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DISCLAIMOR 

The contents of this report reflect the views of the authors, who are responsible for the 

facts and the accuracy of the information presented herein. This document is 

disseminated under the sponsorship of the Department of Transportation, University 

Transportation Centers Program, and California Department of Transportation in the 

interest of information exchange. The U.S. Government and California Department of 

Transportation assume no liability for the contents or use thereof.  The contents do not 

necessarily reflect the official views or policies of the State of California or the 

Department of Transportation.  This report does not constitute a standard, specification, 

or regulation.  

 

ABSTRACT 

 

Crash rates for trucks depend in part on the length of time drivers have been operating 

their vehicles.  This paper investigates bounds on the reduction in crash rates due to the 

imposition of hours-of-service regulations, which limit the number of hours drivers 

operate their vehicles.  Methods for analyzing probability distributions for trip length, and 

odds ratios for crashes (as a function of hours driven) are developed.   These then are 

applied to economic statistics for truck crashes to compute bounds on the benefits of 

hours-of-service restrictions.  We also analyze costs of restrictions through use of a linear 

programming model that optimizes trucking operations in the presence of constraints on 

driver tour lengths.   In conclusion… 
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1. INTRODUCTION 

 Safety is an important concern of the freight industry. The National Highway 

Traffic Safety Administration reported in its annual 2002 traffic safety report that tractor-

trailers constitute only 3 percent of the total number of registered vehicles operating in 

the country but are involved in almost 10 percent of all fatal vehicle crashes.  The Federal 

Highway Administration stated that large trucks were involved in 4183 fatal crashes in 

the year 2002.  Fatigue, alcohol abuse, human negligence, and sleep deprivation stand out 

as some of the chief causes for truck crashes, but no single factor, but rather a 

combination of factors is usually responsible for a crash.  

This research creates methods for bounding the effect of driving hours of service 

(HOS) regulations on fatality rates for truck involved crashes.  HOS regulations permit 

drivers to operate their vehicles and be on duty for a stipulated amount of time during the 

day as well as the week.  As truck drivers spend a majority of their work time behind the 

wheels of their vehicles, truck safety can be gauged by analyzing HOS regulations.  All 

trucking organizations must comply with HOS rules, and any change in these HOS rules 

also affects the operations of the truck operators. As a step toward understanding the 

costs and benefits of HOS regulations, this paper computes upper bounds on the number 

of lives saved due to imposition of HOS constraints.  We also evaluate economic costs 

and benefits of HOS constraints based on the bounds that we have created, along with 

modeling truck operations. 
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2. BACKGROUND 

Although economic efficiency, quality of service, and reliability are prime 

requirements for any freight system, safety is also a critical requirement, particularly for 

trucks, which share the roads with passenger vehicles, pedestrians and cyclists.  Trucks 

are the most commonly used vehicles for the movement of goods, especially measured as 

a percentage of all shipments transported.   Vehicular - especially truck - crashes always 

involve the damage and destruction of property and sadly sometimes that of life itself. 

Different factors contribute to the occurrence of crashes. Attenuation of human functions, 

machine failure, changes in the surrounding environment and various other factors are 

responsible for crashes. Fatal crashes involve the loss of life and are of serious concern to 

the transportation related governing bodies in the US. 

Driver Hours of Service (HOS) are intended to ensure that fatigue does not reduce 

safety.  HOS rules were implemented in the United States in 1939. The rules remained 

largely unchanged until 1962, when one modification was proposed. Under the 

unmodified set of rules, a truck driver could operate a vehicle for a maximum or ten 

hours, after which a minimum eight hour period was required as off-duty. A truck driver 

could be on-duty for a maximum of fifteen hours, followed by a mandatory eight or more 

hours off-duty. Finally, a driver could operate a vehicle for no more than sixty hours in a 

seven day period or seventy hours in an eight day period. 

In January 2004, a new set of rules was implemented. The new regulations limit a 

driver to no more than eleven hours followed by a minimum ten hour rest period. Also, 

the driver could remain on-duty for a maximum of fourteen hours, after which a break of 

ten or more hours was required. The rest of the regulations remained unchanged, while 

some new regulations were added (Table 1).  

 

Old Hours-of-service rules 

(until January 2004) 

New Hours-of-service rules 

(from January 2004) 
Maximum driving time of ten hours. Maximum driving time of eleven hours. 

Minimum eight hour off-duty time. Minimum ten hour off-duty time. 

Maximum of fifteen hour on-duty time Maximum of fourteen hour on-duty time. 

Sixty hours on  duty in a seven day period Sixty hours on  duty in a seven day period 

Seventy hours on  duty in a eight day period Seventy hours on  duty in a eight day period 

 

Table 1. Old and new driving hours-of-service. 
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Along with the revision of the driving hours of service, further revisions were 

proposed and newer regulations were added. These included the following: 

 

 A driver may restart a 7/8 consecutive day period after taking 34 or more 

consecutive hours off duty. 

 Drivers can extend the 14 hour on-duty period to a maximum of 16 hours if the 

following occurs: 

1. They are released from duty at the normal work reporting location for the 

previous five duty tours and, 

2. They return to the normal work reporting location and are released from 

work within 16 hours and, 

3. They have not used this exception within the last 6 days, except following 

a 34 hour restart of a 7/8 day period. 

 

Some exceptions to these rules are applicable to commercial motor vehicle 

(CMV) operators.  Truck drivers are allowed to split on-duty time by using sleeper berth 

periods while complying with the new regulations.  Drivers can accumulate the 

equivalent of ten consecutive hours off-duty by taking two periods of rest in the sleeper 

birth provided that neither period is less than two hours, driving time in the period 

immediately before and after each rest period when added together does not exceed 11 

hours, and the driver does not operate after the 14
th

 hour. 

The effect of HOS rules on truck safety and its economic impact on trucking 

operations has been observed by the Federal Motor Carrier Safety Administration 

(FMCSA). Table 2 shows the significant impact of HOS on both truck safety and truck 

operations, according to the FMCSA. 
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Hours of Service (HOS) Related Statistics for Large Trucks  

1997-2000 Average Fatalities in Fatigue-Related Crashes  375  

1997-2000 Average Injuries in Fatigue-Related Crashes  7,500  

2002 Total Cost of Fatigue-Related Crashes (1999 Dollars)  $2.3 billion  

Lives That Could Have Been Saved in 2002 by 100% HOS Compliance*  75 to 120  

Estimated Annual Cost Savings to Motor Carriers of 100% HOS Compliance*  $900 million to –$1.3 billion  

Net Benefits of Rule*  $1.1 billion to –$600 million  

*Depending on baseline. Positive dollar figures are based on the assumption that all drivers were in compliance with 

the old HOS regulations. Negative dollar figures are based on the assumption that some drivers were not in compliance 

with the old HOS regulations. 

 

Source: FMCSA Regulatory Evaluation, “Hours of Service of Drivers; Driver Rest and Sleep for Safe Operations,” 

RIN2126-AA23.  

Table 2. Hours of Service (HOS) related statistics for large trucks. 

 

 

The National Center for Statistics and Analysis (NCSA) compiles crash data and 

issues periodic reports on truck crashes. The FARS data utilized in this paper are 

developed by NCSA and are often used to generate reports similar to the one shown 

above. FARS is a census of all fatal crashes that occur on public roadways. It is 

considered to be the most reliable national crash database, although it only contains 

fatality related data. NHTSA has been recording fatal truck crashes since 1975.   

The national Motor Carrier Management Information System (MCMIS), another 

system similar to FARS, is operated by the FMCSA.  MCMIS includes information on 

the safety robustness of commercial motor carriers. Fatal crashes involving large trucks 

are collected in MCMIS.  

The remainder of this paper is directed at developing probabilistic models to 

compute upper bounds on the reduction in crashes due to the imposition of hours-of-

service regulations.  Section 3 reviews related literature.   Section 4 develops and 

demonstrates probabilistic models, and Section 5 provides an economic assessment of 

costs and benefits of HOS regulations.  Section 6 provides conclusions and Section 7 

discusses implementation. 
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3. LITERATURE REVIEW 

The prime factor of interest in this paper is driving hours of service.  Driving 

hours of service has been an active field of numerous studies and ongoing research.  The 

present HOS regulations have witnessed heated debate between the federal authorities 

and the trucking lobby for failing to account for the health and safety benefits of the truck 

drivers.  HOS regulations stipulate the conditions under which truck drivers are allowed 

to drive their vehicles and/or be on duty. Any change in HOS rules affects trucking 

operations to a certain degree.   

Trucking organizations operate in a highly dynamic environment.  Reduction in 

operating costs, increase in revenue and compliance with clients’ demands are often the 

primary goals of any organization.  These goals can be directly or indirectly affected by 

any change in HOS regulations.  For example, if driving hours are curtailed from a 

maximum of ten hours to eight, the truck driver may not be able to cover the entire 

distance between a given origin and destination.  This may force the company to change 

their operating procedures.   

One of the steps taken by the company can be hiring additional drivers to 

compensate for the lower driving hours.  This means an increase in operating costs for the 

organization.  This would be highly inconvenient for the organization as they have to re-

evaluate their strategies to compensate for the higher operating costs while seeking 

increased revenues.   

Driving hours of service has been an active field of research.  Kaneko and Jovanis 

(1990) examined the issue of consecutive or multiple driving days and crash risks. A 

national LTL firm participated in the study which allowed the usage of its data. Using the 

data set, a non-linear binary logistic regression was applied. Cluster analysis was carried 

out to identify several distinct driving patterns. The authors determined that the highest 

levels of crash risks were involved with nighttime and early morning driving patterns. 

The daytime and early evening driving proved to have the lower levels of risk. The study 

had several important implications. It showed that time of day was a strong factor in 

crash risks. Hours of driving was established also as an important factor. The elevated 

crash risks associated with early morning and nighttime driving proves this claim valid.  
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Jones and Stein (1987) tried to determine the connection between driving hours 

and crashes. They used a case control study that tried to examine the relative risk 

associated with long hours of driving. A sample of 332 tractor-trailer crashes was used 

for the study. For every crash there were three randomly selected exposure trucks. These 

trucks were in the same traffic stream and time as the crash involved trucks, but only a 

week later. The sample of truck crashes was used with 1, 2, and 3 case controls 

respectively for analysis. The authors found out that the relative risk of drivers who had 

driven for more than 8 hours was almost twice than those for those drivers who drove for 

lesser hours. Moreover they found out that drivers violating logbook regulations, drivers 

aged 30 and under and interstate operators were associated with higher crash risks. The 

study suggested that longer driving hours led to increased crash risks. This has been 

upheld by Kaneko and Jovanis (1990), and Wylie et al (1997).  

Braver et al (1992) surveyed 1249 tractor-trailer drivers, of which 73% reported 

that they had violated hours of service rules. 31% of the violators reported driving more 

than the legal limit of 60 hours in 7 days or 70 hours in 8 days, more than 25% of these 

violators stated that they worked 100 hours or more per week and 19% told that they had 

fallen asleep at the wheel one or more times during the previous month while operating a 

tractor-trailer. Violation of hour of service rules have been found out in other instances. 

The study showed that drivers violated HOS rules due to irregular route driving, 

receiving lower pay rates, penalized for late arrivals and delays in services, carrying 

perishable commodities and being assigned unrealistic delivery deadlines. Over half of 

these drivers who violated the HOS regulations believed that they should be allowed to 

drive more than ten hours a day and have more flexibility in their work schedules.  

Harris and Mackie (1972) found significant changes in the driving performance of 

truck and bus drivers in the ten hour time frame. Drivers committed more errors and were 

physically less aware of external stimuli. Although the study noted the differences among 

drivers, the attrition effects started developing during the fourth hour of driving and kept 

on increasing, until the driver either stopped driving, or took a short break. Mackie and 

Miller (1978), through their studies on truck driver fatigue, determined that driver 

performance errors are strongly associated with longer hours of driving. Cumulative 

fatigue effects also start showing up with multi-day driving schedules. A time dependent 
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logistic regression model was determined by Lin et al (1993), which examined motor 

carrier safety. The authors found that driving time was strongly associated with crash 

risk. The likelihood of a crash increased significantly after the fourth hour of driving and 

kept on increasing with longer driving hours.  

In 1995, the National Transportation Safety Board (NTSB) examined single 

vehicle truck accidents with respect to drivers’ pattern of duty and sleep. A multivariate 

statistical analysis was carried out on the data elements. The results showed that the 

duration of the last sleep period, total hours of sleep in the last 24 hours prior to the crash, 

and split sleep patterns were important parameters in predicting fatigue-related crashes. 

Moreover, the truck drivers involved in crashes were found to have slept on an average of 

only 5.5 hours, nearly 2.5 hours less than the 8 hours of sleep for the set of exposure 

drivers. The study indicated that driving at night with a sleep deficit appeared to be more 

critical in predicting fatigue-related crashes than just nighttime driving. 

Wylie (1997) et al investigated the degree of recovery afforded to truck drivers by 

rest periods. A group of five drivers who had driven for four 13-hour periods with night 

starts were given a 36 hour period off and then allowed to drive for four more 

consecutive 13 hour night driving periods. Another group of 20 drivers who drove four 

13-hour day trips with daytime starts were allocated to four different conditions. The first 

group of three drivers was allowed no off duty periods; the second group of five drivers 

was allowed a 36-hour period off and then worked for four additional days; the third 

group of six drivers was given 36 hours off and then worked an extra day. The final 

group of six drivers was given a break of 48 hours and then allowed to work an additional 

day. The analysis showed that night drivers performed worse than their daytime 

counterparts. The subjects who had no off duty hours displayed a significant decline in 

their driving performance. Truck drivers with break periods of 36 hours showed a 

minimal decline in driving performances, while those with a 48 hour break had no 

decrement in their driving performance. The experiment showed that a 48-hour break is 

significantly better than either 24 or 36 hours.  

Mackie and Miller (1978) determined that truck drivers operating on irregular 

schedules received less sleep and showed signs of fatigue prior to drivers operating on 

regular schedules. However, both sets of drivers were allowed to sleep for the same 
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period of time. Due to the sleep debts accumulated by the irregularly scheduled drivers, 

they performed less reliably than their regular counterparts. Hertz and Jovanis (1991) 

both observed through their independent studies that there was a strong likelihood of a 

crash with night-time driving. A Swedish study by Kecklund (1995) found that the crash 

risk for trucks was 3.8 times higher between 3 am and 5 am when compared to the crash 

risk associated with daytime driving. Trucking companies often utilize a very different 

approach to solve the problem of driving long distances, especially when the truck driver 

is constrained from driving more than a certain number of hours due to HOS regulations. 

This involves the use of two drivers to operate the vehicle continuously. The drivers 

periodically relieve each other at the wheel and drive under the given HOS regulations 

while also taking the prescribed breaks from driving. This operation looks ideal for 

operations as the drivers can relieve each other as many times as they want. However, 

sleeper berths appear to have their share of problems with respect to driving performance 

and truck safety. 

Mackie and Miller (1978) also found that sleeper drivers tended to display greater 

driver fatigue and worse performance when compared to single drivers, when in both 

cases the two sets of drivers drove along the same route. Sleeper drivers showed 

worsened driving skills, increased lane tracking variability, and more critical events that 

displayed driver drowsiness. In a majority of these cases, the sleeper drivers had 

undergone shorter driving times than their single counterparts. The authors found that 

sleeper drivers obtained less sleep than single drivers before commencing their driving 

operations. The study showed that sleeper drivers experience disrupted sleep and lower 

arousal levels that culminate in degraded driving performance. 

O’Hanlon (1981) carried out a similar study to Mackie and Miller (1978). He 

determined that drivers displayed a decline in their driving performance at some point 

during their four to five hour driving operations, but the effects are more pronounced in 

night driving, especially around midnight. Sleeper drivers are more prone to such decline 

in driving conditions and are unable to effectively respond to situations during late night 

and early morning driving.  

Hertz (1988) related increased crash likelihoods to sleeper berth operations. Crash 

risk for sleeper drivers were similar to that of single drivers. This result contradicted the 
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hypothesis that sleeper drivers are subject to higher crash risks. However, the usage of 

sleeper berths in two shifts increased the crash risks significantly. Hertz found that crash 

risks did not arise due to disturbance in sleep from truck motion but due to the splitting of 

sleep into two periods. Drivers who split their sleep periods and relieved each other 

tended to face decreased driving performance and increased fatigue and subsequently 

higher crash risk levels. Dingus et al (2003) reported that single LTL drivers were more 

frequently involved in critical incidents than their team counterparts. Team drivers were 

more able to manage their fatigue levels and critical incident involvement than single 

drivers. Single drivers were four times more likely to be involved in a critical incident 

than team drivers.  

Research into the science of sleep also provides insights into the challenge of 

maintaining safe operations toward the end of long driver tours.  Carskadon and Dement 

(1981) defined human sleep as a reversible behavioral state of perceptual disengagement 

from unresponsiveness to the environment. Sleep was originally thought to be a passive 

and simple occurrence that did not involve any of the inherent complexities of the human 

body. Sleep is now regarded as an extremely complex and active state which consists of 

several stages and cycles. Sleep consists of two basic stages – non Rapid Eye Movement 

(NREM) and Rapid Eye Movement (REM).  NREM involves four stages in which the 

final two stages are jointly termed as Slow Wave Sleep (SWS).  These stages collectively 

perform the function of sleep.  

 Researchers have approached the subject of human sleep with different 

methods. Some researchers have categorized sleep as a phenomenon that is vital for 

physical and mental restoration while conserving energy. Others have hypothesized that 

body fluids accrue in human blood when the human body is awake. These substances 

cause the feeling of exhaustion and during sleep, the substances are removed. Horne 

(1988) suggested that sleep is a state of decreased human activity during which the body 

tends to conserve proteins due to lack of food intake for long periods of time.   

Sleep has been associated the phenomenon of Circadian Rhythms, derived from 

the Latin word circa diem, meaning about a day. Circadian rhythms are the regular 

changes in physical and mental characteristics that occur in humans during the course of 

24 hours that control appetite, energy, mood and sleep (see, for instance, Halberg et al, 
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2003). The rhythms are akin to rhythms or cycles found in nature. The human body 

responds to natural cycles such as the 24 hour day and night period.  During daytime, the 

human body produces cortisol, serotonin, other hormones and neurotransmitters that 

awaken a person and cause human body temperature and blood pressure to increase. At 

sunset, the circadian rhythm responds to the diminishing light level and causes the body 

to produce melatonin, decrease blood pressure and cause the human body to fall asleep. 

This rhythm is controlled by the Suprachaismatic Nuclei or SCN.  SCN is the master 

clock in human bodies.  The SCN is a cluster of 50,000 neurons, or 10,000 cells, one on 

each side of the brain. SCN, along with the ancillary mechanisms, control the secretion 

and diminution of hormones, chemicals and neurotransmitters that determine appetite, 

moods, consciousness and sleep. The disruption of circadian rhythms can affect the 

human body to varying levels. Sleep disorders, loss of sleep and fatigue are some of its 

effects.  

Patrick and Gilbert (1896) were among the first to carry out a comprehensive 

study on sleepiness. Subjects were kept awake for 90 hours and the results obtained from 

monitoring reaction time, motor speed and memory were used to demonstrate the harmful 

effects of prolonged wakefulness. Rhodes (2001) assessed the hours of work of aircraft 

maintenance engineers (AMEs).  He reported that AMEs, on average, were working over 

50 hours per week when overtime was included. Many extend their 12 hour shifts or 

work 5 or more days of 10 hour shifts in a row. Many of these AMEs spend many days 

with little rest and minimal sleep. AMEs in rotating shifts slept poorly due to the noisy 

environment. Over 30% of the AMEs indicated that their performance levels were 

seriously affected when they had to work overtime, especially during night shifts. The 

study revealed that there was evidence that some AMEs in Canada were extremely 

fatigued and were possibly pushing their limits. Their fatigue is either chronic or acute or 

a combination of both. Accrued sleep debt and increased levels of fatigue were reported 

due to increased workload and continuous work schedule.  

Heslegrave (1997) reported on performance measures for Air Traffic Control 

(ATC) workers. ATC workers, who were working for 8 hour shifts in the morning and 

evening, suffered a drop in their performance levels at the end of their shift. However, 

this drop in performance was more pronounced for workers at the end of their 8 hour 
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night shifts. Also the performance levels of ATC workers operating on backwards 

rotating shifts and 5 consecutive night shift patterns were observed. These workers were 

found to show perform poorly during the night shifts when compared to evening or day 

shifts, and the performance degraded further from the second night onwards. Consecutive 

night shifts have another shortcoming as noted by Rhodes (1996). He observed that ATC 

workers who operated five consecutive night shifts accumulated a sleep debt of more 

than 10 hours due to a low average of daytime sleep and poor sleep quality. The 

melatonin levels of these ATC workers showed that the workers’ circadian rhythms never 

adopted a nocturnal pattern.  

The Fatigue Countermeasures Program being carried out by NASA’s Ames 

Research Center since 1980 has collected information on fatigue, sleep, performance in 

flight operations and circadian rhythms (NASA, 2006). The goal of this research group 

was to understand the extent of fatigue, sleep loss and circadian disruption in flight 

operations. The effect of these factors on flight crew performance was studied and ways 

were being developed to mitigate the factors and improve flight crew performance at the 

same time. Field studies have shown that in long haul flight operations and non-24 hour 

duty or rest cycles, the circadian desynchronization associated with transmeridian flights 

and the sleep loss from nighttime flying are linked to fatigue. The project studies noted 

that fatigue was created due to short-haul operations, long duty days, sleep loss as a result 

of short nighttime layovers and shortened sleep intervals due to progressively earlier crew 

reporting times. Overnight cargo crews also suffer from fatigue as regular nighttime 

flying causes incomplete circadian adaptation. Duty periods ending in the morning hours 

lead to sleep loss due to the human body’s circadian tendencies and biological clock 

signaling the human body to remain awake during the morning hours. Flight crews have 

periodically acknowledged that fatigue was a big concern for them. The project found 

that some flight crews admitted to nodding off during the flight and also sometimes 

arranged for one pilot to take naps in the cockpit seat.  The research body suggested small 

periodic breaks as a countermeasure against fatigue. Small breaks reduce nighttime 

sleepiness and also mask the sleepiness for moderate periods of time.  

 Eddy (2005), in his paper on sleep deprivation among physicians, commented 

that 24 hours of sustained wakefulness produced impairment similar to having a blood 
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alcohol level of 0.1 %. Physicians appeared to work far more hours than the guidelines 

prescribed for employees in the 1930s. He noted that studies of physicians have shown 

that sleep deprivation led to impairment in language and math skills, impaired ECG 

translation, increased error rates in intensive care unit, and signs of less empathy and poor 

communication skills with patients. Resident doctors are not permitted to work more than 

80 hours a week with no shift longer than 24 consecutive hours. Studies in New York 

state hospitals showed that prior to 1989, resident doctors were working 100 to 120 hours 

per week. An audit carried out after a decade on in 12 New York hospitals shows that 

60% of surgical residents were working for more than 95 hours per week. A study by 

Parshuman    (2004) showed that even if residents complied with the regulations, they 

worked long hours with little sleep and suffered significant psychological stress.  Eddy 

found out that after age 45, older physicians have trouble getting deep sleep and are 

unable to recoup their sleep debts. These physicians are less able to return to their normal 

functions after a sleepless night when compared to their younger colleagues.  

The sections above deal with the science of sleep and its associated effects. It 

appears that modern society has altered the sleeping habits of many. The fast paced 

lifestyles, restricted schedules, and the demand for more work have caused many to work 

longer, thus curtailing their sleeping hours. Poor sleep and cumulative sleep debt have 

deleterious effects on the human body. The buildup of fatigue and lowering of 

performance levels are the most visible signs. Humans are more prone to commit errors 

or make poor judgment while performing their jobs under increased fatigue levels. The 

aviation and transportation industry has adopted regulations that ensure that the operators 

are not overworked and achieve sufficient rest. Truck drivers are no exception to this 

situation. The past and current HOS regulations have tried to ensure that truck drivers get 

sufficient rest after their work hours so that they can improve their performance levels.  
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4. BOUNDING METHODOLOGY 

Past literature on truck safety has shown that longer driving hours are statistically 

linked to higher crash risks. Drivers who spend more time behind the wheel driving are 

more likely to be involved in a crash. The reduction in driving hours would consequently 

reduce the chance of a crash occurring. The measurement of this reduction can be carried 

out using suitable probability distributions and a statistical framework. Probability 

distributions are created to compare drivers who have had a crash after being on the road 

for more than x hours against those drivers who have had no crashes after time x.  From 

these distributions, we provide a set of methods of computing an upper bound on the 

reduction in crashes due to the imposition of HOS constraints. 

 

4.1 Analysis of Probability Distributions 

 In this section we develop and analyze probability distributions, which are then 

used to evaluate reductions in crash rates under a set of scenarios involving different 

HOS constraints.  Probability distributions are specifically used to predict the proportion 

of accidents that happen after a certain time x as well as the reduction in accidents due to 

adherence to modified HOS constraints. The distributions are defined as: 

 

 P(x) is the probability that a randomly selected vehicle on the road will have a trip 

length greater than x hours and g(x) is its assigned probability density function. 

 F(x) is the probability that a randomly selected truck on the road has driven for more 

than x hours at the time it is selected. 

 H(x) is the probability that an accident involved truck has driven for more than x 

hours. 

 

X is defined as the trip length in hours and is a random variable. It can be stated that,  

F(x) = 


x

zg )( P(T>x|z)dz, where T is the elapsed time for a randomly selected truck on 

the road. 
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The reduction in fatalities if trip length is constrained can be computed as the difference 

between the above function H(x) and the transference to shorter trips (trips with lesser 

driving hours) as explained below.  This can be summarized as Reduction in crashes = 

H(x) – Transference to shorter trips.   

The term “transference to shorter trips” represents the transfer of risk from the 

ends of long trips to substituted shorter trips.  For instance, if a trip that would otherwise 

take 10 hours is truncated to eight hours, the deleted two hours of duty must be covered 

in another trip of shorter length.  The hours-of-service constraint reduces total crashes if 

the crash risk for the final two hours of duty is shorter than the crash risk for the 

substituted hours.  The transference value must be non-negative, and therefore H(x) is an 

upper bound on crash reduction.   
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An example of how the functions F(x) and H(x) can be obtained from a given 

P(x) distribution and accident rate a(x) is described below.  For illustration, it is assumed 

that P(x), the probability that a randomly selected trip length is greater than x hours, is an 

exponential distribution, g(x) is its assigned probability density function and the mean of 

the given distribution is denoted by /1 , where 1/ denotes the driving time in hours.  

Suppose that we need to find F(x); the probability that a randomly selected truck 

on the road has driven for more than 7 hours at the time it is selected. The plot of the 

distribution and the requisite calculations are shown in Figure 1.  Hence, we have the 

following: 
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Therefore, F(x) can be rewritten as, 
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Figure 1: Exponential distribution of driving times with mean = 4 hours. 
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On integrating the right hand side, a rather complex function is obtained. This is written 

as, 
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This function F(x) is the probability distribution that a randomly selected truck on the 

road has driven for more than x hours. Therefore, the probability F(x) is calculated as 

follows: 
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Hence, the probability that a randomly selected truck on the road has driven for more 

than 7 hours at the time it is selected, given that the mean driving time is four hours is 

0.0522, or about 5 %. Once F(x) is derived, principles applied previously can be utilized 

again to obtain the distribution H(x). Differentiating F(x) yields the function f’(x). This is 

shown as the following: 
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This value of f’(x) can be used for creating the function for H(x). For this example, 

suppose that the accident rate is a logarithmic function of z (the driving hours) and is 

represented as a(z)=b(ln(z)+c). Hence the distribution H(x) can be rewritten as the 

following: 
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The distribution of H(x) can be obtained by dividing the integrals. Using the same 

example given above, and assuming an accident rate a(z) =10
-4

(ln(z) + 1.5), the 

probability H(x) that an accident involved truck has driven for more than 7 hours is 

calculated as the following: 

 

* (Numerically computed using Mathematica 5.2) 
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Hence, the probability that an accident involved truck has driven for more than 7 hours is 

0.150552 or 15 %, which is an upper bound on crash reductions with a 7 hour HOS 

constraint.  By subtracting the crashes for trips that are transferred in the shorter trip 

category, the actual reduction in crashes could be obtained. This example can be 

modified to account for different types of distributions for P(x) and different functions for 

the accident rate a(x). While P(x) was assumed to be exponential, other distributions such 

as uniform, log-normal or gamma can be used to obtain results. The same holds true for 

the accident rate a(x). Several other functions, including linear, exponential, quadratic or 

even a constant, can be applied for the accident rate to explore other scenarios.  
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4.2 Analysis of Odds Ratio 

In this section we use the concept of “odds ratio” to develop a more precise 

estimate of reduction in crash risks due to HOS constraints.  This concept was utilized by 

Jovanis to demonstrate that truck drivers operating their vehicles for longer hours have 

greater likelihoods of being involved in crashes. Using data from LTL truckers operating 

in the years 1984-1985, Figure 2 was produced: 
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Figure 2: Odds ratio. 

 

Figure 2 shows that the odds ratio for a crash when the driver has just started driving is 

normalized to one. As time increase, the odds of a crash start increasing. At the end of 

nine hours of driving, the odds of a crash occurring have doubled. This implies that the 

driver is twice as likely to be involved in a crash after driving for more than nine hours 

compared to the initial starting state. With reference to the equations drawn in the 

previous section, the following equation can be stated: 

)0(

)(
)(_

a

xa
xratioOdds  , where 

a(x) is the accident rate per unit time and x denotes the time traveled since departure. 

a(0) is the accident rate per unit time when x = 0.  
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The equation calculates the odds ratio at time x by determining the ratio of accident rates 

at time x and at time zero, respectively. The odds ratio graph is plotted in Figure 3 using 

data obtained from Figure 2. The data from the graph are used to construct a model that 

allows the prediction of the crash odds. A regression analysis was carried out to 

determine the most precise relation between driving hours and crash odds. This scatter 

plot also contains the trend line that displays the relationship between the parameters. 

  

Scatter plot and analysis
y = 0.374Ln(x) + 1.149

R
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Figure 3: Trend line of odds ratio data. 

 

The relation appears to be logarithmic in nature and is defined by 

 

)ln(374.0149.1_ xoddscrash   

The R
2 

value for this fit is 0.8426. This equation can be utilized in further steps, 

especially to determine crash likelihoods of drivers who have been on the road for more 

than x hours. Also modified HOS constraints can be built based on the crash likelihood 

values predicted by this equation.  
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 We now develop a method to compute the reduction in accidents due to HOS 

constraints assuming that the HOS constraint truncates the distribution P(x). An 

exponential distribution for driving time is used as illustration.  A graph showing the 

exponential distribution of proportion of crashes against driving times, with a mean 

driving time of four hours and an upper bound of ten hours, has been plotted in Figure 4 

for illustration. The plot and the methodology are described below.  
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Figure 4: Upper bounds on driving hours (exponential distribution). 

 

From the graph above, any point on the driving hours can be chosen and the 

corresponding reduction in crashes can be determined by employing the relevant 

methods. In this example, it is desired to determine the reduction in crashes if trip length 

is restricted to no more than ten hours. In such a case, the following steps are employed. 
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Hence the proportional reduction in crashes can be expressed as the following: 
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Hence the reduction was computed to be 4.2%. Reduction in crashes with upper bounds 

of 6, 7, 8, 9, 10, 11 and 12 hours and mean driving times of 2, 4, 6 and 8 hours is shown 

in Table 3. 

 

 

 Upper Bound on Hours 

Mean 

Drivi

ng 

Time 

µ 6 7 8 9 10 11 12 

2 3.2% 2.0% 1.3% .80% .50% .31% .20% 

4 11% 8.3% 6.6% 5.2% 4.2% 3.3% 2.6% 

6 16% 13% 11% 9.6% 8.2% 7.0% 6.0% 

8 

20% 17% 15% 13% 12% 10% 9.0% 

Table 3: Reduction in crashes due to upper bounds. 

 

A similar procedure may be adopted to determine the reduction of crashes due to HOS 

constraints for other probability distributions.  We will now use the normal distribution as 

an example.  We will later utilize coefficient of variation values of .15 and .3, with mean 
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trip lengths ranging from two to eight hours, and upper bounds ranging from six to 12 

hours.  But first, we use a mean driving time of eight hours, and a standard deviation of 

2.4 hours for illustration (Figure 5).  All values used in the example provide a very small 

probability of negative outcomes. 
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Figure 5: Upper bounds on driving hours (normal distribution). 

 

If the trip length is restricted to no more than 10 hours, then 
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The reduction in crashes can be expressed through the equations below. 
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A reduction of 1.99% is obtained when a constraint of 10 hours is applied on the driving 

hours. The table below shows the reduction of crashes for g(x) as the normal distribution. 

The mean driving time and the variance in driving times of truck drivers in the US are 

unknown parameters. A study carried out by FMCSA in 2003 has indicated that the 

average trip length lies in the region of 6 hours, but the variation in driving times was not 

recorded. Keeping this fact in mind, calculations were carried out by varying both the 

mean and the upper bound to get a wide spectrum of different plausible scenarios.  

 

σ =15% of 

µ 

Upper Bound 

Mean 

Driving 

Time 

µ 8 9 10 11 12 

6 0.0924% 0.003% 0% 0% 0% 

7 0.868% 0.1787% 0.017% 0% 0% 

8 2.36% 0.985% 0.27% 0.0437% 0.0031248% 

9 4.067% 2.31% 1.08% 0.373% 0.085% 

Table 4a: Reduction in crashes due to upper bounds (σ =15% of µ). 
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σ =30% of µ Upper Bound 

Mean 

Driving 

Time 

µ 8 9 10 11 12 

6 1.428% 0.5% 0.17% 0.04% 0.007% 

7 3.17% 1.739% 0.8% 0.339% 0.11% 

8 5.104% 3.33% 1.99% 1.08% 0.5% 

9 7% 4.99% 3.405% 2.19% 1.318% 

Table 4b: Reduction in crashes due to upper bounds (σ =30% of µ). 

 

From the tables above it can be concluded that a maximum reduction of 7% in crashes is 

achieved when the mean driving time is 9 hours and an upper bound of 8 hours is applied 

to the driving time. In this case a normal distribution was adopted to replicate the driving 

hours. The actual empirical distribution of driving times is unknown; hence it has been 

assumed that the exponential and normal distributions replicate the empirical one.  

 

4.3 Preliminary Analysis of FARS Data. 

 FARS, an acronym for Fatality Analysis Reporting System, was implemented 

by the National Highway Traffic Safety Administration (NHTSA), and is maintained by 

the National Center for Statistics and Analysis (NCSA).  NCSA maintains an exhaustive 

set of data collected from its own internal data sources as well as data from other 

governmental agencies. FARS is once such data set. FARS contains data on a census of 

fatal traffic crashes occurring within the fifty states, Washington DC, and Puerto Rico. 

For data to be recorded in FARS, a crash must involve a motor vehicle that has been 

traveling on a public roadway and the crash results in the death of a person, (vehicle 

driver, occupant or pedestrian). FARS data are divided into four categories – crashes, 

persons, vehicles and drivers. Out of the variables listed in the data, a few, including the 

crash time, date, day, month, year, age of person, the number of hours driven and the trip 

type are used in the analysis of crash risks. The latter two variables are not directly linked 

to the FARS data, but are obtained from a different survey data set called Trucks 

Involved in Fatal Accidents (TIFA).  

TIFA has been collected since 1980 by University of Michigan Transportation 

Research Institute (UMTRI) Center for National Truck and Bus Statistics in conjunction 
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with NCSA. In addition to the FARS data, an extra set of variables are produced by 

TIFA, collected from police reports and surveys.  TIFA data provides the length of time 

that drivers had been driving at the time of the crash. The driving times are obtained from 

the driver surveys collected by TIFA, as well as through police reports or from operator 

logs. This time is a lower bound for hours of service at time of crash, as the driver may 

have completed a prior trip in the same duty period.  In many instances, however, the two 

times would be the same.  Due to the absence of data on hours of service at time of crash, 

the following analysis is based on driving time at time of crash. 

We now turn to the FARS data sets from the years 2000 until 2003, which provide 

a basis for determining the distribution H(x), the probability that an accident involved 

truck has driven more than x hours.  A histogram of the data sets has been shown in 

Figure 6, and Figure 7 represents the cumulative distribution for driving hours at time of 

accidents, or the 1-H(x) distribution, for all three data sets. 
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Figure 6: Bar chart - proportion of crashes for years 2000-2003. 
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1-H(x) distribution for 2000-2003
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Figure 7: 1-H(x) distributions for years 2000-2003. 

In the previous sections, reduction in crashes was computed by using the equation 

Reduction = H(x) – Transference to shorter trips. The upper bound for reduction in 

crashes is H(x), when the number of trips transferred is 0. Hence Reduction ≤ H(x), and 

in the table below the upper bounds for reduction are shown for each hour of driving. For 

example, in the 2001 data set, the mean driving time at time of accident is 3.33 hours. 

Assuming that drivers can only drive for a maximum of 8 hours, it can be seen that the 

total reduction in crashes is 0.033806. This means that there is a 3.33% reduction in 

crashes when drivers are only allowed to operate for a maximum of 8 consecutive hours. 

With the given mean driving times, and the driving hour constraints, the reduction in 

crashes can be found from Table 5.  
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Driving 

hours 

Mean driving 

time = 3.544 

hrs 

Mean driving 

time = 3.33 

hrs 

Mean 

driving 

time = 3.453 

hrs 

Mean 

driving 

time = 

3.5478 hrs 

 Year 2000 Year 2001 Year 2002 Year 2003 

1 0.694255 0.689204 0.709677 0.70344 

2 0.532619 0.513631 0.53331 0.545088 

3 0.420318 0.393312 0.408836 0.424233 

4 0.311263 0.272992 0.280856 0.312674 

5 0.226225 0.189749 0.206872 0.229315 

6 0.143784 0.114504 0.131837 0.138829 

7 0.098994 0.072701 0.091164 0.095135 

8 0.048036 0.033806 0.041024 0.046483 

9 0.03051 0.017812 0.024544 0.02758 

10 0.012334 0.009088 0.005961 0.009606 

11 0.008114 0.006543 0.004208 0.005268 

12 0.004544 0.004726 0.002454 0.003409 

13 0.002921 0.003635 0.002104 0.002169 

14 0.001947 0.002545 0.001403 0.001859 

15 0.001947 0.001454 0.001403 0.00124 

20 0.000649 0.000364 0.000701 0 

Table 5: H(x) empirical distributions for years 2000-2003. 

 

It can be noted from the table that an absolute constraint on trips of no more than 

eight hours would at most reduce fatalities by 3-5% compared to the current situation.  

This would depend on perfect enforcement, combined with an assumption of no 

transference of fatalities to shorter trips.  In ongoing work, we are continuing to 

investigate reductions in fatalities by combining the distributional data, H(x), with the 

odds ratio model.  This will lead to a more precise (and smaller) estimate of fatality 

reduction.  

 

4.4 Mean Hours Until Crash 

In addition to affecting crash rates, HOS constrains can affect the mean driving 

hours at time of crash.  HOS constraints have the effect of truncating the distribution of 

time until crash and, hence, reduce its mean value.  To examine this effect, Table 6 

contains the values for the proportion of crashes at every given hour.  The mean hour was 
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determined by adding the product of the individual driving times with their respective 

probabilities and then dividing the value by the sum of the probabilities.  

 

Driving hours Mean driving 

time = 3.544 

hrs 

Mean driving 

time = 3.33 hrs 

Mean 

driving time 

= 3.453 hrs 

Mean 

driving time 

= 3.5478 hrs 

 Year 2000 Year 2001 Year 2002 Year 2003 

1 0.305745 0.310796 0.290323 0.29656 

2 0.161636 0.175573 0.176367 0.158352 

3 0.112301 0.120319 0.124474 0.120855 

4 0.109055 0.12032 0.12798 0.111559 

5 0.085038 0.083243 0.073984 0.083359 

6 0.082441 0.075245 0.075035 0.090486 

7 0.04479 0.041803 0.040673 0.043694 

8 0.050958 0.038895 0.05014 0.048652 

9 0.017526 0.015994 0.01648 0.018903 

10 0.018176 0.008724 0.018583 0.017974 

11 0.00422 0.002545 0.001753 0.004338 

12 0.00357 0.001817 0.001754 0.001859 

13 0.001623 0.001091 0.00035 0.00124 

14 0.000974 0.00109 0.000701 0.00031 

15 0 0.001091 0 0.000619 

20 0.001298 0.00109 0.000702 0.00124 

 

Table 6: Probability values for proportion of crashes. 

 

For example, if the mean driving time was to be examined, given that the truck 

driver can only drive for a maximum of six consecutive hours, the individual probabilities 

from one to six hours of driving would be multiplied to their respective driving times, and 

the sum of the product would be divided by the sum of the probabilities. This method 

uses the weighted mean concept and provides a reasonably accurate estimate of the 

average driving hour before the crash occurs. An example has been shown in the 

following paragraph, assuming the driver can only drive for a maximum of four 

consecutive hours. Then: 
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This means that the average driving time before a crash occurs is 2.035 hours, given that 

four hours is the upper bound for driving times.  Table 7 below provides the mean driving 

times for different HOS constraints. 

 

 

 

Upper 

bounds on 

driving 

Expected number of driving hours 

 Year 2000 Year 2001 Year 2002 Year 2003 

4 2.035813 2.068999 2.125303 2.068982 

5 2.361578 2.370122 2.393459 2.386007 

6 2.711904 2.678571 2.705171 2.765741 

7 2.92507 2.873383 2.897376 2.970204 

8 3.196728 3.079759 3.164167 3.226843 

9 3.301637 3.176165 3.262761 3.339069 

10 3.424907 3.236242 3.38871 3.459953 

11 3.457135 3.256131 3.402109 3.492835 

12 3.487772 3.272094 3.417227 3.508704 

13 3.503256 3.282746 3.420588 3.520499 

 

Table 7: Expected number of driving hours at time of crash. 

Note for Table 5 that the mean time until crash increases at a less than linear rate, 

approaching an upper bound, representing the time observed in the FARS data.    

Any truck crash imposes several costs on the driver of the truck, the vehicle itself, 

any other drivers and vehicles involved in the crash and on society as well. In addition to 

property damage, injuries and fatalities, there are several costs associated with emergency 

services, travel delays and costs incurred by the trucking operator or organization. An 

analysis of costs and savings that can be achieved by modifying the driving hour 

constraints is focused in this paper. Costs have been calculated for those crash involved 

trucks that weigh over 10,000 lbs.   
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5. ECONOMIC ASSESSMENT 

 

This section is focused on an economic assessment of the costs and benefits of 

HOS constraints.  In Section 6.1, we combine the bounds created in Section 4 with 

available data on the costs of truck involved collisions in the United States to compute 

bounds on the economic savings due to HOS constraints.  In Section 6.2, we utilize a 

truck fleet optimization model to estimate costs on trucking operations associated with 

imposition of the constraints.   

 

5.1 Impact on Crash Costs 

Crash costs were estimated by applying data on the costs of truck crashes from 

Miller and Spicer (2000) to our bounding data.  Miller and Spicer accounted for these 

costs: medical costs, emergency costs, property damage, lost productivity and monetized 

quality adjusted life years (QALYs).  Miller used crash databases including FARS and 

the General Estimate System (GES) to determine the costs. Trucks were categorized as 

follows: 

 

1. Straight truck with no trailer. 

2. Straight truck with trailer. 

3. Straight truck unknown if with trailer. 

4. Truck tractor with one trailer. 

5. Truck tractor with two or three trailers. 

6. Truck tractor with unknown number of trailers. 

8. Medium/heavy truck, unknown if with trailer. 

8. All large trucks. 

 

Medical costs include hospital, physician, rehabilitation, prescription and related costs. 

Also coroner costs and burial costs for fatalities and claims costs of medically related loss 

compensation are taken into account. Emergency service costs include police, fire, 

ambulance and helicopter services. Property damage stood for all costs related to 

repairing or replacing damaged vehicles, cargo and other property. Lost productivity 
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included wages, fringe benefits, household work lost by the injured and costs incurred in 

processing productivity loss. Monetized quality adjusted life years (QALYs) implied the 

pain, suffering and quality of life lost by a family due to death or injury. The monetized 

quality of life years in 2004 dollars amounts to approximately $ 3 million in case of a 

fatal injury. Initial costs had been calculated by Miller in terms of 1997 dollars. The final 

values were adjusted to 1999 dollars and these values were used as the initial data for his 

paper.  We made further adjustments to estimate the costs in 2004 dollars, taking into 

account two main elements: changes in annual vehicle miles traveled by trucks and 

inflation.  

The FARS data system reported that truck miles traveled in millions had 

increased from 191,477 million to 226,504 million in 2004.  This implies that truck miles 

traveled increased by an average of 2.24%/year over the last seven years. The consumer 

price index increased an average of about 2%/year since 1997 (derived Bureau of Labor 

Statistics data).  We also examined the total number of truck involved fatalities occurring 

annually since 1997, which fluctuated between 4,900 and 5,316 deaths per year. The 

value has remained steady for the last five years; hence, changes in the annual rates of 

fatality were excluded in the final calculations. On combining the first two factors, the 

final costs for all large truck crashes were computed using the year 2004 as the reference 

or the base line.  The final cost values in millions are shown in Table 8.  

 

 

Table 8: Total crash costs in millions by truck type (in 2004 dollars). 

 

Truck type Medical Emergency Property Lost Total lost Monetized Total 

 costs costs 

Damage

s productivity productivity QALYs  

        

Straight truck no trailer 507 27 747 2,164 3,729 5,054 10,064 

Straight truck with trailer 60 4 87 241 578 1,006 1,735 

straight truck unknown with trailer        

Bobtail 24 2 50 155 203 156 435 

Truck-tractor, 1 trailer 538 36 942 2,562 5,754 8,969 16,239 

Truck-tractor, 2 -3 trailers 24 2 32 83 451 962 1,470 

Truck-tractor, unknown # of trailers 2 0.2 6 8 13 13 33 
Medium/heavy truck, unknown if 

with trailer 5 0.4 12 30 42 31 89 

All large trucks 1,160 71 1,875 5,243 10,769 16,190 30,066 
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The total cost due to truck crashes was approximately $ 30.1 billion in 2004. Table 8 

represents the component costs as well as the costs for the different trucking types. Out of 

the $30.1 billion, monetized QALYs accounted for the largest share, with a value of 

$16.2 billion.  Total lost productivity followed with a value of $ 10.8 billion and the rest 

was split between medical costs, emergency and property damages. 

We now turn to reduction in costs by applying constraining driving hours. In 

Section 4, bounds on reduction in crashes were created from four probability 

distributions, three theoretical (based on exponential and normal distributions), and the 

fourth empirical based on FARS data.  For each distribution and HOS value, we applied 

the calculated bound for the reduction in crashes to the total economic costs due to truck 

involved crashes, as shown above.  Results are provided in Figures 8-11 for the four 

distributions, and in Table 9 for the empirical distribution.  For the empirical data, we 

provide multiple graphs, each derived from the empirical distribution for a different year.  

We also provide a graph representing the average data among all of the years examined.   

One note to point, before discussing the results, is that the figures predict a savings, even 

for HOS values that exceed the current limit.  This is because our graphs assume perfect 

compliance, when in reality some crashes occur beyond the legal limit. 

  We observe the following: 

 

 The greatest savings occur when the both when the mean driving time is long, and 

when the variability is large.  This is because more trips would otherwise exceed 

the bound imposed by the hours of service constraint. 

 

 The savings increase as the hours of service constraint is tightened.  Of all the 

examples, the greatest savings occur with an exponential trip length distribution 

with a mean of eight hours and an HOS constraint of six hours, in which case the 

potential savings is no more than $6 billion per year.  

 

 As a more realistic estimate, an 8 hours HOS constraint could provide up to $1.2 

billion in annual savings, as derived from the empirical distribution, or with a 

normally distributed trip length of 9 hours with a standard deviation of 1.35 hours.   

 

 The total achievable economic savings, while significant, is quite small relative to 

the size of the United States economy  (a factor on the order of .01%).   
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Figure 8: Savings in cost for exponential distribution. 
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Figure 9: Savings in cost for normal distribution (SD = 15% of mean). 

 



 34 

Savings in cost (millions of $)

0

500

1000

1500

2000

2500

8 9 10 11 12 13

Bounds on driving

S
a

v
in

g
s

 i
n

 $

mean = 6 hrs mean = 7 hrs

mean = 8 hrs mean = 9 hrs

 
Figure 10: Savings in cost for normal distribution (SD = 30% of mean) 
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Figure 11: Savings in cost for empirical distribution. 
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  Bounds on driving 

  8 9 10 11 12 

Truck type Reduction Percentage 

  4.23% 2.48% 0.91% 0.58% 0.35% 

   Total savings in cost  

Straight truck no trailer $426 $252 $92 $58 $35 

Straight truck with trailer $73 $43 $16 $10 $6 

Bobtail $18 $11 $4 $3 $2 

Truck-tractor, 1 trailer $687 $406 $148 $94 $56 

Truck-tractor, 2 -3 trailers $62 $37 $13 $9 $5 

Truck-tractor, unknown # of trailers $1 $1 $0 $0 $0 

Medium/heavy truck, unknown if with trailer $4 $2 $1 $1 $0 

All large trucks $1,272 $752 $274 $174 $104 

 

Table 9. Average reduction in costs for empirical distribution (millions of dollars). 
 

5.2 Operating Costs 

In this section, we estimate the operating costs to carriers associated with HOS 

restrictions by evaluating sample trucking networks.  We have used a prototypical 

network linking the 50 largest metropolitan areas (in terms of the population size) in 

United States under a range of parameter settings, analyzing the sensitivity of cost to 

input parameters.  

The analysis builds from the network optimization code developed by Caliskan 

and Hall (2006).  In their work, a static linear programming (LP) model was formulated 

to optimize equipment and crew movements in long-haul trucking networks where 

drivers are required to return home within a reasonable amount of time.   The model 

represents three types of driver routes, which we call relay, meet-and-turn, and sleep 

teams.  A relay is a simple out and back route, completed in a day.  A meet-and-turn 

entails matching drivers traveling in the opposite direction between pairs of cities, which 

meet at a mid-point, exchange loads, and return back to their home in the same day.  A 

sleep route is a team of two drivers who alternately sleep and drive.  These routes extend 

over multiple days. 
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A column generation algorithm was created and networks with up to 40 randomly 

generated nodes were optimized.  We applied a post optimization heuristic to merge the 

short routes from the LP so that driver could serve more than one short route per day, as 

long as the total hours served by a driver is less than the pre-defined maximum service 

hours.    

The optimization code requires, as input, these data: 

 

 Average daily demand between each city pair 

 Distance and travel time between each city pair 

 Cost per mile and cost per day for truck/driver combinations 

 Cost per mile for truck trailers 

 

Distances were determined by applying the ArcView GIS system to the NTAD 

(national transportation atlas database) to calculate actual road distance between each city 

pair.  Travel time was inferred from the distances, assuming a constant 50 miles per hour 

speed.   

Daily demands were estimated from a gravity model based on 2004 populations 

estimates for the metropolitan areas.  Two methods were used to estimate the demand, 

both of which assume that demand is proportional to the product of the city population 

sizes.  Let i jd denote the demand on arc (i,j); i jdis  denote the road distance of arc (i,j) 

and ip denotes the population of city i. The first method assumes demand is inversely 

proportional to the distance between the two end-node cities: 

1
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The second method assumes demand is inversely proportional to the power of 1.5 of the 
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We normalize both cases to make the max { i jd } = 3000. (8505.61 and 1121 are the 

largest demand quantity as for Case 1 and Case 2 before normalizing). 

 

5.2.1 Post Processing to Merge Shorter Routes 

The basic algorithm in Caliskan and Hall (2006) does not explicitly account for 

fixed daily costs of driver wages.  Thus, the program does not provide any incentive for a 

single driver to serve multiple routes in a shift, each serving one four hour route.  We 

developed a post processing heuristic that merges shorter routes into combined routes in 

order to reduce the required number of drivers, and thus reduce fixed daily routes.  The 

heuristic accounts for both the demand on each route, as well as the nodes served, as 

illustrated in the following example.  Suppose that the initial steps of the algorithm 

produce two routes: one with duration 3 hours and flow 100 (meaning 100 trucks are 

needed to serve this route); another has duration 4 hours and flow 300.  Both routes visit 

node number 1 and the maximum service time allowed per day for a driver is 8 hours. We 

can then merge these routes into one new route with duration 7 hours and flow 100 = 

min{100,300}, and a second route with duration 4 hours carrying the remainder flow of 

200.  Hence, 100 fewer drivers are needed as a consequence of this merge operation.  

As shown in this example, there are two criteria to merge routes: 1. the 

summation of the routes’ duration is less than Hour of Service per day for a driver; 2. the 

routes have at least one common node.  In the post processing procedure, we use two 

methods to record the information: one is “Route,” which contains the duration, flow, and 

nodes for a single route; another is “RouteBin,” which is a set of merged routes served by 

a driver, defined by a total duration, flow, and node set.  Each route inside a RouteBin 

must have at least one common node with all other routes in the RouteBin.  The duration 

of a RouteBin is defined as the summation of the duration of every Route that it contains. 

We maintain two vectors of RouteBins, one is the in-processing vector, 

“ToBePackedRouteBins”; another is the vector containing the finished RouteBins, 

“FinishedRouteBins”. We repeatedly select the longest-duration RouteBin from the 

ToBePackedRouteBins and try to merge it with another shorter RouteBin. If the longest 

duration RouteBin cannot be merged, it is removed from the ToBePackedRouteBins and 

put into the FinishedRouteBins; otherwise, it will be merged with another RouteBin, in 
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which case a new RouteBin is generated, one RouteBin is removed and another is 

modified accordingly. This process repeats until there are no more possible merges 

(ToBePackedRouteBins is empty). Details of the heuristic follow in Table 10. 

 

5.2.2 Computational Experiments and Results 

We have analyzed the following parameter sets: 

 

 Maximum hours of service per day:  7 hours, 8 hours, 9 hours and 10 hours.  

 Fixed daily cost per driver, ranging from $35 to $200 

 Per mile cost for trucks ranging from $1 to $1.40 

 Maximum hours of service ranging from 7 to 10 hours. 

 30 minutes cushion is subtracted from the HOS constraint for meet-and-turn 

drivers 

 Sleeper teams are permitted to cover routes extending up to five days. 

  

Results of the analysis are provided in Table 11, leading to these observations: 

 

 In the event that the fixed daily costs is a linear function of the HOS constraint (i.e., 

daily cost increases as the HOS constraint is extended), changes in the HOS rules 

have very little impact on cost, generally well less than 1% as the HOS constrain 

changes from 7 hours to 10 hours.  Savings do occur when the HOS is extended, 

because more efficient routes can be constructed, but these savings are small. 

 

 Alternately, if the fixed portion of cost is both significant and invariant to HOS, then 

change in HOS can have a large impact in cost.  For instance, with a $200 daily cost 

and a $1/mile charge, costs increase by about 10% when the HOS constraint is 

tightened from 10 hours to 7 hours.   

 

 

These examples provide insights into the impact of HOS and costs, but are not conclusive 

by themselves.  The actual economic impact will vary significantly from company to 

company, depending on the type of freight served, particularly whether it is local or 

longhaul.  The impact also depends on the competitive pay structure of employees, with 

the greatest advantage for extended HOS occurring when drivers demand a large 

guaranteed daily salary, independent of miles driven.   
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Input:  

1. All routes with the duration, its flow quantity and nodes it  passes through; 

2. Maximum duration per day a driver can service. (HOS: Hours of service) 

Procedure: 

1. Select all routes whose duration is less than HOS into ToBePackedRoutes vector. 

2. Sort ToBePackedRoutes vector according to its duration in descending order; 

3. Make each route a RouteBin which only contain one route and its duration is the same as the route 

in it; put all RouteBins into ToBePackedRouteBins (automatically in an descending order of the 

duration of RouteBins). Set FlowSaving = 0. 

4. while (ToBePackedRouteBins is not empty) 

{ 

get the first RouteBin as FirstBin 

for each RouteBin in the sequence  

{ 

 get the RouteBin as CurBin 

if (FirstBin can be merged with CurBin) 

{ 

 NewBin.duration = FirstBin.duration + CurBin.duration; 

 NewBin.nodes = FirstBin.nodes merge with CurBin.nodes; 

 if (FirstBin.flow > CurBin.flow) 

 { 

  NewBin.flow = CurBin.flow; 

FlowSaving += CurBin.flow; 

  FirstBin.flow = FirstBin.flow - CurBin.flow; 

  Remove CurBin from the ToBePackedRouteBins; 

Insert NewBin into the ToBePackedRouteBins according to the descending order of duration; 

} 

else 

{ 

  NewBin.flow = FirstBin.flow; 

FlowSaving += FirstBin.flow; 

  CurBin.flow = CurBin.flow - FirstBin.flow; 

Remove FirstBin from the ToBePackedRouteBins; 

Insert NewBin into the ToBePackedRouteBins according to the descending order of duration; 

} 

   break; 

} 

} 

if(FirstBin cannot be merged with any other RouteBins) 

{ 

Remove FirstBin from ToBePackedRouteBins and insert it into FinishedRouteBins. 

} 

} 

Output: 

1. FinishedRouteBins; 

2. total FlowSaving. 

Table 10.  Steps of heuristic. 
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HOS DP Par Relay M & T Sleeper C1 $/mile C2 $/day CPLEX-Obj Final-Obj 

7 hour D1 P1 7 6.5 70 1 175 $78,500 $78,500

D1 P2 7 6.5 70 1.25 87.5 $78,500 $78,500

D1 P3 7 6.5 70 1.4 35 $78,500 $78,500

D1 P81 7 6.5 70 1 200 $81,367 $81,367

D2 P1 7 6.5 70 1 175 $18,916 $18,907

D2 P2 7 6.5 70 1.25 87.5 $18,916 $18,906

D2 P3 7 6.5 70 1.4 35 $18,916 $18,912

D2 P81 7 6.5 70 1 200 $19,611 $19,611

$0 $0

8 hour D1 P1 8 7.5 80 1 200 $78,449 $78,449

D1 P2 8 7.5 80 1.25 100 $78,449 $78,439

D1 P3 8 7.5 80 1.4 40 $78,449 $78,433

D2 P1 8 7.5 80 1 200 $18,908 $18,790

D2 P2 8 7.5 80 1.25 100 $18,908 $18,839

D2 P3 8 7.5 80 1.4 40 $18,908 $18,880

$0 $0

9 hour D1 P1 9 8.5 80 1 225 $78,359 $78,359

D1 P2 9 8.5 80 1.25 112.5 $78,359 $78,356

D1 P3 9 8.5 80 1.4 45 $78,359 $78,345

D1 P81 9 8.5 80 1 200 $76,179 $76,168

D2 P1 9 8.5 80 1 225 $18,894 $18,793

D2 P2 9 8.5 80 1.25 112.5 $18,894 $18,825

D2 P3 9 8.5 80 1.4 45 $18,894 $18,861

D2 P81 9 8.5 80 1 200 $18,361 $18,275

$0 $0

10 hour D1 P1 10 9.5 80 1 250 $78,317 $78,317

D1 P2 10 9.5 80 1.25 125 $78,317 $78,313

D1 P3 10 9.5 80 1.4 50 $78,317 $78,301

D1 P81 10 9.5 80 1 200 $74,363 $74,360

D2 P1 10 9.5 80 1 250 $18,888 $18,717

D2 P2 10 9.5 80 1.25 125 $18,888 $18,804

D2 P3 10 9.5 80 1.4 50 $18,888 $18,853

D2 P81 10 9.5 80 1 200 $17,923 $17,788

Maximum Tour Length Cost= ('000s $)

 

 

Table 11. Total costs for operating truck tours. 
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6. CONCLUSIONS 

Driving HOS has been the topic of a plethora of research aimed at determining 

safer ways of operating trucks while optimizing costs for trucking organizations. Studies 

have identified driver fatigue, lengthy driving hours, sleep debt and poor driving 

performance as some of the factors that have affected truck safety.  

In this research, methods were developed for analysis of probability distributions 

were created to determine the effect of HOS rules on driving hours. By plotting 

exponential and normal distributions for driving times and applying bounds on driving 

hours, we found that reductions of 12 – 15 % and 2 – 5 % on crash rates were possible, 

respectively. An accident rate function was developed using data from LTL trucking 

companies and this accident rate was used in conjunction with the probability 

distributions to determine the reduction in crashes.  Driving hours from the FARS/TIFA 

data sets were used to determine the reduction in crashes. By applying constraints on the 

driving hours, an upper bound on reduction of fatalities by about 3 – 5 % was possible 

when compared to the current situation. This also meant that drivers could only drive for 

a maximum of 8 or 9 hours, two hours lesser than the current HOS guidelines. The 3 – 5 

% reduction in crashes is possible based on perfect enforcement of HOS rules, and an 

assumption of no transference of fatalities to shorter trips.   From an economic 

perspective, very stringer HOS rules, limiting drivers to perhaps six hours per day, would 

reduce the cost of crashes by no more than about $1.2 billion per year.  This number is 

consistent with prior FMCSA, which estimated the annual cost of fatigue related crashes 

to be $2.3 billion per year. 

Using the H(x) probability distribution, we further determined that the average 

number of hours before a truck crash is approximately three hours, well below current 

HOS constraints.  This is because the vast majority of driving occurs before reaching (or 

approaching) the constraint.  
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7. IMPLEMENTATION 

Based on our research, we do not see justification for a change in current HOS 

regulations.  While some benefit may be gained through more stringent regulations, or 

through more stringent enforcement, the monetized benefit appears to be small. 

The tools that we developed can be applied in the future to evaluate the 

implications for changes in HOS constraints, either using theoretical or empirical 

distributions as a basis.  This will enable calculating an upper bound on the monetized 

benefit due to any reduction in the allowed hours of service.  Thus, we have provided a 

methodology to inform future discussion on hours of service policy. 
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