual atoms. Carbon has 2 electrons in K shell (n=1), and 4 valence electrons in L 
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shell (n=2), two in 2s orbital and two in 2p orbitals, thus the electron configuration of 1s22s22p2.  
1s electrons have the lowest energy levels (-308.18 eV) and are tightly bound to the nucleus by 
electrostatic forces.  2s electrons have slightly lower energy (-19.20 eV) than 2p electrons (-11.79 
eV) and spend more of their time close to nucleus, thus they are bound more tightly to the nucleus 
than 2p electrons. The spatial distribution of an s electron is spherically symmetrical, whereas p 
electrons are found in certain directions more than in others. When atoms bond to one another, 
the electrons have to change their arrangement in order to accommodate the influence of other 
atoms (Figure 1). 
 
When a carbon atom bonds to other atoms, the four 
orbitals in the second shell are somehow mixed 
together and rearranged to give four new hybrid 
orbitals. Each of the four hybrid orbitals is 
equivalent to the others and contains one electron. 
These orbitals point out from the center of the atom 
toward the corners of a tetrahedron (Figure 2). 
 
Hydrogen has only one electron in its outer shell 
therefore it can donate only one electron to carbon 
by a single bond. This kind of bonding is called 
sigma-bonding and the space occupied by bonded 
electrons is called a bonding orbital. Figure 3a 
represents sigma-bond orbitals formed by sharing 
electrons between two S-orbitals. 
 
When carbon bonds with other carbon atoms, the situation is more complicated. The p-orbitals 
can share electrons by overlapping directly between the nuclei of the atoms making the sigma-
bond (Figure 3b), but may also share the leftover p-electrons. These overlap sideways to their 
internuclear axis, forming what are commonly called as pi-bonds. Figure 3c shows the pi-
bonding occurring off axis and parallel to the sigma-bond which connects two carbon atoms. 
Depending on whether no pi-electrons, one pi-electron or two pi-electrons are shared, carbon 
bonds with other carbons by single, double, or triple bonds. 
  

 

(a)                                      (b)                                   (c) 

Figure 3. Sigma bonds formed as a result of sharing electrons by two S-orbitals (a) and two P-orbitals (b). 

 
2.2 Properties of carbon nanostructures 
The nanostructures take various forms, but have the feature that the stronger binding of hydrogen 
occurs in nanostructures that contain stacks of graphite.   
 
For example, nanofibers containing graphite have been reported in which graphite platelets are 
evenly spaced with the planes of the graphite perpendicular to the fiber axis and separated by 3.4 

    
Figure 1. Atomic orbitals: s (left) and p (right) 
orbitals 

    
Figure 2. SP3 (left) and SP2 (right) hybrid 
orbitals. 
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angstroms. Other nanofibers [called ribbons] have the stacked graphite sheets arranged parallel to 
the fiber axis. Yet others have a herringbone structure, in which the graphite sheets are stacked at 
an angle with respect to the fiber axis. Further variants occur in that the fibers can be straight, 
branched, twisted or helically coiled. The particular form seems to depend in part on the type and 
size of catalyst used for the formation of the fiber from the decomposition of hydrocarbons or 
carbon monoxide. Fiber lengths as long as 100 microns with diameters in the range of 7.5-10,000 
angstroms have been reported [Baker, 1997].  
 
Carbon nanotubes represent yet another form. In single-walled nanotubes, a single roll of graphite 
forms a hollow cylinder of 10-20 angstrom diameter. In multi-walled nanotubes, several 
concentric rolls of graphite form the walls, with an overall diameter in the range of 35-1000 
angstroms. The nanotubes can have lengths 5-100 times their diameter [Rodriguez, 1997]. Carbon 
nanoshells also form, in which polyhedral layered structures composed of multiple layers of 
closed shells surround a void, taking a variety of shapes and sizes. 
 
2.3 Nanostructure storage of hydrogen 
The interest in carbon nanostructures for storing hydrogen arises from their large surface areas.  
For example, Rodriguez and Baker [Ibid (1997)] report areas of 0.2-3000 m2/gm, as determined 
from N2 adsorption studies at 77K. The large areas, with typical interstice spacing in the range of 
3.4-6.7 Angstroms, provide the potential for large amounts of hydrogen to be bound to their 
surfaces. 
 
To date, the experimental data is quite mixed, with some experiments showing considerable 
hydrogen storage, but others showing low amounts of storage. Typical results for carbon 
nanotubes are in the range of 2-4 wt%, and those for nanofibers is less than 1 wt% -- although 
some much higher values (50-60%) have also been reported in the literature [Atkinson, 2002] 
 
2.4 Need for an improved theoretical understanding 
Theoretical estimates of hydrogen storage give results in the 4-14% wt range [Meregalli, 2001]. 
Although the theoretical situation leaves much to be desired, there is no agreement as to what the 
adsorption/desorption mechanism is – even as to whether the process is primarily chemisorption 
or physisorption.   
 
Strict chemisorption – e.g. the formation of covalent bonds – would give large binding energies, 
and would require high temperatures for hydrogen release. On the other hand, conventional 
estimates of physisorption – i.e. van der Waals dispersion force bonding – would give weak 
binding, and would correspond to large releases of hydrogen at moderate temperatures.  Either 
extreme is not desirable for a hydrogen storage device.   
 
This poor understanding of the storage mechanism translates into a large uncertainty in estimating 
the maximum hydrogen storage capacities of carbon nanostructures. 
 

3. Objectives 
 
The purpose of the proposed research is to attempt to improve the state of understanding of the 
adsorption/desorption mechanism for hydrogen in carbon nanostructures, and thereby to improve 
the estimate of the hydrogen storage capacity of carbon nanostructures. 
 
We propose to do this by taking into account the unique polarizability properties of graphite 
associated with the collective plasma effects of the pi electrons. From past work, we have reason 
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to believe that these collective effects enhance the physisorption binding forces, resulting in 
binding energies intermediate between chemisorption [too large] and conventional physisorption 
[too small] estimates.   
 
The implications of the intermediate binding energies for a practical hydrogen storage device will 
also be discussed. We believe that the intermediate binding energies are just what are needed for 
an effective hydrogen storage device. 

 
4. Approach 
 
The proposed program can be divided into three sections: the first addressing the hydrogen 
binding energies, the second applying the hydrogen binding energies to adsorption/desorption 
dynamics, and the third using the results to begin an engineering design of a practical storage 
device.   
 
The present model shows an alternative method to measure the binding energy for the case of 
hydrogen adsorption by graphite. This method approximates the binding energy by determining 
the collective physical adsorption between a sheet of graphite and a sheet of hydrogen molecules. 
The physical adsorption occurs because the overall electrostatic zero point energies that occur 
when the two sheets are interposed is lower than the sum of energies of the individual isolated 
sheets. Unlike previous models [Wang, 1999] the present model takes into account the 
cooperative effect of the entire sheet of hydrogen molecules, rather than measuring an individual 
hydrogen molecule’s attraction to an individual carbon. Previous works by Chang et al. have 
measured the physical adsorption energy between two conducting chains [Chang, 1972], while 
other works have measured the physical adsorption energy between two non-conducting chains 
[Salem, 1962; Zwanzig, 1963; Yasuda, 1969]. The present model approximates the physical 
adsorption energy between two planes, one conducting and one non-conducting, and differs from 
previous works in the following ways.  The plane model determines the two-dimensional 
interaction between two bodies, rather than their one-dimensional interaction. Two-dimensional 
interaction is a more realistic model for carbon, because carbon exists as layers of two-
dimensional sheets. The modeling of two planes is an extension of the modeling of two chains. 
The chain model is an infinite collection of atoms along one axis, while the plane model assumes 
these chains are distributed on a surface. By using this approach, this model can determine the 
cooperative effect of a plane of hydrogen molecules lying along graphite on the physical 
adsorption energy. 
 
Other than physical adsorption models, there are other approaches to measure the binding energy 
between graphite and hydrogen. Wang et al computed adsorption isotherms for quantum fluids 
[Wang, 1998]. The method is used to compute the heat of adsorption as a function of coverage for 
several different graphite-hydrogen potentials.  They quote experimental values that after 
conversion from a different energy unit turns out to be between W = 0.039 eV and W = 0.055 eV. 
 
Ye and Ahn (1999) use a chemical potential formula to estimate the binding energy. They give a 
“characteristic chemical potential for hydrogen physisorption” of W = 0.038 eV. Using this 
estimated binding energy, this group gave encouraging results: 8% by weight storage density of 
hydrogen at a temperature of 80 K. In another work, the group gave a low experimental storage 
density for carbon nanofibers of less than 1% by weight [Ahn, 1998]. 
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An advantage to modeling the physical adsorption of two planes is that it is possible to determine 
how the energy varies with changing topologies of the two planes. It is possible to see what the 
binding energies are by varying the thickness as well as other geometrical factors in the model.   
 
The goal of this model is to estimate the binding energy and the hydrogen storage capacity by 
calculating the binding energy between carbon and hydrogen and taking into account the 
cooperative effect a sheet of hydrogen will have when interacting with a sheet of graphite.  
Because a big discrepancy exists between the various models as well as the experimental results, 
a different modeling approach is justified to support or refute the different arguments that exist in 
the vast array of literature there is on this subject.  The tasks proposed for this study are: 
 

o Task 1.  Literature review of binding energy of hydrogen to carbon 
o Task 2.  Estimate of binding energy taking into account cooperative processes in the 

carbon 
o Task 3.  Modeling of essential solid state processes determining the binding energy, from 

a variety of experimental data on carbon 
o Task 4.  Validation of model and estimate from published data with most consensual 

agreement 
o Task 5.  Engineering design of variable temperature/Arhennius plotting experimental 

apparatus to obtain reliable measurements of binding energy. 
 

4.1 Hydrogen binding energies 
In the first section, the objective is to calculate the binding energy of hydrogen to a graphite 
structure, taking into account the cooperative plasma effects of the pi electrons.    
 
This will be done by a continuum Drude model of the graphite’s pi electrons. The cooperative 
plasma effects will be calculated using a self-consistent field molecular orbital calculation, along 
the lines discussed in Chang (1970). This model lays the groundwork for site-specific binding, 
since the continuum treatment of the first model calculation is replaced by a site-dependent 
calculation in which the polarizability of a specific site is enhanced by the cooperative pi electron 
effects. 
 
4.2 Adsorption/desorption dynamics 
In the second section, the binding energies from the first section will be used to predict the 
parameter dependence of desorption/adsorption curves.   
 
This will also be done by treating the graphite structure as providing an “effective work function” 
for hydrogen molecules, using the result from the first (continuum Drude) model described in 
Section 5.1. Adsorption/desorption curves can then be estimated by an analogue of the 
Richardson-Dushman equation for electron emission from electrodes. The result of this section 
should be estimates of the parameter dependences required for designing a practical hydrogen 
storage device. 
 
4.3 Engineering design  
This section uses the results generated in the two previous studies to do a preliminary engineering 
design of a practical storage device.  In addition, a sanity check is performed to be sure that the 
results are in fair agreement with published data. 
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5.  Enhanced hydrogen binding energies from cooperative plasma 
effects 
 

As described above, the proposed work is based on the hypothesis that the cooperative plasma 
effects in the graphite structures should enhance physisorption by increasing the physisorption 
(dispersion-van der Waals) binding energies. The bases for this hypothesis are Drude’s model and 
two papers by Dr. David Chang, a consultant on this project.   
        
5.1 Drude’s Model  
In an attempt to explain the electrical properties of insulators and conductors, Drude proposed a 
simple model where free electrons in conduction bands of atoms, through the action of an 
external electric field, traveled through matter and collided with the atoms of the lattice or other 
electrons causing them to accelerate. The steady state current flow was only possible when a 
resistive force, proportional to the velocity, was imposed. That is, electrons except for a small 
drift velocity are held in position by restoring forces, but set in motion by the electric field acting 
on them. Drude’s classical model worked only when the wavelengths of electrons were small 
compared to other characteristic lengths, such as the mean free paths between collisions. When 
size of the device is small or comparable to the electron wavelength, the Drude model must be 
expanded to include quantum effects. This condition is very unlikely in metals, but more 
plausible in semiconductors in which electrons have much smaller momentums. The Drude 
model and related equations are described in detail elsewhere [Slater, 1967]. 
 
A simple Drude model for dielectrics involves oscillating dipoles, but no free electrons. In metals 
however, electric conduction is the result of free electrons accelerated by the oscillating 
electromagnetic fields. Briefly, the electron is treated as a spring in an oscillating electric field. If 
we assume both the electric field E and displacement x oscillates with frequency ω, then the 
equation of motion for an electron is given as: 
 
 
 
 

2−
−=

−=−
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e
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/
E/me
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The dipole moment defined as the product of electronic charge e and displacement x:  

22 −
==

ωω0

2E/ eme
exp  

Where E is the electric field, e is the electronic charge, me is the mass of electron, ω is the 

angular frequency of the oscillation, and 2/1
0 )/( mk=ω is the natural oscillation angular frequency 

of the bound charge in the insulator, k is the spring constant representing the restoring force 
proportional to the displacement of the bound electrons.   
 
Total electric dipoles per unit volume is called polarization 
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Where, N is the volume density of electrons in a solid.  
 
It is well known that the polarizability of a conductor can be much greater than that of an 
insulator, because the mobility of the electrons in a conductor can result in a much larger 
displacement in response to a given electric field.  Recalling from Maxwell’s equation, the 
frequency-dependent dielectric constant ε (ω) which describes the polarizability of an insulator is 
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Here 2/12 )/4( menp πω =  is the plasma angular frequency of the charge species.  

Free, conductive electrons behave similarly, but without the friction spring term (ω0=0).   
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Semiconductors, both free and bound electrons, will give additional terms in the dielectric 
constant so that the whole dielectric constant will be of the form. 
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o        [1c] 

Where, n0 and n are the number densities of bound and free electrons, respectively. 
 
Because of the absence of the ωo in the denominator of eq. [1b] and fewer collisions between 
mobile electrons in a conductor compared to ωo, the resulting polarization can be much greater in 
the conductor.1 
 
5.2 A continuum estimate of the modification of binding energy due to plasma effects 
The van der Waals forces responsible for the physisorption of hydrogen to graphite result from 
the mutual polarization of the graphite and the hydrogen. Essentially, two mutually induced 
oscillating dipoles interact; each induced dipole resulting from the polarization due to the 
oscillating electric field of the other dipole. Accordingly, anything that increases the polarization 
of either entity should result in a stronger force. 
 
For a two-dimensional conductor, although the general enhancement of the dispersion force 
should occur, Chang [1973] applied the fluctuation-dissipation theorem to calculate the van der 
Waals dispersion force between two blocks of graphite and concluded that eq. [1b] is not the 
correct expression for determining the enhancement. However, for smaller distances of 
separation, the interaction between two, three-dimensional conductor blocks is due primarily to 
the excitation of surface plasmons, whereas for two graphite-like blocks, no surface plasmons 
exist, and the interaction is due to the excitation of damped charge fluctuations. 
 
Each sheet will be treated as planar and infinite in extent, and will be characterized by a 
frequency-dependent Drude model dielectric function.  
 
                                                 
1 It is interesting to note that the dispersion force cannot be calculated by looking at the 1/r6 interaction of a 
dipole with its image dipole in the conductor.  Rather, the effect of the image needs to be calculated on the 
dispersion relation, giving both a larger force and one that drops off more slowly with distance. 
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For the present application this work is extended to two sheets of materials, one insulator and one 
conductor. Specifically, the hydrogen sheet will be treated as an insulating layer with a dielectric 
of the form: 
 
 εH = 1 – ωH

2 [ω2- ωOH
2]-1        [2] 

Where 
e

H
H m

en 2
2 4πω =  is the square of the “plasma frequency” of hydrogen electrons, ω is the 

frequency of interest, and ωOH is the natural restoration frequency of the electrons in a hydrogen 
molecule, nH denotes the volume density of the hydrogen molecules in the sheet, e is twice the 
electronic charge (since there are 2 electrons per molecule), and me is twice the mass of an 
electron. The plasma and restoration frequency can be determined from experimental data. 
 
For the graphite sheet, the dielectric function is different for electric fields parallel to the plane of 
the sheet εC:  and for electric fields perpendicular to the plane of the sheet εC⊥: 
 
 εC: = 1 – ωC

2 [ω2- ωOC
2]-1 – ωP

2/ω2       [3a] 
 εC⊥ = 1 – ωC

2 [ω2- ωOC
2]-1       [3b] 

In these expressions, 
e

C
C m

en 2
2 4π

ω =  is the square of the “plasma frequency” of the core electrons, 

ωCO is the natural restoration frequency of the core electrons, and ωP
2 is the square of the plasma 

frequency of the graphite conduction electrons. As with the quantities for the hydrogen 
molecules, these values can be determined from experimental data.  
 
For our purposes, we need only the frequency-dependent dielectric functions that result from the 
Drude model.  These are listed in Table 1 below. 
 

Table 1.  Drude dielectric constants 

Isotropic carbon insulator 

  εc(ω) = 1 – ωCC
2 [ω2 -  ωCO

2]-1      [4]  

Fictitious isotropic conductor with same conductivity as graphite 

  εF (ω) = 1 – ωF
2 /ω2        [5] 

Graphite 

 Dielectric perpendicular to graphite planes 

  ε⊥ (ω) = 1 – ωC
2 [ω2 -  ωCO

2]-1      [6a]  

 Dielectric parallel to graphite planes 

  ε || (ω) = ε⊥ (ω) + 4πα       [6b] 

   4πα = - ωP
2 /ω2                    [6c] 

Hydrogen   

  εH (ω) = 1 – ωH
2 [ω2 -  ωHO

2]-1                                                                                           [7] 

 
The numerical values of various parameters used in equations 1-3 above are estimated in the next 
section. 
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5.3 Zero point energy approach with Drude model 
The approach used for estimating the binding energies consists of calculating the electrostatic 
normal modes of the system of interacting entities, and assigning the appropriate amplitude to 
each of the normal modes. 
 
The normal modes of a system are those perturbations of the system that oscillate at some 
frequency natural to the system.  Thus, they can be derived by assuming a disturbance of the form 
exp[-iωt] into the equations of motion, and seeing what the form of the perturbation must be to 
sustain the disturbance and what the resulting natural frequency must be.   
 
A normal mode can be considered to be a giant harmonic oscillator.  The allowable energy levels 
of a harmonic oscillator are known from quantum mechanics to be:   
 
 En = (n+ ½) (h/2π)ω        [8] 
 
Where h = 6.625 x 10-27 erg sec is Planck’s constant, and ω is the angular frequency of the 
harmonic oscillator.  
 
Thus, the lowest energy state of the harmonic oscillator has a “zero point” energy of  
 
 Eo = hω/4π         [9] 
 
Each of the normal modes will be assumed to have this zero point energy.  
 
The rationale for assigning the zero point energy to each normal mode is provided by the 
fluctuation-dissipation theorem.  A good discussion of this theorem is provided in Landau and 
Lifshitz (1969) and repeated in Appendix A. 
 
In the next Section, we shall summarize the Drude model results to be used in calculating the 
normal mode frequencies. 
 
5.3a Hydrogen molecule volume 
We shall approximate the molecular volume by first estimating the atomic hydrogen volume, and 
then simply multiplying that by 2. 
 
The radial distribution of the electron (1s ground state) about the hydrogen nucleus is: 
  
ao =  h2 [4π2mee

2]-1 = 5.29 x 10-11 m        
 
Where h is Planck’s constant, me is the electron mass, and e is the electron charge.2  
 
We approximate the hydrogen molecule volume by 
 
VH = 2 (4π/3) ao

3 = 1.24 x 10-30 m3       [10] 
 
 
 

                                                 
2 For unit conversion use kc=8.988x109 kg.m3/C2s2 which is the Coulomb’s constant. 
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5.3b Hydrogen plasma frequency 
The plasma frequency is given by 
 
 ωH

2 = 4π ne,H e
2/me        [11] 

 
Where ne,H is the number density of electrons in the molecule, and can vary between 0 and nC. 
The number density can be best estimated based on the Langmuir isotherm equation 
 
 N /Ns  =  aLangmuir P [1 +  bLangmuirP]-1      [12a] 
 

In this expression, N denotes the surface density of hydrogen and Ns denotes the saturation 
surface density. For graphite with an intercarbon spacing of 1.42 angstroms, if we assume that the 
saturation density is the same as the surface density of carbons, then Ns = 5.7 x 1015 cm-2.  
 
The Langmuir coefficients are expressed in terms of the temperature T and the van der Waals 
adsorption energy V.  Specifically, 
 
 aLangmuir = bLangmuir= h exp(V/kBT)[Ns(3m)1/2 (kBT)3/2]-1    [12b] 
 
m denotes the mass of a hydrogen molecule. For a typical published value for V of 0.04 eV, and 
the pressure of 100 atmospheres and the temperature of room temperature, 300K, then Ns = 1.7 x 
1014 cm-2.  Assume a monolayer of hydrogen molecules on the graphite surface.  Taking the size 
of the hydrogen molecule to be twice the van der Waals radius of a hydrogen atom, the thickness 
of the monolayer is 2.6 angstroms. Thus, a surface density of 1.7 x 1014 cm-2 corresponds to a 
volume density of n =  6.6 x 1019 cm-3.  Substituting these values in equation [11], we get 
 
ωH

2 = 1.96x1031  sec-2 [typical for a binding energy of 0.04 eV at 100 atm and 300 K] [13] 

ωH
  =  4.43x1015  sec-1         

   
The value of ωH

2 will of course vary as the surface density varies, so that a range of values will be 
considered in the following. 
 
To estimate the binding energy per unit area of surface, the zero point energies of the different 
normal modes need to be summed over the number of normal modes per unit area.  Designating a 
normal mode by its surface wave number k, the number of normal modes in a wave number 
interval 2πkdk is simply 2πkdk/(2π)2. 
 
Thus, the number of normal modes per unit area to be summed over is 
 
Nnm = ∫ 2πkdk / (2π)2 = (1/4π) kmax

2       [14a] 
 
Where the integral is taken from k = 0 to kmax.  Since the number of normal modes per unit area 
must be equal to the surface density of hydrogen molecules N, 
 
kmax = (4πN)1/2          [14b] 
 
For the binding of hydrogen to the surface of a material, the electric fields responsible for the 
binding are large only near the surface.  Thus, the normal modes that are of interest for 
calculating the binding energies are not the modes in the bulk of the material and of the external 
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space, but only those that are confined to the region of the surface.  That is, the normal modes that 
are to be summed over are only the surface normal modes.  
 
5.3c Hydrogen natural oscillation frequency 
From the correspondence principle, the natural oscillation frequency corresponds to the frequency 
associated with the energy level transition for a non-zero dipole matrix element.  For hydrogen, 
this occurs between the n = 1 and n=2, where n is the radial quantum number. 
 
For hydrogen the ionization energy is 13.6 eV, which corresponds to a transition between n = 1 
and n = ∞. For a transition between n=1 and n=2 we have: 
 
 ∆E = (1/12 -1/22) 13.6 eV = 0.75 x 13.6 x 1.6 x 10-19 J = 1.63x10-18 J    
and 

ωHO
2 = 2.4 x 1032 sec-2        [15] 

ωHO = 1.55 x 1016 sec-1       
 
5.3d Carbon plasma frequency     
Crystalline graphite consists of parallel sheets of carbon atoms. Each sheet consists of hexagonal 
arrays of carbon atoms (See Figure 4). Each carbon atom is in sp2 hybridization and is connected 
to three neighboring atoms within a sheet by a covalent sigma bond, separating them by a 
distance of 1.415oA. Sheets are held together by weak Van der Waals forces, separated from each 
other by a distance of 3.3504oA. These sheets are staggered by half a bond length, therefore 
graphite configuration is repeated by a distance of twice the separation distance between adjacent 
sheets. The graphitic structure can be seen as repeats of carbon cells made of parallelepipeds with 
sides identified by the lattice parameters by a and c. The cell volume is calculated as  
 
V = a2.c.sin (2π/3) 
 
For graphite we have a = 2.4612 oA and c = 6.7079 oA, giving a cell volume of 35.189x10-30 m3. 
There are 4 atoms of carbon in each cell so each carbon atom occupies a volume one quarter of 
the cell volume (Vc = 8.797 x10-30 m3).3 
 

 
Figure 4. Crystalline structure of graphite 

 
The ionization energies for the first four electrons in the n=2 level (2s and 2p electrons), and the 
first two electrons in the n=1 level (1s electron) of carbon are: 1086.5, 2352.6, 4620.5, 6222.7, 
37831, and 47277 kJ/mole. Since it is much costlier energetically for the 1s electrons to 

                                                 
3 Alternatively carbon atoms can be approximated as VC = MW/(NAV.ρ), where ρ is x-ray density equal to 
2.2670 g/cm3.   
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participate in dipole transitions that it is for the 2s and 2p electrons, we can safely make the 
approximation that the plasma frequency of carbon is simply determined by four (4) sigma 
electrons occupying the volume VC. 
 

In that case, 
 

ωC
2 = 4π (4/Vc) e

2/me 

ωC
2 =1.08 x 1033 sec-2        [16] 

ωC=  3.29x1016 sec-1           
 
Carbon plasma frequency of sigma electrons 
In graphite, there are 3 localized n = 2 (sigma) electrons per carbon atom that have orbitals in the 
plane of the graphite sheet.  These do not participate in the conduction phenomenon. Since the 
plasma frequency of carbon in its insulating state has already been assumed to involve only the 
four n = 2 electrons, the plasma frequency of the sigma electrons is given by 
 
 ω2 = (3/4)ωC

 2           
 ωC, σ = 3.08 x 1016 sec-1        [17a] 
   
Carbon plasma frequency of pi electrons     
In graphite, there is one unlocalized n = 2 electron per carbon atom.  This occupies a π-orbital 
that protrudes above and below the graphite sheet (See Figure 4). Pi electrons are responsible for 
the electrical conductivity of graphite. Accordingly, 
 
 ω2 = (1/4) ωC

2         [17b] 
 ωC, π = 1.90 x 1016 sec-1   
 
Carbon natural oscillation frequency  
To estimate ω0C, we note that the zero frequency limit of the Drude expression (Equation 2) for 
the dielectric constant of carbon is simply 
 
 ε(ω=0) = 1 + ωC

2/ω0C
2 

        
The dielectric constant of carbon at low frequencies is given as4: 
 ε(ω→0) = 2.5-3.0        
 
Let’s assume ε(ω→0) = 3, ωC

2/ω0C
2= 2 or ω0C

2 = ωC
2/2. This gives plasma frequency of the 

graphite conduction electrons: 
 
 ωCO

2 = 7.24 x 1032 sec2        [17c] 
ωCO

 = 2.69 x 1016 sec-1 
.  
The summary of results is given in Table 2.  
 
 
 
 

                                                 
4 See for example ASI Instrumentation Website at http://www.asiinstr.com/dc1.html. 
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Table 2.  Numerical values of squared frequencies 
appearing in dielectric constants [(radians/sec)2] 

ωCC
2 

ωCO
2 

ωF
2 

ωC
2 

ωP
2 

ωH
2 

ωHO
2 

14.4 x 1032 

7.24 x 1032 

1.10 x 1032 

10.80 x 1032 

1.10 x 1032 

0.20  x 1032 

2.40 x 1032 

 
6. Modeling 
 
The objective of this model it to calculate the binding energy of a layer of hydrogen on a sheet of 
graphite, while taking into account cooperative effects due to the presence of multiple hydrogen 
molecules and multiple carbon atoms in the graphite. The approach will be to compare the sum of 
the zero point energies of the electrostatic surface modes of two juxtaposed dielectric sheets with 
that for two dielectric sheets separated by an infinite distance. The dielectric functions are chosen 
so that one represents a graphite sheet and the other represents a layer of hydrogen molecules. 
 
The modeling is carried out in four easier steps:  
 
Case 1. The van der Waals binding energy between a block of carbon in its insulating form and a 
block of hydrogen. 
 
Case 2. The van der Waals binding energy between a block of carbon in its insulating form and a 
thin sheet of hydrogen  
 
Case 3.  The van der Waals binding energy between a block of a fictitious material with isotropic 
conductivity, and a thin sheet of hydrogen 
 
Case 4.  The van der Waals binding energy between a block of graphite and a thin sheet of 
hydrogen.   
 
We felt that it was important to treat the thin hydrogen sheet case in three of the four cases, since 
the hydrogen block case is quite artificial and does not permit a realistic variation of hydrogen 
density. The block case applies only to condensed or liquid hydrogen, since it does not permit a 
larger density at the interface with carbon than in the hydrogen bulk volume itself. 
 
The first two cases enable us to see the difference is between two blocks of material and a block 
and a sheet.  In particular, it showed for this simple isotropic situation, why there appears to a 
change in the sign of the binding energy between these two cases. 
 
The second and third cases show us what the difference is between binding to an isotropic 
insulator and binding to an isotropic conductor.  They show that binding is larger for the isotropic 
conductor than for the isotropic insulator. 
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The fourth case gives us the desired result. It clearly displays the effect of hydrogen density in the 
sheet on the binding energy of each hydrogen molecule. By approaching this answer by simpler 
stages, insight is also provided as to why the energies calculated in our earlier work have been so 
large. 
 
In each case our approach consists of comparing the zero point energies of the first configuration 
with the sum of the zero point energies of the latter two configurations. The difference is the 
desired binding energy of the hydrogen sheet to the graphite sheet. 
 
6.1 Case 1.  Interface of a block of isotropic carbon insulator with a block of hydrogen 
 
Consider first the simple case of a block of hydrogen interfacing with a block of an isotropic 
carbon insulator.  In accordance with the discussion of Section 2, the binding energy between the 
two blocks can be obtained from the zero point energies of the surface modes existing at the 
interface.   
 
Before considering the surface energy at the interface of the two blocks, consider first the simpler 
case of the surface modes at the interface of a block of carbon and air (Section 6.1a), and the 
surface modes at the interface of a block of hydrogen and air (Section 6.1b).  The systems treated 
in Sections 6.1a, 6.1b, and 6.1c are depicted in Figure 5. 
 
  

  

carbon air air hydrogen carbon hydrogen

(1a) (1b) (1c)  
Figure 5.  Blocks of (a) isotropic carbon insulator interfacing with air, (b) condensed hydrogen interfacing 
with air, (c) isotropic carbon insulator interfacing with condensed hydrogen 
 
6.1a  Surface mode of a block of carbon and air 
In keeping with Figure 5.1a, assume that a block of carbon is separated from air by an interface at 
x=0, and search for electrostatic surface modes.   
 
Assume that the electrostatic potential ϕ has a disturbance of the form  
 
 ϕ(x,y,t) =  ϕ(y) exp[i(ωt – ky)]       [18] 
 
Where y is a coordinate parallel to the interface and t is the time. 
 
 The equation for the ϕ in each of the two regions is Laplace’s equation 
 
 d2ϕ/dx2 - k2ϕ  = 0        [19] 
 
For a surface mode, the relevant solutions are 
 
 ϕ = A exp[kx]    when x<0    [20a] 
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 ϕ = B exp[-kx]    when x>0    [20b] 
 
as these give fields that are large only near the interface. 
 
At the interface, the boundary conditions are 
 
 ϕ(0-) =  ϕ(0+)         [21a] 
 
 εc dϕ(0-)/dx = dϕ(0+)/dx        [21b] 
Thus, 
 A = B            
and 
 εc + 1 = 0         [22] 
 
Equation [22] indicates that a surface mode exists if and only if it is possible to have  
 
 εc < 0   [Necessary condition for surface mode]    
 
From the expression for εc from eq. [4] of Table 1, eq. [22] becomes 
 
 2 – ωCC

2 [ω2 -  ωCO
2]-1  = 0         

 
This gives as the frequency (squared) of the surface normal mode: 
  
 ω2 =  ωCO

2 + ωCC
2/2        [23] 

 
6.1b Surface mode of a block of hydrogen and air 
For the situation depicted in Figure 5.1b, the relevant solutions are once again 
 
 ϕ = A exp[kx]    when x<0    [24a] 
 
 ϕ = B exp[-kx]    when x>0    [24b] 
 
At the interface, the boundary conditions are 
 
 ϕ(0-) =  ϕ(0+)         [25a] 
 
 dϕ(0-)/dx =  εH dϕ(0+)/dx        [25b] 
 
Thus, 
 A = B            
and 
 εH + 1 = 0         [26] 
        
From the expression for εH  from eq. [7] of Table 1, eq. [26] becomes 
 
 2 – ωH

2 [ω2 -  ωHO
2]-1  = 0         

 
This gives as the frequency (squared) of the surface normal mode: 
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 ω2 =  ωHO

2 + ωH
2/2        [27] 

 
6.1c  Surface mode between carbon and hydrogen 
Next consider the situation depicted in Figure 1c, where a block of condensed hydrogen is 
juxtaposed to the block of carbon. 
 
The boundary condition for this situation is 
 
 ϕ(0-) =  ϕ(0+)         [28a]  
 
 εcdϕ(0-)/dx =  εH dϕ(0+)/dx        [28b] 
i.e. 
 εc + εH = 0         [29] 
 
For this case, εc and εH must have opposite signs.  From the forms of εc and εH, this can occur only 
if eq. [29] has a solution for ω2 in the range 
 
 ωHO

2 + ωH
2 < ω2 < ωCO

2 + ωCC
2       [30] 

   
 ω2 = ωHO

2 + ωH
2/(εc +1)        [31] 

 
For the typical values shown in Table 2, we see that  
 
 ωCC

2 >>ωHO
2, ωH

2          
 
Thus, for a solution close to that for a surface mode of hydrogen with air, a good approximation 
to eq. [30b] is obtained by substituting for εc the ω = 0 limit εc(0): 
 
 ω2 ≈ ωHO

2 + ωH
2/(εc (0) +1)       [32] 

 
The solution of eq. [32] clearly outside the range of eq. [30] required for a surface mode. Thus, 
there is no surface mode if ω2 has a value close to that of the surface mode of a block of hydrogen 
in air. 
 
Eq. [29] may also be written 
 
 ω2 = ωCO2 + ωCC

2/(εH +1)       [33a] 
 
For ω2 close to the value for a surface mode of carbon in air, we see from the typical values of 
Table 2, we see that εH  is very close to unity. Thus, a good approximation to eq. [33a] is obtained 
by replacing the ω2 in the εH  by the zeroth order iteration value 
 
  ω(0)2 =  ωCO

2 + ωCC
2/(1 +1)        

 
In that case, the approximate solution is 
 
 ω2 = ωCO

2 + ωCC
2/(εH(ω(0)2 ) +1)        

Where 
 εH(ω(0)2 ) = 1 - ωH

2 [ωCO
2 + (ωCC

2/2) - ωHO
2 ]-1      
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Since ωCO

2 >> ωH
2,  

 
 ω2 = ωCO

2 + ωCC
2/2 + (ωCC

2ωH
2/4)[ ωCO

2 + ωCC
2/2 – ωHO

2]-1   [33b] 
 
This satisfies the surface mode existence requirement of eq. [30]. 
 
Thus, for a block of carbon juxtaposed to a block of condensed hydrogen, the surface mode that 
exists has practically the same zero point energy as that of carbon in air.  
 
To summarize, the zero point energy frequencies for the surface modes are: 
 
 ω = [ωCO

2 + ωCC
2/2]1/2     carbon/air interface [34a] 

  
 ω = [ωHO

2 + ωH
2/2]1/2     hydrogen/air interface [34b] 

 
 ω= [ωCO

2 + ωCC
2/2 + (ωCC

2ωH
2/4)[ ωCO

2 + ωCC
2/2 – ωHO

2]-1]1/2  carbon/hydrogen [34c] 
 
The frequency δω to be associated with the binding energy of carbon and hydrogen is the sum of 
the first two frequencies [those existing when the blocks are widely separated] minus the third 
frequency [the surface mode frequency when the blocks are juxtaposed]: 
 
 δω = [ωCO

2 + ωCC
2/2]1/2 + [ωHO

2 + ωH
2/2]1/2       

   - [ωCO
2 + ωCC

2/2 + (ωCC
2ωH

2/4)[ ωCO
2 + ωCC

2/2 – ωHO
2]-1]1/2   

 
or on expanding the third term using the fact that ωCO

2 >>ωH
2 

 
 δω = [ωHO

2 + ωH
2/2]1/2 - (ωCC

2ωH
2/8)[ ωCO

2 + ωCC
2/2 – ωHO

2]-1[ωCO
2 + ωCC

2/2] -1/2   
 
The corresponding binding energy is practically determined by the first term in this expression. 
The binding energy is essentially due to the fact that the surface mode that exists when bulk 
hydrogen interfaces with air is eliminated when the hydrogen interfaces instead with carbon. 
 
This has a large value.  However, this is a very artificial case, since it assumes that hydrogen 
exists in a block rather than condensed at the carbon surface.  Hence, we use this only for 
illustrative purposes to show the essential ingredients of calculating the frequencies of surface 
modes. 
 
A more realistic case is considered in the next Section. 
 
6.2 Case 2.   A block of isotropic carbon with a thin sheet of hydrogen on a surface 
 
A more realistic situation is that of a block of isotropic carbon insulator on one surface of which 
is deposited a thin sheet of hydrogen.  This corresponds to hydrogen condensing on the surface of 
the carbon due to adsorption.    
 
The approach to calculating the binding energy from the zero point oscillation frequencies is: 
 

a. Determine the frequencies of the surface normal modes of carbon and air 
b. Find the frequencies of the normal modes of a thin sheet of hydrogen in air 
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c. Determine the frequencies of the surface normal modes of carbon with a deposited 
thin sheet of hydrogen between it and air 

d. Subtract the frequencies from the third step from the first two steps, and integrate 
over wave numbers to obtain the zero point energy of adhesion per unit area.  

 
The situations for the four steps are depicted in Figure 6. 
 

   
 
Figure 6.  A block of isotropic carbon insulator in air [2a]; a thin sheet of hydrogen of width w in air [2b]; and 
a block of carbon insulator coated with a thin sheet of hydrogen of width w in air [2c] 
 
6.2a  Surface mode of a block of carbon and air 
The calculation of the zero point frequencies for the surface modes for a block of carbon 
interfacing with air has already been calculated in the previous Section.  The answer is given in 
eq.[23] 
 
 ω2 = ωCO

2 + ωCC
2/2        [[23]] 

  
6.2b Two modes of a thin sheet of hydrogen in air 
Next consider a thin sheet of hydrogen of width w in air. 
 
In each region the potential ϕ satisfies Laplace’s equation.  Assuming ϕ(x,y,t) =  ϕ(y) exp[i(ωt – 
ky)] , the surface modes of interest will have the forms 
 
 ϕ =Aexp[kx]    x<0     [35a] 
 
 ϕ = Bcosh[kx] + Csinh[kx]  0<x<w     [35b] 
 
 ϕ = Dexp[-kx]    x>w     [35c] 
 
The boundary conditions at the interfaces are 
 
 ϕ continuous         [36a] 
 
 dϕ(0-)/dx = εH dϕ(0+)/dx       
 [36b] 
 
 εH dϕ(w-)/dx  =  dϕ(w+)/dx       [36c] 
 
Since the width w of the hydrogen layer is very small, the cosh and sinh may be approximated by 
 

carbon air air air carbon air 
(2a) (2b) (2c) 

H 2 H 2 
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 cosh[kx] ≈ 1          
 
 sinh[kx] ≈ kx          
 
With these approximations, eq. [36] then gives 
 
 εH

2 +(2/kw) εH +1 = 0        [37] 
 
To lowest order in kw, this has two solutions: 
 
 εH  = -  kw/2    [odd ϕ solution]    [38a] 
giving 
 ω2 ≈  ωHO

2 + ωH
2 - ωH

2 (kw/2)  [odd ϕ solution]    
i.e. 
 ω ≈  [ωHO

2 + ωH
2]1/2 - ωH

2[ωHO
2 + ωH

2]-1/2 (kw/4) [odd ϕ solution H in air]  [38b] 
and 
 εH  =  - 2/kw    [even ϕ solution]   [39a] 
 
which gives 
 
 ω2 ≈  ωHO

2 + ωH
2(kw/2)   [ even ϕ solution]     

i.e.  
 ω ≈  ωHO

 + (ωH
2/ωHO)(kw/4)  [ even ϕ solution H in air]  [39b] 

 
6.2c Modifications of the three modes for hydrogen sheet on carbon 
For the situation depicted in Figure 6.2c, the solutions in the three regions have the same form as 
before, but now the boundary conditions at the interfaces are modified slightly: 
 
 ϕ continuous         [40a] 
 
 εCdϕ(0-)/dx = εH dϕ(0+)/dx       [40b] 
 
 εH dϕ(w-)/dx  =  dϕ(w+)/dx       [40c] 
 
Equation [37] is replaced by 
 
 εH

2/εC +(2/kw)[(1/εC) +1] εH +1 = 0      [41] 
 
Solving this quadratic equation in εH

 to lowest order, this gives the two solutions originating from 
the thin hydrogen sheet modes 
 
 εH = -kw [1+ (1/εC)]-1        [42a] 
 
 εH = - (1/kw) [1+εC]        [42b] 
 
On the other hand, solving eq. [41] for εC gives a third solution originating from the carbon 
surface mode with air: 
 
 εC + 1 = - [εH + (εC/εH)]kw       [42c] 
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Consider first the hydrogen sheet mode of eq. [42a] that corresponds to the odd ϕ mode of the 
hydrogen sheet in air.  Since kw<<1, the coefficient [1+ (1/εC)]-1 of kw on the RHS of the 
equation can be evaluated by inserting into it the frequency obtained by setting kw = 0: 
 
 ω(w=0)2 ≈  ωHO

2 + ωH
2         

 
The resulting frequency is to lowest order: 
 
 ω ≈  [ωHO

2 + ωH
2]1/2  - ωH

2 [ωHO
2 + ωH

2]-1/2 (kw/4) ξ [odd H2 sheet mode] [43a] 
Where  
 ξ = [ωHO

2 + ωH
2 – ωCO

2 - ωCC
2)][ ωHO

2 + ωH
2 - ωCO

2 – (ωCC
2/2)]-1     

 
The frequency for the odd H2 sheet mode decreases with juxtaposition to the carbon. 
 
Next, consider the hydrogen sheet mode of eq. [42b] that corresponds to the even ϕ mode of the 
hydrogen sheet in air.   The solution to this equation is 
 
 ω ≈ ωHO + (ωH

2 /ωHO) (kw/2)[1+εC]-1    
 
Again, since kw<<1, the εC in the coefficient of kw can be evaluated as if kw were zero, i.e. εC 

can be approximated by  
 
 εC(w=0) = 1 – ωCC

2[ωHO
2 – ωCO

2]-1        
 
This gives 
 

ω ≈ ωHO + (ωH
2 /ωHO)(kw/4) [ωHO

2 – ωCO
2][ωHO

2 – ωCO
2 – (ωCC

2/2)]-1   
       [even H2 sheet mode]  [43b] 

  
The frequency for the even H2 sheet mode increases with juxtaposition to the carbon block.  
  
Finally, consider eq. [42c].  If the right hand side were zero, this would give the frequency for the 
surface mode of carbon in air, i.e. it would give 
   
 ω(w=0)2 =  ωCO

2 + ωCC
2/2         

 
Since kw<<1, this frequency may be used to evaluate its coefficient [εH + (εC/εH)] to give an 
approximate solution  
 
 ω ≈ [ωCO

2 + ωCC
2/2]1/2 + (ωH

2 ωCC
2/4)kw[ωCO

2 + ωCC
2/2 - ωHO

2]-1[ωCO
2 + ωCC

2/2]-1/2 [43c] 
 
Note that the carbon surface mode frequency is increased by the presence of the hydrogen layer. 
 
To summarize, the relevant zero point frequencies for the surface modes are: 
 
 ω = [ωCO

2 + ωCC
2/2]1/2    [carbon-air]   [[23]] 

  
 ω ≈  [ωHO

2 + ωH
2]1/2 - ωH

2[ωHO
2 + ωH

2]-1/2 (kw/4) [odd ϕ solution H in air]  [[38b]] 
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 ω ≈  ωHO
 + (ωH

2/ωHO)(kw/4)   [even ϕ solution H in air] [[39b]] 
  

ω ≈  [ωHO
2 + ωH

2]1/2  - ωH
2 [ωHO

2 + ωH
2]-1/2 (kw/4) ξ  

     [odd H2 sheet mode modified by C]  [[43a]] 
 
  ξ = [ωHO

2 + ωH
2 – ωCO

2 - ωCC
2)][ ωHO

2 + ωH
2 - ωCO

2 – (ωCC
2/2)]-1    

  
ω ≈ ωHO + (ωH

2 /ωHO)(kw/4) [ωHO
2 – ωCO

2] [ωHO
2 – ωCO

2 – (ωCC
2/2)]-1    

          [even H sheet modified by C]  [[43b]] 
 

ω ≈ [ωCO
2 + ωCC

2/2]1/2 + (ωH
2 ωCC

2/4)kw[ωCO
2 + ωCC

2/2 - ωHO
2]-1[ωCO

2 + ωCC
2/2]-1/2  

                  [carbon –air modified by H sheet]  [[43c]] 
 
Thus, the binding energy corresponds to the difference frequency formed by summing the first 
three frequencies (for the infinitely separated components) and subtracting from those the sum of 
the last three frequencies (for the juxtaposed components): 
 
 δω = - (ωH

2 ωCC
2/4)kw[ωCO

2 + ωCC
2/2 - ωHO

2]-1[ωCO
2 + ωCC

2/2]-1/2   
   + ωH

2 [ωHO
2 + ωH

2]-1/2 (kw/4)( ξ-1) 
  + (ωH

2/ωHO)(kw/4) [1- [ωHO
2 – ωCO

2] [ωHO
2 – ωCO

2 – (ωCC
2/2)]-1 ] [44] 

Where 
  ξ = [ωHO

2 + ωH
2 – ωCO

2 - ωCC
2)][ ωHO

2 + ωH
2 - ωCO

2 – (ωCC
2/2)]-1    

 
Equation [44] may be rewritten: 
 
 δω = (kw/4) (ωH

2 ωCC
2) [- {ωCO

2 + ωCC
2/2 - ωHO

2} -1{ωCO
2 + ωCC

2/2} -1/2   
     + (1/2){ωHO

2 + ωH
2} -1/2 {-ωHO

2 - ωH
2 + ωCO

2 + (ωCC
2/2)} -1  

    + (1/2ωHO){-ωHO
2 + ωCO

2 + (ωCC
2/2)} -1]   [45] 

  
The binding energy per unit area is 
 
 E1 = ∫ 2πkdk / (2π)2 ( hδω/4π) = (h/8π2)∫kdkδω      
i.e. 
 E1 = (h/8π2)(kmax

3/3)  (w/4) (ωH
2 ωCC

2)  [- {ωCO
2 + ωCC

2/2 - ωHO
2} -1{ωCO

2 + ωCC
2/2} -1/2   

     + (1/2){ωHO
2 + ωH

2} -1/2 {-ωHO
2 - ωH

2 + ωCO
2 + (ωCC

2/2)} -1  
    + (1/2ωHO){-ωHO

2 + ωCO
2 + (ωCC

2/2)} -1]   
 
On using kmax = (4π Ns)

1/2 from eq. [14b], we find 
            
 E1 = (h/8π2)((4π Ns)

3/2 /3)  (w/4) (ωH
2 ωCC

2)  [- {ωCO
2 + ωCC

2/2 - ωHO
2} -1{ωCO

2 + ωCC
2/2} -1/2   

     + (1/2){ωHO
2 + ωH

2} -1/2 {-ωHO
2 - ωH

2 + ωCO
2 + (ωCC

2/2)} -1  
    + (1/2ωHO){-ωHO

2 + ωCO
2 + (ωCC

2/2)} -1]   [46a] 
 
The binding energy per hydrogen molecule is then 
 
 EB = E1/Ns ,         
 
 EB =  hπ-1/2 Ns

1/2   (w/12) (ωH
2 ωCC

2)  [- {ωCO
2 + ωCC

2/2 - ωHO
2} -1{ωCO

2 + ωCC
2/2} -1/2   

     + (1/2){ωHO
2 + ωH

2} -1/2 {-ωHO
2 - ωH

2 + ωCO
2 + (ωCC

2/2)} -1  
     + (1/2ωHO){-ωHO

2 + ωCO
2 + (ωCC

2/2)} -1]  [46b] 
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Note the strong dependence on the surface density of hydrogen, especially since ωH

2 is itself 
proportional to Ns. 
           
6.3 Case 3.  A block of isotropic conductor with a thin sheet of hydrogen on a surface 
 
The case of an isotropic conductor of plasma frequency ωF

2 with a thin sheet of hydrogen on the 
surface can be obtained directly from the results of the previous sect ion by the replacements: 
 
 ωCO

2 => 0         [47a] 
 

 ωCC
2 => ωF

2         [47b] 
 
Equation [47a] corresponds to the absence of a restoring force on the conduction electrons, except 
that associated with the plasma properties described by ωF

2. 
 
By inspection, then, the binding energy of a hydrogen molecule to the isotropic conductor is 
 
 EB = hπ-1/2 Ns

1/2   (w/12) (ωH
2 ωF

2)  [- {ωF
2/2 - ωHO

2} -1{ωF
2/2} -1/2   

     + (1/2){ωHO
2 + ωH

2} -1/2 {-ωHO
2 - ωH

2 +  (ωF
2/2)} -1 + (1/2ωHO){-ωHO

2 + (ωF
2/2)} -1] [48] 

 
In the limit where  
 
 ωF

2 >> ωHO
2 , ωH

2          
 
only the hydrogen sheet modes are important.  In that case, 
 
 EB =>   hπ-1/2 Ns

1/2   (w/12) ωH
2   [ {ωHO

2 + ωH
2} -1/2 + (1/ωHO)]     

 
When ωHO

2 >> ωH
2 – i.e. when the surface density of hydrogen is far from saturation, eq. [88] 

simplifies further to 
 
 EB =>   hπ-1/2 Ns

1/2  (w/6) ωH
2 /ωHO      [49a] 

 
As a numerical example, suppose we take the values in Table 2 with the assumed surface density 
of 1.7x1014 cm-2 and w = 2.6 x 10-8 cm.  Then eq. [49a] gives 
 
    EB => 0.018 eV         [49b] 
 
This is comparable to the oft cited value of 0.04 eV.  However, the expression of eq. [49a] is 
proportional to Ns

3/2 (since ωH
2 is itself proportional to Ns).  Thus, the magnitude is sensitive to 

the surface density.  
 
 In the next Section, we shall consider binding to graphite itself.  
 
   
6.4 Case 4.  A block of graphite with a thin sheet of hydrogen on a surface 
 
Since graphite is anisotropic, the foregoing results must be modified.  In addition, graphite has a 
dielectric constant different from unity.  Both of these effects are accounted for in the Drude 
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model by introducing a different dielectric constant perpendicular to the graphite planes from that 
parallel to the planes.  Specifically, we shall use the expressions of Table 1: 
 
 ε⊥ (ω) = 1 – ωC

2 [ω2 - ωCO
2]-1       [[6a]]  

 
 ε || (ω) = ε⊥ (ω) + 4πα        [[6b]] 
 
 4πα = - ωP

2 /ω2         [[6c]] 
 
The perpendicular dielectric constant is due primarily to the 3 sigma core electrons (assuming that 
the two 1s electrons are so tightly bound that they do not contribute appreciably. 
 
The parallel dielectric constant contains the polarization contribution of the 3 sigma electrons, 
and in addition has the polarization term due to the conduction electrons. 
 
Within the graphite, Laplace’s equation is no longer satisfied because of the difference of the 
dielectrics perpendicular and parallel to the surface.  Instead the equation for the electrostatic 
potential ϕ is 
 
 d2ϕ /dx2 - γ2 ϕ = 0        [50] 
Where  
 γ2 = (ε� /ε⊥)k2          
 
and where again we have assumed a disturbance of the form  ϕ(x) exp[i (ωt-ky)]. 
 
Note that for a surface mode γ must be real. This imposes the necessary condition: 
 
 ε || and ε⊥  must have the same sign [condition for surface mode] [51] 
 
6.4a  Surface mode of a block of graphite and air 
Suppose that the graphite block occupies the region x<0, and that the air is in the region x>0. 
 
Then ϕ has the form 
 
 ϕ = A exp[γx]    x<0     [52a] 
 
 ϕ = B exp[-kx]    x>0     [52b]  
 
and the boundary condition at x = 0 is 
 
 ϕ continuous         [53a] 
 
 γ ε⊥ = -k         [53b] 
 
Equation [53b] imposes the requirement 
 
 ε⊥ < 0    [in order to satisfy continuity of electric displacement] [54] 
 
On combining the conditions of eqs. [51] and [54] we see that the necessary condition for a 
surface mode is that  
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 Both ε�  and ε⊥ must be less than zero  [condition for surface mode] [55] 
 
This is a significant condition, because it indicates that the solution cannot be determined by the 
pi conduction electrons, i.e. a surface mode cannot exist for  
 
 4πα = O(1)          
 
for that would give  
  
 ω ≈ O(ωp)          
 
and with the typical values of Table 2, this would imply 
 
 ε⊥ (ω) = 1 – ωC

2 [ω2 - ωCO
2]-1 ≈ 1 + ωC

2 [ωCO
2]-1  > 0      

 
This means that the solution of eq. [53b] is determined primarily by the ε⊥(ω) contribution in both 
the parallel and perpendicular directions. 
 
From the definitions of the parallel and perpendicular dielectrics, we can write 
 
 γ2 = [1 + 4πα/ε⊥] k2         
 
and since the desired surface mode solution is practically determined by ε⊥, i.e. by  ε⊥ +1≈ 0, we 
can treat 4πα/ε⊥ as being much less than unity and write approximately 
 
 γ= [1 + 2πα/ε⊥] k          
 
On substituting this in eq. [53b] and iterating on  2πα/ε⊥, we find to lowest order 
 
 ω ≈ [ωCO

2 + ωC
2 /2]1/2 + (ωC

2ωp
2/16)  [ωCO

2 + ωC
2 /2]-3/2     [56] 

 
This is very similar to the isotropic carbon case, except that the conducting pi electrons increase 
the zero point frequency of the surface mode.   
  
6.4b Modifications of graphite mode and hydrogen modes for juxtaposition 
As with the isotropic carbon case with a thin layer of hydrogen on the surface, assume that ϕ 
takes on the forms 
 
 ϕ =Aexp[kx]    x<0     [57a] 
 
 ϕ = Bcosh[kx] + Csinh[kx]  0<x<w     [57b] 
 
 ϕ = Dexp[-kx]    x>w     [57c] 
  
The dispersion relation giving the surface mode zero point oscillation frequencies is obtained 
from the boundary conditions 
 
 ϕ continuous         [58a] 
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 ε⊥dϕ(0-)/dx = εH dϕ(0+)/dx       [58b] 
 
 εH dϕ(w-)/dx  =  dϕ(w+)/dx       [58c] 
 
6.4c  Modification to carbon-air surface mode   
On using the small argument approximations for the sinh and cosh, we find in the lowest order in 
kw: 
 
 ε⊥ ≈ -(k/γ) [1+ {εH-(1/εH)}kw]       [59] 
 
This equation can be solved by iteration on both 4πα/ε⊥ and kw.  We find 
 
 ω ≈  [{ωCO

2 + ωC
2 /2}1/2 + (ωC

2ωp
2/16)  (ωCO

2 + ωC
2 /2)-3/2 ][1- S/RZ]  [60] 

Where 
 S = (kw/2)ωC

2{ εH
(0)-(1/εH

(0))} [  1- (ωC
2ωp

2/8){ωCO
2+ωC

2/2} -2]   [61a] 
 
 Z = ωCO

2+ωC
2{2- ωp

2{2ωCO
2+ωC

2} -1} -1      [61b] 
 
 R = [2 - ωp

2{2ωCO
2+ωC

2} -1]2       [61c] 
and where 
 {εH

(0)-(1/εH
(0))}≈ - 2ωH

2[ωCO
2 + (ωC

2/2){1+(ωp
2/4){ωCO

2+ωC
2/2} -1} – ωHO

2]-1 [61d]  
 
Note that  
 {εH

(0)-(1/εH
(0))} < 0.        [62] 

 
so that – as in the isotropic carbon case – the hydrogen sheet actually raises the zero point 
oscillation frequency of the carbon-air surface mode. 
 
We note also that when ωp -> 0, eq. [62] reduces to eq. [43c] for the isotropic carbon case, as it 
should.  
  
6.4d  Modification to hydrogen sheet modes 
As in the isotropic carbon case, a quadratic equation can be written for εH from the boundary 
conditions: 
 
 εH

2 (kw/ε⊥)(k/γ) + εH[1 + (k/γε⊥)] + kw = 0     [63] 
 
To lowest order in kw, this has two solutions: 
 
 εH

 ≈ -(kw)[1+ {k/(γε⊥)]-1   [odd H2 sheet solution]   [64a] 
  
 εH

 ≈ -(1/kw)[1+ (γε⊥/k)]   [even H2 sheet solution]   [64b] 
 
The frequency associated with eq. [64a] is: 
 
 ω ≈ [ωHO

2+ωH
2]1/2[1-(kw/2)ωH

2 [ωHO
2+ωH

2]-1[1+k/(γε⊥)]-1    [65a] 
 
and the frequency associated with eq. [64b] is 
 
 ω ≈ ωHO[1-(kw/2)ωH

2 [ωHO]-1[1+ (γε⊥/k)]-1     [65b] 



 

 

 

26 

 
As with the isotropic carbon case, these two equations can be solved by iteration, in which all the 
quantities in the coefficients multiplying kw can be evaluated as if kw = 0. 
 
When this is done, we find 
 
 ω ≈ [ωHO

2+ωH
2]1/2  -  (kw/2)ωH

2 [ωHO
2+ωH

2]-1/2 / F     [66a] 
 
Where 
 F = 1–[1-ωp

2{ωHO
2+ωH

2} -1{1- ωC
2(ωHO

2+ωH
2–ωCO

2 )-1} -1]-1/2[1- ωC
2{ ωHO

2+ωH
2 – ωCO

2 } -1]-1 

   

      [for odd ϕ hydrogen sheet mode] [66b] 
and 
 ω ≈ ωHO  +  (kw/2)ωH

2 [ωHO]-1 / G      [67a] 
  
Where 
 
 G  = 1 + {1- ωC

2(ωHO
2+ωH

2)-1}{1- ( ωp
2/ωHO

2)(ωHO
2 – ωCO

2) (ωHO
2 – ωCO

2  - ωC
2 )-1} 1’2 

   

      [for even ϕ hydrogen sheet mode] [67b] 
  
When ωp-> 0, these equations reduce to the isotropic carbon case, as they must. 
 
To summarize, for graphite, the relevant zero point oscillation frequencies of the surface modes 
are: 
 
 ω ≈ [ωCO

2 + ωC
2 /2]1/2 + (ωC

2ωp
2/16)  [ωCO

2 + ωC
2 /2]-3/2  graphite in air  [[56]] 

 
 ω ≈  [ωHO

2 + ωH
2]1/2 - ωH

2[ωHO
2 + ωH

2]-1/2 (kw/4) [odd ϕ solution H in air]  [[38b]] 
 
 ω ≈  ωHO

 + (ωH
2/ωHO)(kw/4)   [even ϕ solution H in air] [[39b]] 

 
 ω ≈ [{ωCO

2 + ωC
2 /2}1/2 + (ωC

2ωp
2/16)  (ωCO

2 + ωC
2 /2)-3/2 ][1- S/RZ]  

       [C-air modified by H sheet] [[60]] 
 
 S = (kw/2)ωC

2{ εH
(0)-(1/εH

(0))} [  1- (ωC
2ωp

2/8){ωCO
2+ωC

2/2} -2]   [[61a]] 
 
 Z = ωCO

2+ωC
2{2- ωp

2{2ωCO
2+ωC

2} -1} -1      [[61b]] 
 
 R = [2 - ωp

2{2ωCO
2+ωC

2} -1]2       [[61c]] 
 

{ εH
(0) -(1/εH

(0))}≈ - 2ωH
2[ωCO

2 + (ωC
2/2){1+(ωp

2/4){ωCO
2+ωC

2/2} -1} – ωHO
2]-1   [[62]] 

 
 ω ≈ [ωHO

2+ωH
2]1/2  -  (kw/2)ωH

2 [ωHO
2+ωH

2]-1/2 / F    [odd H sheet modified by C] [[66a]] 
 
 F = 1–[1- ωp

2{ωHO
2+ωH

2} -1{1- ωC
2(ωHO

2+ωH
2 – ωCO

2 )-1} -1]-1/2[1-ωC
2 ωHO

2+ωH
2 – ωCO

2 } -1]-1  

      [for odd ϕ hydrogen sheet mode] [[66b]] 
 
 ω ≈ ωHO  +  (kw/2)ωH

2 [ωHO]-1 / G [even H sheet modified by C]  [[67a]] 
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 G  = 1 + {1- ωC
2(ωHO

2+ωH
2)-1}{1- ( ωp

2/ωHO
2)(ωHO

2 – ωCO
2) (ωHO

2 – ωCO
2  - ωC

2 )-1} 1’2  

      [for even ϕ hydrogen sheet mode] [[67b]] 
 
The binding energy corresponding to a surface mode of wave number k is obtained by adding the 
first three of these frequencies (representing the situation where the components are separated by 
a very large distance) and subtracting from these the last three frequencies.  This gives the 
difference frequency δω from which the mode’s zero point energy is obtained as hδω/4π.   
 
As with the isotropic carbon case, the binding energy per hydrogen molecule is then given by 
summing over all the surface normal modes in a unit area and dividing by the surface density of 
hydrogen molecules, i.e. 
 
 EB = (1/Ns) ∫ 2πkdk / (2π)2 ( hδω/4) = (1/Ns) (h/8π)∫kdkδω   [68] 
 
The result is 
 
 EB = Ns

1/2 h (δω)o/(3π1/2)       [69] 
 
Where 
 (δω)o = (ωC

2ωp
2/16)  (ωCO

2 + ωC
2 /2)-3/2 (w/2)[S’/RZ] 

  + (w/4) ωH
2 [ωHO

2+ωH
2]-1/2 [UV-1][UV+1]+ (w/4)(ωH

2 /ωHO
2
 )[HK-1][HK+1] [70a ]  

       
 S’ = (w/2) ωC

2{ εH
(0)-(1/εH

(0))} [  1- (ωC
2ωp

2/8){ωCO
2+ωC

2/2} -2]   [70b] 
 
 Z = ωCO

2+ ωC
2{2- ωp

2{2ωCO
2+ωC

2} -1} -1      [70c] 
   
 R = [2 - ωp

2{2ωCO
2+ωC

2} -1]2       [70d] 
   
 {εH

(0)-(1/εH
(0))}≈ - 2ωH

2[ωCO
2 + (ωC

2/2){1+(ωp
2/4){ωCO

2+ωC
2/2} -1} – ωHO

2]-1 [70e] 
 
 U = [1- ωp

2{ωHO
2+ωH

2} -1 [1- ωC
2{ωHO

2+ωH
2 – ωCO

2 } -1]-1]1/2   [70f] 
 
 V = 1- ωC

2{ωHO
2+ωH

2 – ωCO
2 } -1       [70g] 

 
 H = 1- ωC

2{ωHO
2 – ωCO

2 } -1       [70h] 
 
 K = [1- (ωp

2/ωHO
2) (ωHO

2– ωCO
2) {ωHO

2-ωC
2 – ωCO

2 } -1]1/2    [70i] 
 
Note that of the constants in eqs. [70b] -[70i], all are positive except for S’.  The significance of 
this is that the hydrogen layer increases the zero point energy of the carbon-air surface mode, but 
the carbon decreases the zero point energy of the hydrogen sheet modes.  The hydrogen sheet 
modes are both of O(ωH

2 /ωHO )  whereas the carbon surface mode is of O(ωH
2ωC

4ωp
2 /ωCO

7).  
Since ωCO is so large, this indicates that the binding energy is essentially due to the modification 
of the hydrogen sheet modes by the presence of the graphite. 
 
Figure 7 displays the binding energy per hydrogen molecule (in eV) predicted by eq. [69] plotted 
vs the surface density of hydrogen molecules (in number of molecules per square centimeter).   
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                                       Figure 7. Binding energy vs. the surface density of hydrogen     
 
 
6.5 Adsorption of hydrogen on graphite 
The fractional hydrogen occupancy can be calculated from Langmuir adsorption isotherm derived 
earlier as:  
 

fH = N /Ns  =  aLangmuir P [1 +  bLangmuirP]-1     [[12a]] 
 

Where the constants can be expressed in terms of the temperature T and the van der Waals 
adsorption energy V; specifically: 
 

aLangmuir = bLangmuir= h exp(V/kBT)[Ns(3m)1/2 (kBT)3/2]-1    [[12b]] 
   
 
The Langmuir isotherm equation can be used to plot the pressure, temperature, and adsorption 
energy dependence of the occupancy of adsorption sites. 
 
To estimate the percentage weight added to the graphite sheet, we need to know the area of the 
sheet A, the thickness of the sheet d, the surface number density of adsorption sites Ns , and the 
density ρ. of graphite  
 
Then, if both sides of the sheet are exposed to the hydrogen, and the thickness of the sheet is 
small compared to the linear dimensions comprising the area A, we have the fractional gain in 
weight due to the adsorption of the hydrogen: 
 
 δW/W = fH NS m(2A) / [ρAd] = 2fH NS m / [ρd]     [71] 
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7.   Discussion 
 
7.1. Comparison with other experiment   
There appears to be a range of experimental values reported in the literature for the adsorption 
energy of molecular hydrogen on a carbon surface.  Two examples follow: 
 
Ye [1999] gives a “characteristic chemical potential for hydrogen physisorption” of W = 0.038 
eV.  [Wang, 1999] quotes an experimental value of W = 910 cal/mole = 910 x 4.18 x 107 ergs/ 
6.025 x 1023 = 631 x 10-16 erg/atom = 631 x 10-16 / 1.6 x 10-12 = 0.039 eV, although they show a 
range of estimates up to 1293 cal/mole, i.e., W = 0.039-0.055 eV.  They also give the depth of the 
potential well for adsorbing hydrogen to carbon as W = 0.052 eV. 
 
The binding energies calculated here fall in the range of published values, when reasonable 
assumptions are made about operating pressures and temperatures.  For example, the Langmuir 
isotherm relation of eq. [12] would give a surface density of close to 3x1013 molecules per square 
centimeter at about 30 atmospheres of pressure if the corresponding binding energy were 0.04 eV. 
It is interesting that Figure 7 shows that a binding energy of close to 0.04 eV corresponds to a 
surface density of 3x1013 cm-2. 
 
At the same time, the binding energies are seen in Figure 7 to depend sensitively on the surface 
density of the adsorbed hydrogen, and to increase rather dramatically as the surface density 
increases.  This bodes well for high storage densities of hydrogen in graphite-like systems. 
 
7.2. Estimate hydrogen storage capacity 
Using equation [71], the hydrogen storage capacity was estimated by comparing the population of 
the states at the different energies: 
 
Given a binding energy of 0.038 eV (6.1x10-19 J) 
 
Ratio = exp [E/kBT] = exp [6.1 x10-19 J/(1.4x10-23 J/K x 300 K)] = 4.34 ratio of juxtaposed to 
isolated sheets 
 
% of hydrogen adsorbed = 4.34/(1 + 4.34) = 81%. 
 
Weight percent of hydrogen = 0.81x (M.W.H2)/M.W.Carbon = 0.81 x (1 g/mol)/12 g/mol = 6.8%. 
 
7.3  Engineering design considerations 
The analysis presented above showed that the predictions of binding energy agree well with the 
portion of the published data that is more widely accepted. The analytical results on sorption 
energies and storage capacities will be used for preliminary estimates of required pressures, 
temperatures, and containment vessel sizes.  This should lay the groundwork for a more 
ambitious program that could lead to an actual engineering prototype for demonstrating the 
superiority of this type of hydrogen storage system. , we  
 
This section outlines an experimental setup for determining the rate of hydrogen adsorption on 
sheet of nanofibers carbon materials to prepare a preliminary engineering design of a practical 
storage device. In addition, a sanity check is performed to be sure that the results are in fair 
agreement with published data. The proposed setup is given in Figure 8. 
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Briefly samples of carbon fiber sheets are placed inside a housing where temperature and pressure 
can be accurately controlled and monitored. To prevent oxidation, the housing will be kept under 
inert atmosphere by allowing helium from a bottle to fill the chamber. Similarly hydrogen is 
allowed to fill a container to a specified pressure and room temperature. The sample will be 
cooled to liquid nitrogen temperatures (77K) where maximum rate of adsorption is expected. 
Hydrogen will be allowed to fill the chamber at a prescribed pressure until no more drop in 
hydrogen chamber is observed, i.e. graphite is saturated. The test chamber is then isolated from 
hydrogen and helium gas and is gradually brought to room temperature. The rise in pressure of 
the test chamber is directly related to the amount of hydrogen desorbed. A matrix of 9 
experiments (three pressures and three temperatures) will be conducted to determine temperature 
and pressure dependency of adsorption rates.  
 

Schematic of Experimental Set-up for Gaseous Hydrogen Adsorption on Small 
Carbon Sample
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Figure 8. Experimental setup for measuring the rate of adsorption of hydrogen on carbon  
 
8.  Future Works 
 
Perhaps the most interesting finding here is that the binding energy per hydrogen molecule 
depends sensitively on the surface density of the hydrogen molecules:  the larger the surface 
density, the larger the binding energy per hydrogen molecule. This prediction should be testable 
experimentally and sets the stage for future additional work.   
 
Currently, the experiment envisioned for future work consists of (1) putting some graphite 
material in a container, (2) filling the evacuated container with hydrogen gas from some known 
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pressure [e.g. atmospheric pressure]; (3) measuring  the pressure in the vessel after the hydrogen 
is introduced at three different temperatures.   
 
From the change in pressure with temperature, the binding energy can be deduced from a 
modified Langmuir isotherm equation in which the binding energy itself is dependent on the 
surface density of adsorbed hydrogen. 
 
Commercial sources are available for three types of relatively inexpensive graphite material: (1) 
graphite flakes, (2) graphite powder, and (3) nanotube soot. Of these, the most promising is the 
third, since it has a much larger surface area to adsorb the hydrogen than the first two.   
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Appendix A 
 
The fluctuation-dissipation theorem states that for a system with a Hamiltonian 
 
 H = H(o) + Σ Fi(t) Qi        [A-1] 
 
where H(o) is the unperturbed Hamiltonian of the system and the term Σ Fi(t) Qi represents the 
interaction of the system observables Qi with external driving forces Fi(t), the spectra Gij(ω) of the 
Qi’s in thermal equilibrium may be expressed in terms of the response functions of the system 
which gave the time rates of change of the expectation values of the system observables <dQi /dt> 
which result when external forces Fi(t) are applied.   
 
If the time-Fourier-transforms of <dQi /dt> and Fi(t), 
 
 αj(ω) = [1/(2π)1/2] ∫ dt exp[-iωt] <dQi /dt>     [A-2] 
     
 γj(ω) = [1/(2π)1/2] ∫ dt exp[-iωt] Fi(t)      [A-3]  
    
are related by the response function Yij(ω), 
 
 αj(ω) = Σ Yij(ω)γi (ω)         
 
then the fluctuation-dissipation theorem states that the power spectra  Gij(ω), defined as the 
Fourier transforms of the correlation functions (1/2) < [Qi ,Qj(T)]+ > of the observables Qi and Qj  
in thermal equilibrium, 
 
 Gij(ω) = [1/(2π)1/2] ∫ dt exp[-iωt] (1/2) < [Qi ,Qj(T)]+ >    [A-4] 
 
Are given in terms of the blackbody function 
 
 E(ω,β) = (hω/4π) coth (hβω/4π)       [A-5] 
 
and Yij(ω) by 
 
 (s)Gij(ω) = - (2/π)1/2 [E(ω,β)/ω2] Re (s) Yij(ω)     [A-6a]  
 
 (a)Gij(ω) = -i (2/π)1/2 [E(ω,β)/ω2] Im (a) Yij(ω)     [A-6b] 
 
In these equations, the superscripts (s) and (a) refer to the portions of the function which are 
symmetrical and asymmetrical, respectively, in the subscripts and j., and 
 
 β = (1/kBT)          
 
where kB is Boltzmann’s constant and T is the temperature. 
 
Consider, then, a damped harmonic oscillator for which the equation of motion is 
 
 Md2x/dt2 = - Kx - Mυdx/dt + F       [A-7] 
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Here, M denotes the mass of the oscillator, x is its displacement, K is the restoring force constant, 
υ is the frictional drag coefficient that describes the dissipative force on the oscillator, and F is 
the external force acting on the oscillator.   
 
For this oscillator, the response function is simply 
 
 Y(ω) = (1/M) [(ωo

2 - ω2) - iωυ]-1      [A-8] 
where 
 ωo

2 = K/M          
 
It is straightforward to apply equation [14] to this response function. In the limit where  
 
 υ<<ωo           
and  
 hβωo /4π) >>1          
 
the equations simplify considerably. Specifically,  
 
 E(ω,β) = (hω/4π) coth (hβω/4π) => (hω/4π)     [A-9] 
 
and we find that the average energy <W> of the oscillator is simply 
 
 <W> = (½ M) <(dx/dt)2> + (½ K) <x2> = hωo/4π    [A-10] 
 
This is the zero point energy result assumed in the previous section. 
 
An interesting situation develops, however, in the situation where 
 
 ωo = 0  [Special case were there is no restoring force]    
 
In that case, the main contribution comes from ω for which 
 
 hβω /4π <<1         
 
in which case, 
 
 E(ω,β) = (hω/4π) coth (hβω/4π) => (1/β) = kBT      
 
In that special case, 
 
 (½ M) <(dx/dt)2> = (υkBT/π)∫dω [ω2+ υ2]-1 = kBT/2    [A-11] 
 
When the restoring force disappears, the zero point energy hωo/4π is replaced by the thermal 
energy kBT/2. 
 
It is interesting that the theorem shows that in the first approximation it is not necessary to 
include dissipation in the expressions for the response functions.  Accordingly, in the following, 
we shall ignore the resistivity in the conducting material.  


