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Abstract 

The problem we study in this report focuses on routing in real time a fleet of capacitated vehicles to 

satisfy requests submitted by a set of customers while assigning the service cost fairly among the 

requested customers. During each operation, only a subset of the customers request service with 

some of them known at the beginning of the operation and the rest arriving dynamically during the 

day. The exact time points of these dynamic requests are unknown at the beginning of the day.  

 

We propose a Hybrid Proportional Online Cost Sharing (HPOCS) mechanism to tackle the cost 

sharing problem and analyze its performance using simulation instances. Although HPOCS does 

satisfy the desirable properties, namely online fairness, budget balance, immediate response, 

individual rationality and ex-post incentive compatibility, it has certain drawbacks when the number 

of dynamic customers is small and does not give sufficient incentive for customers to request early. 

Therefore, we make two extensions to HPOCS: 1) we extend it to introduce the idea of discounts to 

encourage customers to submit their request in advance to better facilitate efficient vehicle routing; 

2) we extend it to incorporate a dynamic vehicle routing framework that periodically re-optimizes the 

current vehicle routes. Both extensions include performance analysis and the tradeoff between the 

performance and the loss of certain desirable properties. 

 

In general, our proposed mechanism, along with its extensions can generate efficient cost sharing 

solutions that satisfy desirable properties, reduce overall operating cost (mainly vehicle miles 

travelled) and provide sufficient incentives to customers to request service early in support of 

horizontal cooperation. 
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1 Introduction

1.1 Background

Many industries deal with the task of transporting goods or delivering services in a timely, reliable,

and cost-e�ective manner, including manufacturing, food, e-commerce, public transit, etc. Logistics

has become the backbone that enables the productivity and mobility of these industries [38]. Indeed,

growth in the transportation sector recently has been on par with the growth in the Gross Domestic

Product (GDP) in the United States. According to statistics from the 2013 National Transportation

Statistics report [39], expenditure on transportation activities amounted to 1,426 billion dollars in

2012, representing nearly 9 percent of the total US GDP. However, the logistics sector as it is

today functions in a way that is economically, environmentally, and socially unsustainable [37]. In

order to compete e�ectively against their peers, companies have relied on internal optimization to

reduce operating costs, but have overlooked opportunities for external cooperation. As a result, the

logistics sector has become highly fragmented, with each supplier developing and operating its own

distribution network that sees low capacity usage, high energy consumption, and high greenhouse

gas emission across the entire system [37]. The increasing amount of freight transportation also

aggravates its impact on tra�c congestion, and poses threats on the safety and e�ciency of passenger

tra�c and other social functions that share the same road infrastructure. This phenomenon becomes

more signi�cant in densely populated urban areas, like Los Angeles.

As opportunities for internal optimization are becoming fully exploited, �erce competition

drives companies to focus on reducing costs of non-value adding activities [50], especially logistic

activities. The concept of horizontal cooperation sees both theoretical development in the literature

[8] and successful application in industry [20]. It formally refers to the cooperation between busines-

ses operating at the same level(s) in the market. When applying to the logistics sector, horizontal

cooperation could refer to the pooling of freight transportation networks and sharing of customers.

External cooperation allows consolidation of vehicle capacity, delivery routes, and shipment orders

among di�erent suppliers or logistic service providers, thus creating a uni�ed logistics network that

sees increased capacity usage, reduced energy usage, pollution, and operating costs. For example,

a case study of the Swedish forest industry has shown that potential savings of cooperation among

several forest companies operating in the same region are large, often in the range of 5 to 15 percent

[20]. A shared transportation network also reduces the total truck miles, which in turn reduces the

usage of the road infrastructure that it shares with passenger tra�c. Similarly, reduced freight traf-
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�c helps alleviate tra�c congestion and the safety threat it poses on passenger tra�c. Horizontal

cooperation would not only generate savings for companies already in business, but also lower the

potential barrier for new (and possibly small) businesses to enter the market.

Besides, operations in any real world transportation network contain a fairly high level of

uncertainties including variable waiting and travel times due to tra�c congestion, arrival of new

service requests, cancellation of existing requests, unknown demand sizes, etc. Under changing and

gradually revealed information, the problem of designing real-time collection and/or delivery routes

from one or several depots to a set of geographically dispersed customers falls in the scope of the

Dynamic Vehicle Routing Problem (DVRP). The DVRP derives from the Vehicle Routing Problem

(VRP) when some element of the problem becomes non-deterministic. Given the advances in

information technologies, the transportation industry, like many others, has undergone signi�cant

changes in the last decade. In particular, the increasing performance and the lowering cost of

the computational devices, vehicle positioning systems, real-time information and communication

networks have made real-time dynamic routing of the �eet a very real possibility.

One crucial component of a shared transportation system is the method used to allocate

costs and/or savings to each participant in the system. A cost-sharing mechanism serves as the

basis for any economic analysis of horizontal cooperation. However, the cost allocation problem

in the vehicle routing context remains rarely studied in the literature, especially for the dynamic

case discussed above. For a �static� cost sharing problem in which the set of players and the cost

function are both known and deterministic, Moulin mechanisms [40] and acyclic mechanisms [35]

are among the most studied families of cost-sharing mechanisms. In the context of vehicle routing

problems, a �static� cost sharing problem means that the set of customers to be served is known

and the optimal total cost can be calculated. Unfortunately, neither of these two assumptions holds

in the dynamic vehicle routing problem we study.

Little work has been conducted on designing online cost-sharing mechanisms that work when

the set of players are gradually revealed, instead of known beforehand. Even less work on cost

allocation has been done in the vehicle routing context. The majority of this subset of work

has assumed a static operating environment, in which the tasks of designing vehicle routes and

allocating costs can be tackled separately and independently. This separation does not fully justify

challenges faced by logistic service providers under today's lean manufacturing and JIT delivery

constraints which partially motivates the problem we study. Thus, there is a need for a uni�ed

solution approach that combines dynamic vehicle routing with online cost allocation for dynamic
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cost sharing transportation systems.

1.2 Problem Description

In this research, we aim to model and solve a cost allocation problem in a real-time cost sharing

transportation system, which results from horizontal cooperation among multiple suppliers. The

underlying vehicle routing problem represents the daily operation of many logistic service providers,

especially those who consolidate shipments from multiple suppliers. Suppose a trucking company

operates a �eet of homogeneous vehicles to collect shipments from a known set of suppliers and

transport the shipments back to a central depot. These suppliers can be seen as registered custo-

mers of the company. Their locations and service time windows are known and �xed. However,

each customer may not request service on each day. How often each customer requests service

is determined by his/her own operation schedules, and can be seen as a given parameter in our

problem. If a customer requests service, it can either do so at the beginning of the day (before the

vehicles leave the depot), or at any time during the day. Customers who have requested service at

the beginning of the day are called advance customers and must be serviced. All other customers,

called dynamic customers, may potentially request service, but the company does not know whet-

her and when they will do so. In our previous research, we have modeled and solved this dynamic

vehicle routing problem using a novel look-ahead dynamic vehicle routing framework [13].

Building upon our previous work, this research focuses on how to allocate the cost to each

new customer at the time of request without knowing the future customer requests and the total

cost of the service. It is important to point out that the problem of dynamically routing vehicles

and the problem of real-time cost allocation are highly interdependent and must be considered

simultaneously. In particular, the vehicle routes depend on whether the new customers accept or

decline the quote for service, and the quote (cost share) in turn depends on how vehicle routes are

designed and what is the expected total cost of such routes.

1.3 Motivation

In a dynamic operation environment, critical problem information is revealed over time, meaning

that the complete realization of the problem is only known at the end of the planning horizon. The

optimal total cost of service can only be approximated at any time during the planning horizon

due to incomplete information. Thus, the vehicle routing problem and the cost allocation problem

become highly interdependent. The routing schedule depends on whether new customers can be
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accommodated due to feasibility constraints, and whether the customers accept or decline the

service based on the price quotes and their willingness-to-pay values. Reversely, the price quote

o�ered to each dynamic customer must consider the expected total operating cost, which in turn

depends on the routing schedule. The price quote should also consider possible future customer

requests and the ability of the current schedule to accommodate them.

One of the most heavily studied and widely used approaches to tackle the cost-sharing pro-

blem is Cooperative Game Theory (CGT). CGT provides a general framework for studying the

allocation of costs and/or savings to a group of participants who require a common resource to

accomplish tasks. Traditional CGT-based solution concepts require that the grand coalition (the

entire set of players) is known in advance and that the optimal cost function is well-de�ned on each

coalition/subset of players. Neither of these two assumptions hold in the dynamic environment.

The majority of work in the current literature have assumed a static vehicle routing environment,

and have treated the cost allocation problem separately from the vehicle routing problem. For

example, Lozano et al. [34] studied the problem of �nding the optimal way to form coalitions and

to share the total cost among a set of companies who are interested in consolidating their transpor-

tation needs. In particular, a Mixed-Integer Linear Program (MILP) was formulated to estimate

the optimal total cost of serving a set of companies. The problem was �rst solved considering

the transportation demands of each company independently. A second problem was formulated by

merging the transportation demands of every coalition of two of the companies. Then the model

considered the coalitions of three companies, and so on, until reaching the grand coalition. Given

the estimated total cost of serving each subset/coalition of the companies, several cost allocation

methods based on CGT concepts were then implemented and compared. Similar two-stage appro-

aches that decouple the cost allocation problem from the vehicle routing problem are common in

the literature.

It can be easily shown that typical cost-sharing mechanisms such as proportional cost sharing

and marginal cost sharing fail to possess desired properties when adapted naively to the dynamic

setting. Indeed, the problem of allocating costs in a real-time cost sharing transportation system

is highly nontrivial and is ranked among the top impediments for successful horizontal cooperation

[9]. The research on designing online and dynamic cost-sharing mechanisms for transportation

systems have been very limited. A major line of research considering the competitive pricing

problem in a dynamic transportation system is due to Figliozzi, Mahmassani, and Jaillet [17, 19, 18].

The problem is framed as a sequential auction marketplace where new customer orders arrive
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stochastically and the logistics service provider must o�er a competitive price bid to win the order

from its competitors. New orders arrive at the same time when existing orders are being served.

Each order served generates a reward. The objective is to maximize the pro�t as measured by the

total rewards collected minus the total transportation cost. The authors developed a stochastic

dynamic programming-based formulation that solves for the optimal price whenever a new order

arrives.

The work by Furuhata et al. [21] is concerned with a demand-responsive transport (DRT)

system where new service requests are submitted sequentially over time, but all of them are still

submitted before the vehicles start service. The authors developed a mathematically precise and

concrete cost-sharing mechanism, namely the Proportional Online Cost Sharing (POCS), that hand-

les sequential customer submissions. POCS draws upon features of proportional and marginal cost

sharing and has been proved to satisfy a list of desirable properties, including online fairness, imme-

diate response, individual rationality, budget balance, and ex-post incentive compatibility. POCS

is a �exible framework in the sense that no speci�c cost function is de�ned. All of the desired

properties hold as long as the cost function of choice satis�es the following two properties: 1) total

cost is non-decreasing over time (over order submissions); 2) total cost is independent of the submit

order of customers who have already submitted their requests.

Although POCS represents a step forward in the research on cost-sharing mechanism design

because it relaxes the constraint that the entire set of players must be known at once, limitations

still remain. POCS assumes that all customers submit their service requests before vehicle opera-

tions start. In the dynamic vehicle routing environment we study, customer request submissions

and vehicle operations take place simultaneously. The second assumption that the total cost is

independent of the submit order of customers does not hold trivially.

In this research, we focus on studying a category of the dynamic vehicle routing problem where

only part of the customers are known in advance, and the rest become known in real time. Based

on a dynamic routing framework, we develop an online cost-sharing mechanism that is capable of

dynamically allocating cost to each customer as it is realized. Our approach combines two cost-

sharing mechanisms originally designed for the static and the online environment, respectively. With

specially designed cost functions and routing schedules, the hybrid mechanism is shown to possess

all of the �ve properties originally proposed in [21], namely online fairness, immediate response,

individual rationality, budget balance, and ex-post incentive compatibility. We extend our work by

proposing several variations of the baseline mechanism which can be formulated by relaxing some
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of the model assumptions. We compare and contrast di�erent variations of the mechanism through

extensive numerical simulations.

1.4 Structure of the Report

The rest of the report is organized as follows. In Section 2, a literature review of the relevant

problems is presented. Section 3 formally de�nes the problem and describes the dynamic routing

framework. In Section 4, we introduce the Hybrid Proportional Online Cost Sharing (HPOCS)

mechanism and illustrate it with two examples. We prove that HPOCS satis�es all of the desira-

ble properties we propose. We then analyze simulation results under various demand conditions.

Section 5 and Section 6 present two extensions of the HPOCS mechanism that improve the perfor-

mance of the baseline model. We study the two extension mechanisms both theoretically and via

experiments. Section 7 describes how to implement the proposed mechanism and we conclude in

Section 8.
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2 Literature Review

In this section, we review the literature relevant to our research. We �rst focus on previous work

on cost-sharing mechanism design, then review studies on cost allocation problems in the domain

of transportation.

2.1 Cost-sharing Mechanism Design

A cost allocation problem speci�es a set of players who request service that require a common and

limited resource. Each player has a private, non-negative valuation for the service. This valuation

is sometimes referred to as the willingness-to-pay value or the bid of the player. A cost function

is de�ned on all subsets of players. The value of the function usually denotes the minimum total

cost of serving the corresponding subset of players. The objective is to determine the cost allocated

(or the price charged) to each player and the subset of players who are willing to participate in

the contention given the prices. The �nal solution needs to not only specify the membership of

the contention, but also provide exact ways to facilitate such a contention in the context of the

problem [35]. For example, to solve the cost allocation problem corresponding to a vehicle routing

problem, the �nal solution needs to specify the group of customers to participate in the cooperation,

a routing schedule that accommodates the same group of customers, and the exact cost share for

each customer in the group. Depending on the context of the problem, a �binary demand game�

refers to a situation where each player either receives service fully or not receive any service at all.

In general demand games (sometimes referred to as �multi-parameter demand games�), each player

may receive one of several levels of service or receive no service at all. Both binary and general

demand games are common in vehicle routing problems. For example, if the operation is concerned

with the shipments of goods or supplies, partial shipments or re�lls may be acceptable. In other

situations, including the case of demand-responsive transport (DRT) systems, the entire demand of

one customer must be fully ful�lled or not ful�lled at all. Popular classes of cost sharing problems

include facility location problems [46, 30, 14], set covering problems [14, 27], and network planning

problems (including the Steiner tree (ST) problem) [25, 46, 26].

One of the most heavily studied approaches to tackle the cost allocation problem is Coopera-

tive Game Theory (CGT). CGT provides a general framework for studying the allocation of costs

and/or savings to a group of participants who require a common resource to accomplish tasks. This

approach focuses on what a group can achieve and whether it is possible to coordinate the group to
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achieve the goal by properly allocating costs. Many solution concepts have been proposed within

the CGT framework. For example, the core [22] of a problem consists of allocations that recover

the cost incurred by all of the players and ensures that no individual or a group of players can

bene�t by defecting. Whether the core of a problem is empty or not is often used as a proxy for

the possibility of cooperation. Other CGT related solution concepts include the Shapley value [49],

the nucleolus [48], and the τ−value methods [53].

Another approach for solving the cost allocation problem is to design a cost-sharing mecha-

nism, which is the approach we adopt in this report. Instead of investigating what can be achieved

by a cooperation, cost-sharing mechanism design focuses on �nding a good way to allocate the cost

to all potential players and to incentivize all players to participate in the cooperation. A cost-

sharing mechanism needs to de�ne an algorithm to calculate the shared cost for each player, and a

process to determine the subset of players who end up participating in the cooperation. During this

process, the algorithm compares the shared cost of each player with its willingness-to-pay value;

only the players whose quotes are no larger than their willingness-to-pay values accept the quotes

and receive service.

Researchers have focused on studying three desired properties of cost-sharing mechanisms,

namely truthfulness (strategyproofness), budget balance, and economic e�ciency [40, 35]. Trut-

hfulness (strategyproofness) requires that no player can strictly increase its utility by misreporting

its valuation for the service. Equivalently speaking, it is optimal for individual players or groups

of players to make their decisions based on their true valuations. The budget balance property

requires that the sum of the prices charged to each participant equals to the total operating cost of

facilitating the cooperation. Economically e�cient mechanisms are those maximizing the welfare

of all players in the problem, not only those who end up participating in the contention [35]. Un-

fortunately, no mechanism could simultaneously satisfy all of the above mentioned constraints, as

has been proved by Green et al. and Roberts [24, 44]. Thus researchers have focused on developing

cost-sharing techniques that relax at least one of the constraints. Approximate measures have also

been proposed on budget balance and economic e�ciency [47].

The only known general technique for designing truthful and approximately budget-balanced

cost-sharing mechanisms is due to Moulin [40, 41]. Roughly, a Moulin mechanism simulates an

ascending iterative auction, in which players receive non-descending prices in each iteration and

only the players who accept the price remain in the game. The algorithm halts when all remaining

players accept their prices o�ered in the current iteration. A function regarded as the cost-sharing
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method calculates the cost share for each player given the entire set of players remaining in the

current iteration. Truthfulness is guaranteed by requiring that the underlying cost-sharing method

(function) satis�es the cross-monotonic property. Budget-balance is achieved only approximately

by o�ering costs in each iteration that would in total approximately cover the cost incurred if

the current iteration were to be the last one. Despite the fact that designing such mechanisms is

highly non-trivial, Moulin mechanisms have gained signi�cant attention and seen applications in a

wide range of cost-sharing problems including scheduling [5, 4], network design [2, 25, 26], facility

location [14, 28, 30, 43], and logistics [32]. However, recent work in the literature have criticized

their poor performance in terms of budget-balance and economic e�ciency [35, 27, 45].

New families of cost-sharing mechanisms have been proposed, among which is the acyclic

mechanism [35]. Di�erent from Moulin mechanism, acyclic mechanism introduces an ordering of

players. In each iteration of the algorithm, prices are o�ered to players in the prede�ned sequence

rather than simultaneously. This design relaxes the cross-monotonicity requirement of the un-

derlying cost-sharing method while still maintaining the truthfulness property of the mechanism.

Acyclic mechanisms have seen applications mainly in scheduling [3, 6]

All of the approaches discussed above have been proposed for static cost allocation problems,

in which all the problem information is known and deterministic. The entire set of players is known

and �xed, and the cost function de�ned on any subsets of the players can be calculated determi-

nistically. In the cost allocation problem associated with the dynamic vehicle routing problem,

critical problem information is revealed dynamically over time. For example, in the vehicle routing

problem with dynamic customers, only part of the customers is known at the beginning of the

planning horizon, and the rest of the customers arrive dynamically over time. In such cases, the

entire set of customers that become realized can only be known by the end of the planning horizon.

At any point during the horizon, the total cost of serving all customers can only be approximated.

Generally speaking, the problem of allocating cost to a set of players under dynamically revealed in-

formation is called an online cost allocation problem, which can be solved by an online cost-sharing

mechanism. An online mechanism adapts to newly revealed problem information and iteratively

resolves the cost allocation problem as necessary.

An online environment brings new challenges to the design of cost-sharing mechanisms, and

additional properties that are important in an online environment have been introduced [21]. In

particular, the individual rationality property states that the shared cost value for any customer

never exceeds its willingness-to-pay level once the customer has been accepted into the cooperation.
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The online fairness property requires that players who join the cooperation late should never receive

a lower shared cost than those that join early. The immediate response property requires that when a

new player becomes realized, it should be provided with an initial quote for the service immediately,

so that the player could make the decision on whether to participate in the cooperation or not. The

quotes have to be o�ered without knowledge on future player realizations and the �nal total cost of

service. Besides, some of the properties originally de�ned for static cost allocation problems have

been extended to the online environment. For example, the ex-post incentive compatibility property

builds on the truthfulness property for static problems, and states that the optimal strategy for

each player is to make its request known at the earliest time possible.

2.2 Cost Allocation in Transportation

As transportation costs continue to increase due to increased competition, lower inventory levels,

and higher service level requirement by customers, horizontal collaboration in the logistics sector

has received increasing attention from both the research community and players in industry. In the

context of supply chain management and transportation, horizontal cooperation refers to the pooling

of transportation capacity and customer demands among businesses operating at the same level(s) in

the market [8]. A cost sharing transportation system is formed as a result. One crucial component

of such a system is the allocation of total operating costs and/or savings to each participant in

the system. A cost-sharing mechanism serves as the basis for any economic analysis of horizontal

cooperation.

The work by Anderson and Claus represents one of the earliest attempts to study the cost

allocation problem in transportation collaboration [1]. The authors studied and compared multiple

basic cost allocation methods as applied to a minimum cost network problem. In particular, the

authors showed that the average cost sharing, unit (per mileage) cost sharing, and marginal cost

sharing all su�er from various ine�ciencies when applied naively. For example, average cost sharing

cannot guarantee that each rational player will participate in the cooperation, while unit mileage

pricing cannot prevent subgroups of users to form coalitions outside the grand coalition.

CGT appears to be one of the popular approaches for solving cost allocation problems in

transportation research. Many CGT solution concepts have been studied, including the Shapley

value [49, 29], the core and related concepts [23, 15, 16], the nucleolus [48, 33], and the τ−value

methods [53].

Other streams of research exist that study the cost allocation problem in transportation
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outside the scope of CGT. Özener et al. studied the cost allocation problem in a vendor managed

inventory (VMI) system [42]. In a VMI model, the supplier is responsible to manage the inventory

level of its customers and decides when and how much to replenish each customer. The research

focuses on how to calculate the cost-to-serve for each customer, which is useful for both marketing

and distribution planning needs.

Lewczuk and Wasiak studied the problem of how to the allocate the transportation cost to

clients served by a material delivery system [31]. For practical reasons, a transparent and easy-to-

understand cost allocation scheme is desired. The proposed method is based on determining the

replacement cost of service of each client. Two major drivers of the replacement cost include vehicle

usage as measured by ether distance or time.

The POCS mechanism introduced by Furuhata et al. [21] solves the online cost allocation

problem associated with a demand-responsive transport (DRT) system, where new service requests

are submitted sequentially over time, rather than all known at the same time. The POCS mechanism

adapts proportional and marginal cost sharing methods into the online setting. In particular,

customers that have consecutive request orders can choose to form coalitions. The shared costs

among customers within the same coalition is proportional to their demand, while the sum of the

shared costs of all customers in a coalition equals to the sum of their marginal costs. POCS is a

�exible framework in the sense that no speci�c cost function is de�ned. All of the desired properties

hold as long as the cost function of choice satis�es the following two properties: 1) total cost is

non-decreasing over time (over order submissions); 2) total cost is independent of the submit order

of customers who have already submitted their requests.

The POCS mechanism relaxes one of the constraints of static cost allocation problems, namely

that the entire set of players must be known at once. However, one limitation still remains. POCS

assumes that all customers submit their service requests before vehicle operations start, so that the

routing schedule can be recalculated each time a new customer submits its request. In the dynamic

vehicle routing environment we study, customer request submissions and vehicle operations take

place simultaneously. The portion of the routing schedule that has been implemented cannot

be reversed. Thus the vehicle routing problem and the cost allocation problem become highly

interdependent. The assumption that the total cost is independent of the submit order of customers

does not hold trivially. In this report, we extend beyond this limitation by developing novel ways

to construct routing solutions, calculate total costs, and dynamically route the �eet.
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3 A Motivating Example

One of the central themes of this report is the ability to reduce the costs that participants must

pay by leveraging an economy of scale. Speci�cally, by planning a service vehicle's route in an

e�cient way, it is possible to provide service jointly to a large set of customers with a lower cost

than providing service to those customers individually. The complicating factor, as we have already

mentioned, is the uncertainty in the dynamic arrivals of future customers. We will address this

this using computational simulations in subsequent sections, but for now, we give a simple �back of

the envelope� style calculation to emphasize the key concepts that arise in this area. We describe

a simple model using the continuous approximation paradigm [10], which allows one to quantify

system performance metrics with minimal data and problem assumptions. These methods rely on

concise summaries of information and simpli�ed analytical forms, including closed form expressions.

In routing problems, such methods have been introduced to approximate the length of a vehicle

route using simple analytical forms based on the area of the service region and the spatial density

of average demand realizations, and we shall do so presently.

Consider a set of N customers that are uniformly distributed in a geographic region with

area A, together with a vehicle located at a central depot. We seek the shortest vehicle route that

originates at the vehicle, visits all of the N customers, and returns to the depot. A well-known

result due to [12] establishes that the length L of the tour is approximately

L ≈ κ
√
AN

for large N , where κ is a constant that depends on the connectivity of the road network; for typical

urban settings one typically sees κ ≈ 1.5; see for example [36]. If we assume that the cost of

providing service is equal to the length of the tour (disregarding linear proportionalities for the

sake of notation), we see that the average cost per customer is equal to

L

N
≈ κ
√
A · 1√

N
(1)

which is decreasing and approaches zero as N → ∞. We see that, for example, if the number of

customers doubles, then the average cost per customer reduces by a factor of 1/
√

2 ≈ 0.71.

The above analysis does not take into account the vehicle capacities; suppose now that the

vehicle can visit a limited amount of customers, say C, before it must return to the central depot.
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When this is the case, [11] shows that the length of the optimal tour is approximately

L ≈ 2r
N
C

+ κ
√
AN ,

where r represents the average distance between a customer and the central depot. We now see

that the average cost per customer is

L

N
≈ 2r

C
+ κ
√
A · 1√

N
(2)

which is decreasing and approaches 2r/C as N →∞. We therefore see that vehicle capacities have

a signi�cant impact on the extent to which cost-sharing can provide a bene�t when we compare

the above result to the uncapacitated case.

3.1 The impact of dynamic customers

The key problem component that motivates this report is the issue of demand that arrives dyna-

mically over a time horizon. This means that the vehicle's route may update over time, as will the

costs per customer. In addition there is also the concern of feasibility constraints, since a customer

may not be able to �t into the vehicle's current tour.

Our recent paper [7] presents a formula, similar to (1) and (2), for addressing the above issues.

At any time t, let C(t) denote the set of customers who have requested service by time t. Of course,

by the preceding analysis, we see that the length of a tour that visits all of the customers will be

approximately κ
√
A|C(t)|. If this tour is infeasibly long, then the vehicle should instead seek the

path that visits as many customers as possible without violating the length threshold. We show in

[7] that if the vehicle seeks to visit as many customers as possible with a tour of length at most `,

then the number of customers covered is approximately

`

κ
√
A
·
√
C(t)

as t→∞. Moreover, the cost per customer is

`

κ
√
A
· 1√

C(t)
,

which is again decreasing and approaches zero as C(t) → ∞. Thus, we see that, while a vehicle
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capacity constraint (the parameter C in (2)) imposes a positive lower bound on the cost per custo-

mer, a vehicle distance threshold does not, although this comes at a separate cost, namely that a

set of customers is neglected.
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4 The Online Cost Allocation Problem

The �rst step to tackle the cost allocation problem in a real-time cost sharing transportation system

is to model the underlying dynamic vehicle routing problem. The second step in building a real-

time cost sharing transportation system is to study how the total operating cost is allocated to

each participant in the cooperation. To study a static cost allocation problem, one needs to de�ne

the set of players, the total cost function, and the calculation of the shared costs. In the online

cost allocation problem we study, the key challenge lies in how to incorporate the time dimension

into a cost-sharing mechanism. In particular, we need to speci�cally design how the set of players,

the total cost function, and the calculation of shared costs evolve over time, as more problem

information becomes available.

In this section, we �rst formulate the vehicle routing problem with dynamic customer requests

and introduce the notation. We then state the online cost allocation problem in the DVRP and

discuss a list of desirable properties for online cost-sharing mechanisms. We also use examples to

illustrate how typical cost-sharing methods tend to fail in the online environment.

4.1 Dynamic Vehicle Routing Problem De�nition

Suppose that the operation consists of routing a �eet of capacitated vehicles to collect shipments

from a set of customers and transport them to a central depot. The length of the planning horizon is

Tmax and can be discretized into time steps of unit length. There are N potential customers. Each

customer has a �xed location, a known demand size, a known service time window and a service

time of �xed length. The service time window speci�es the earliest and latest times when service can

be started at the corresponding customer and cannot be violated. Each customer requests service

at most once during the planning horizon. The uncertainty lies in the fact that not all customers

would request service. Some customers request service in advance (prior to the beginning of the

planning horizon), and are called advance customers. The rest of the customers are called dynamic

customers, who may or may not request service during the planning horizon. We assume that the

probability a dynamic customer requests service can be estimated from historical information. The

time when a dynamic customer requests service is called its request time. It is also the time when

it becomes certain that the customer needs to be served. The objective is to minimize the total

travel distance of all vehicles.

The following notations are used for model parameters and decision variables. Generally, i

15



and j are used to index customers, k to index vehicles/routes, and t to index time.

N total number of customers

AC set of advance customers

DC set of dynamic customers

di demand of customer i

si service time of customer i

ei the earliest time that service can begin at customer i

li the latest time that service can begin at customer i

vi request deadline of customer i

ui actual request time of customer i

ti,j minimum travel time between location i and j

K total number of vehicles

C capacity of each vehicle

rk,t partial route for vehicle k at time t

ni,k,t the i-th customer scheduled on vehicle k at time t

ai time of arrival at customer i

bi time of departure from customer i

n0,k,t the location from where vehicle k would start its new route if diverted at time t

a0,k,t the time when vehicle k would become available to start its new route if diverted at time t

It is assumed that all vehicles travel at unit speed. Thus, the travel time is equatable with

travel distance between corresponding locations. It is also assumed that no preemption in vehicle

routes is allowed, meaning that a vehicle cannot be diverted while en route to its current scheduled

customer. The vehicle can only be diverted after it reaches and �nishes service at its current

customer. The request time ui of dynamic customer i represents the time when it becomes certain

that customer i needs to be serviced. ui is modeled as a random variable taking values on the interval

[0, vi]. The request deadline vi denotes the latest time that the customer must make the decision

on whether it needs to be serviced or not. Generally speaking it is reasonable to set 0 < vi ≤ ei. In

addition, we assume that real-time two-way communication capability is established between the

central decision making unit and each vehicle. At any point in time, the decision maker is aware

of the complete �eet status including current locations, directions, and remaining capacities. This

enables dynamic real-time routing of the vehicles.
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There are two issues that are uncertain about dynamic customer requests. First, whether

the customer requests service at all during the planning horizon. Second, when will the customer

request service given that it will do so. From a historical perspective, the probability that a

customer requests service on any day can be estimated by the proportion of days that the customer

has requested service among all the days of operation. We use qi to denote this probability. For

the second issue, a distribution on request time can be estimated by the actual request times of

the customer on the days when it actually requested service. By de�nition, this distribution is

conditional on the fact that the customer requests service. Let fi(t) be the conditional probability

density function of request time ui. Recall that ui is de�ned on [0, ei], thus we have
∫ ei

0
fi(t)dt =

1,∀i. Given this setup, the probability that a dynamic customer i requests service during the time

interval [t1, t2], 0 ≤ t1 ≤ t2 ≤ Tmax on any day can be calculated as

P (i requests during [t1, t2]) = P (i requests, i requests during [t1, t2]) (3)

= P (i requests during [t1, t2] | i requests) ∗ P (i requests) (4)

=

∫ t2

t1

fi(t)dt ∗ qi (5)

In a dynamic vehicle routing context, problem information are revealed gradually over time. In

other words, the full set of customers cannot be know until the end of the planning horizon. At any

time t in the planning horizon, only the set of advance customers and a subset of dynamic customers

who have already requested service are known. A problem consisting of only partial information is

called a partial vehicle routing problem Pt. The solution to a partial problem at time t is called

a partial solution St, which consists of a collection of partial routing schedules, St = {rk,t} where

k = 1, . . . ,K. Besides, the sequence of customers alone does not uniquely determine an operational

schedule. We also need to specify the exact arrival and departure times at each location along the

route. Let ai and bi denote the arrival and departure times at customer i respectively. A partial

routing schedule for vehicle k speci�es the sequence of customers scheduled for the vehicle, together

with the arrival and departure times at each customer. rk,t = {n1,k,t, . . . , n|rk,t|,k,t, n|rk,t|+1,k,t}

where |rk,t| denotes the total number of customers scheduled on route k at time t. n|rk,t|+1,k,t =

0,∀k, t is a dummy place holder variable representing the constraint that all vehicles must return

to the depot by the end of the planning horizon.

n0,k,t denotes the location from where vehicle k would start its new route if it was diverted at

time t. It can be loosely interpreted as the �available position� of vehicle k. At any time t, vehicle
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k must be in exactly one of the following two states. State I: serving or idling at some customer i.

State II: en route to some customer i. In either case, if a new routing schedule were to be constructed

at the moment and the vehicle is diverted, the new route must start at location i (no preemption

assumption). Hence in either case, we have n0,k,t = i. In fact, during the implementation of vehicle

routes, the n0,k,t variable should be updated once the vehicle starts to travel to its next customer

based on the no preemption rule.

Similarly, a0,k,t denotes the time when vehicle k would become available to start its new route

if it were to be diverted at time t. It can be loosely interpreted as the �available time� of vehicle k.

At any time t, if vehicle k is currently servicing customer i, then a0,k,t = ai + si; if the vehicle is

idle, then a0,k,t = t; if the vehicle is traveling to service customer i, then a0,k,t = ai + si.

4.2 Cost Allocation Problem Statement

4.2.1 Problem De�nition

In the dynamic vehicle routing problem we study, the uncertainty lies in the fact that part of the

customers are con�rmed at the beginning of the planning horizon while the rest are revealed over

time when the vehicles are in operation. The entire set of customers who may potentially request

service is known and �xed. Among these customers, some know for sure that they require service

and have con�rmed so at the beginning of the planning horizon, before the routing schedules are

calculated. These customers are called advance customers. The rest of the customers are called

dynamic customers, who may or may not request service during the planning horizon. The time

when a dynamic customer becomes certain that it requires service is called its truthful request time.

We assume that the service provider enforces a deadline for each customer to request service. The

deadline for each customer may be di�erent, and is always no later than the beginning of the service

time window of the customer. The truthful request time of each customer is a random variable

taking values on the interval ranging from the beginning of the planning horizon to its request

deadline. We assume that the passenger cannot request service prior to its truthful request time,

but may choose to delay its request in anticipation to take advantage of a possibly lower shared

cost. In such cases, we distinguish its truthful request time, which is its earliest possible request

time, from its actual, perhaps delayed, request time. Similarly, we assume that the actual request

time of each dynamic customer cannot be later than its request deadline. That is to say, the request

deadline of each dynamic customer aligns with the latest time when we could know with certainty

whether the customer requires service or not. It is assumed that no two dynamic customers can
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have the same request time, either the truthful request time or actual request time. Once a dynamic

customer requests service, it is called a realized dynamic customer.

The solution of a cost allocation problem usually comes in the form of a cost-sharing mecha-

nism, which takes the set of customers as the input and generates the shared cost of each participant

as the output. A cost-sharing mechanism should specify at least two cost functions: a total cost

function that returns the total transportation cost of serving the set of customers, and a shared

cost function that returns the shared cost of each individual participant. In the online cost al-

location setting, however, the shared cost of each participant usually changes over time, possibly

due to realization of new customers, cancellation of existing customers, and changes in network

conditions that a�ects the total operating cost. An online cost-sharing mechanism should instead

re-calculate the total operating cost and the shared cost of each customer whenever any of these

changes happens. The mechanism should also record the sequence of shared costs over time for

each customer.

When a dynamic customer requests service, the total cost of serving all customers may change,

so does the shared cost of each existing customer. The dynamic customer should be immediately

considered in the cost allocation problem and be o�ered a shared cost. The shared cost that a

customer receives at the time of its request serves as its initial quote. Each customer may have a

willingness-to-pay value that aligns with its valuation of the service received. The initial quote is

the price that the customer would have to compare with its willingness-to-pay value to make the

decision of whether to accept or decline the service.

How the total transportation cost should be calculated and shared among both advance and

realized dynamic customers over time is a non-trivial problem for the following reasons: First,

advance customers become known at the beginning of the planning horizon and should be o�ered

their initial quotes at the same time, without knowledge on how many and which dynamic customers

would request service. The way cost is shared among advance customers should obey standards

typically required in static cost allocation problems, including fairness, budget balance, etc. As the

planning horizon rolls out, the shared costs for advance customers together with the shared costs

for realized dynamic customers should obey the properties required in the online setting. Second,

customers should be given incentives to request service as early as possible to allow more time for

calculating routing schedules. This suggests that an ideal mechanism should ensure that the best

strategy for each individual customer to achieve the lowest possible shared cost is to request service

at its truthful request time. For the same reason, a good mechanism should be able to demonstrate

19



that it is more advantageous for each customer to make its service request known early as an advance

customer than to request late as a dynamic customer. For example, consider the extreme case where

all of the customers are advance customers and are known before the �eet starts its operation. Then

the situation practically becomes a static vehicle routing and cost allocation problem. The routing

schedule and shared costs can be solved without the complexity caused by uncertainties. Last but

not least, the initial quote provided to each customer should serve as an upper bound on the �nal

shared cost of the customer, which is the shared cost value for the customer at the end of the

planning horizon.

4.2.2 Typical Cost-sharing Methods

In a static cost allocation problem, where the entire set of players is known and the total cost

of serving each subset of players is well de�ned, the most intuitive and fair way to share the

cost is proportional cost sharing [54, 52], where the total cost is distributed among all customers

proportionally to their demand of the common resource. Now consider the online cost allocation

problem we study, where dynamic customers request service sequentially and each customer may or

may not become realized. In this online setting, the most intuitive way of sharing cost is incremental

cost sharing [40], where the shared cost of each new player equals to the marginal cost generated

from including the new player. Under incremental cost sharing, the shared cost of each customer

will remain the same through the planning horizon, and thus the �nal shared cost always equals to

the initial quote for each customer. Another strategy is to naively adapt proportional cost sharing

to the online setting by re-calculating shared costs each time a dynamic customer requests service.

That is to say, the shared cost of each customer may change each time an additional customer enters

the system, and there is no guarantee that the shared cost for any customer will not increase over

time. Lastly, we could incorporate customer request forecasting to generate anticipated customers

and take them into consideration when calculating shared costs. We call this strategy proportional

cost sharing with forecast.

We now use a simple example to illustrate how these typical cost-sharing methods behave in

an online setting. Suppose there are a total of 2 customers in the system and their locations are

shown in Figure 1. The direct distances between customer A and the depot, between customer

B and the depot, and between customer A and B are 8, 6, and 4 respectively. We assume that

the unit travel cost is generated per unit distance traveled. We also assume that the demand for

the transportation resource of each customer can be represented by its direct distance from the

20



depot. Let customer A be an advance customer who has been con�rmed. Customer B represents a

dynamic customer who has a high chance of requesting service but has yet to do so. There are two

possible outcomes concerning the randomness in this system, depending on whether customer B

requests service or not. In case 1 customer B ends up not requesting service while in case 2 it does.

The �nal routing schedule for both cases are drawn in Figure 1. Under both cases, we calculate the

initial quote at the time of service request and �nal shared cost for each customer using the three

cost-sharing methods discussed above, namely incremental cost sharing, proportional cost sharing

without forecasting, and proportional cost sharing with forecasting. We assume that budget balance

is always satis�ed in both cases under all three cost-sharing methods, meaning that the sum of the

�nal shared cost(s) of all realized customer(s) equals to the total travel cost corresponding to the

routing schedule represented in Figure 1.

The results are shown in Table 1. For example, under the proportional cost sharing without

forecasting, the initial quote provided to customer A is 16, which equals to the total travel cost when

A is the only customer in the system. Under case 2, when customer B requests service, the total

travel cost becomes 18. The shared costs for customer A and B are 144/14 and 108/14 respectively, in

proportion to their direct distance. These cost values represent the �nal shared costs since all of the

randomness in the system has been realized. Under the proportional cost sharing with forecasting,

customer B is considered in the cost allocation problem since it has a high probability of becoming

realized. The initial quote for customer A is 144/14, and is calculated based on the routing schedule

that customer B realizes, where the total travel cost is 18. However, in the case that customer B

ends up not requesting service, the �nal shared cost of customer A has to be increased to 16 in

order to recover the total travel cost of serving only customer A.

Figure 1: Example I: Typical cost-sharing methods
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Case 1 Case 2
Customer A Customer A Customer B

Initial Final Initial Final Initial Final
Incremental Cost Sharing 16 16 16 16 2 2

Proportional Cost Sharing
without Forecasting

16 16 16 144/14 108/14 108/14

Proportional Cost Sharing
with Forecasting

144/14 16 144/14 144/14 108/14 108/14

Table 1: Shared costs under typical cost-sharing methods

We now discuss whether each cost-sharing method shows desirable properties as discussed in

the previous section. Under incremental cost sharing, customer B receives a much lower shared

cost than customer A proportional wise based on their demand values, which is a clear violation

of the fairness rule. In general, customers who request late tend to get lower shared costs since

the marginal cost of service is almost always lower than the stand alone cost o�ered to the �rst

customer. This unfairness may incentivize untruthful request times as customers wait to request

service late in anticipation for possibly lower marginal costs. The other two proportional cost

sharing-based methods do not su�er from the loss of fairness since the total cost is always shared

proportionally among existing customers at any point in time. However, in the case that customer

B does request service, the proportional cost sharing without forecasting method provides customer

A with an initial quote of 16 that is much higher than its �nal shared cost of 144
14 . Recall that the

initial quote is the value that the customer would have to use to make the decision on whether

to accept the service or not. Even though the �nal shared costs is fair and low for customer A,

the high quote may turn away the customer in the �rst place. On the contrary, if forecasting for

customer B is used at the time of quoting customer A, the initial quote and �nal shared cost for

either customer will be the same as in the case that customer B does become realized. On the other

hand, if customer B does not request service, the �nal price charged for customer A would have

to increase to 16 from its initial quote of 144
14 in order to recover the total transportation cost and

maintain the budget balance property. This may not be practical since customer A may not agree

to pay for a higher price. There may be a loss in good faith if the customer accepts and pays for

the higher price, or there may be wasted traveling if the customer chooses to drop service and the

vehicle has already been en route. An alternative solution would be to keep customer A's initial

quote as its �nal price and generate a budget de�cit at the same time. Either situation is clearly

undesirable for both the service provider and the customer.
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4.2.3 Desirable Properties

It is evident from the example above that none of the cost-sharing methods discussed so far is

well-suited for the dynamic vehicle routing problem. Before we develop a new mechanism, we �rst

discuss a list of properties for an ideal online cost-sharing mechanism. Some of the properties

correspond to their counterparts for static problems, such as fairness and budget balance. The rest

are derived speci�cally for the online environment and are based on the shortcomings of typical

cost-sharing methods discussed above.

Online Fairness. At any time during the planning horizon, the shared cost per demand

value of any customer is never lower than those of customers who have requested service prior to

the customer. The property has two implications. First, since requests by advance customers are all

known at once, their request times are the same. There should not be any notion of early and late

among advance customers. Thus, fairness for advance customers means that the shared cost per

demand value of all advance customers should be the same. Second, since all advance customers

request service before all realized dynamic customers, the shared cost per demand value of any

advance customer should never be higher than that of any dynamic customer. It is important to

point out the di�erence between shared costs and initial quotes. The shared cost of a customer

usually changes over time as more customers enter the system. The initial quote, however, is the

�rst shared cost valued provided to a customer at the time of its request. Thus the online fairness

property does not require that the initial quote per demand value provided to any customer to be

never higher than the one provided to a subsequent customer. In other words, it can happen that

a customer who requests service late receives a lower initial quote per demand value than a prior

customer. Nevertheless, in such a situation it is guaranteed that the current shared cost per demand

value of the prior customer is never higher than the initial quote per demand value provided to a

subsequent customer.

Budget Balance. At any time during the planning horizon, the sum of the shared costs of

all customers equals to the total travel cost of the current routing schedule, including both traveled

and untraveled portions of the schedule.

Immediate Response. Each customer should be provided with an upper bound on its

�nal shared cost at the time of its service request. Since each customer has to make the decision

of whether to accept or decline the service based on its willingness-to-pay level, this property

guarantees that each customer only has to make that decision once at the time of its request,

without having to worry about being charged against its will for a higher price than it previously
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agreed to.

Individual Rationality. At any time during the planning horizon, the shared cost of any

customer who has accepted its initial quotes never exceed its willingness-to-pay level. Since a

customer only remains in the cooperation as long as its shared cost does not exceed its willingness-

to-pay level, individual rationality guarantees that no customer will drop out of the cooperation

once it joins. This property also suggests that the initial quote serves as an upper bound on the

�nal shared cost for each customer.

Ex-Post Incentive Compatibility. The best strategy of each customer is to request service

truthfully at its earliest possible time, provided that all other customers do not change their request

times and whether they accept or decline their initial quotes. This property has two implications.

First, an advance customer cannot decrease its �nal shared cost by choosing to become a dynamic

customer and not request service at the beginning of the planning horizon. Second, a dynamic

customer cannot decrease its �nal shared cost by delaying its actual request time to be later than

its truthful request time. For similar reasons as discussed under the online fairness property, this

property is concerned with the �nal shared costs rather than initial price quotes. Thus it is possible

for a customer, either an advance customer or a dynamic customer, to delay its actual request time

and receive a lower initial quote than it would have received at its truthful request time. Even if

it happens, the �nal shared cost of the same customer in the delayed request case is guaranteed to

be no lower than in the truthful request case.

24



5 Hybrid Proportional Online Cost Sharing (HPOCS)

In this section, we formally de�ne the Hybrid Proportional Online Cost Sharing (HPOCS) me-

chanism. We begin by de�ning relative terminologies. Then we explain how the shared costs

are calculated and updated over time in the dynamic vehicle routing problem. We illustrate the

mechanism using a simple DVRP example. We prove that HPOCS satis�es all of the desirable

properties discussed in the previous section. In the end, we analyze experimental results of the

baseline HPOCS mechanism.

5.1 Mechanism Design

We develop the HPOCS mechanism as an online cost-sharing mechanism that combines proportional

cost sharing for solving static cost allocation problems and the Proportional Online Cost Sharing

(POCS) mechanism [21] for handling sequential customer requests. In particular, proportional cost

sharing is used to calculate the initial quotes for advance customers at the beginning of the planning

horizon, while the POCS mechanism is used to handle dynamic customer requests. The idea behind

POCS is that customers are partitioned into coalitions, where each coalition contains a sequence of

customers who request service within given time intervals. At the time of its request, each customer

�rst forms its own coalition. However, customers can choose to form coalitions with customers who

request service directly after them to decrease their shared costs per alpha value. The formation of

a coalition is determined by comparing the pooled marginal costs shared over subsets of customers

each time a new customer enters the system. A set of specially designed total and marginal cost

values for advance customers is used to initialize the POCS process for dynamic customers. This

setup ensures that the coalition can be formed across both advance and dynamic customers. A

routing technique together with the corresponding cost functions serves as the core of HPOCS.

In general, we use the same notations as in Section 4.1. Additional notations are introduced

as necessary. Generally, i and j are used to index customers, k to index vehicles/routes, t to index

time, and n to index the request order.

Let C represent the grand set of potential customers, which is the union of the set of advance

customers AC and the set of dynamic customers DC , C = AC ∪ DC, |C| = N . Let C(t) represent

the set of customers who have requested service by time t. By de�nition, C(0) = AC since none of

the dynamic customer has requested service but all of the advance customers are already known at

time t = 0. Let cij represent the minimum travel cost between location i and j and it is assumed
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that the unit cost is the same as the unit distance traveled by any vehicle. Thus, the travel cost is

equatable with travel distance between corresponding locations, cij = tij .

We now formally de�ne terminologies related to the HPOCS mechanism.

De�nition 1. The alpha value αi of customer i quanti�es the demand of its service request. That

is, how much of the transportation resource it requires. It can also be interpreted as the measure of

inconvenience caused on accommodating the customer. The alpha value is assumed to be positive

and independent of the request time of the passenger. Similarly, it is also independent of whether

the customer is an advance customer or dynamic customer. We use

αi = c0,i ∗ di, (6)

where c0,i represents the minimum travel cost between customer i and the depot, and di represents

the demand of customer i.

De�nition 2. For any time t ∈ [0, Tmax] and the corresponding set of customers who have requested

service C(t), πt denotes a request order of the customers in C(t). For n ∈ [1, |C(t)|], πt(n) represents

the nth customer to request service under request order πt. For example, πt(n) = i means that

customer i is the nth customer to request service under request order πt.

De�nition 3. For any time t ∈ [0, Tmax] and the corresponding set of customers who have requested

service C(t), π̄t denotes the special request order based on the realization of the dynamic vehicle

routing problem up to time t, where all realized dynamic customers are ordered after all advance

customers. In particular, the �rst part of π̄t consists of all of the advance customers. Since all of

the advance customers become known at the same time, there should not be any notion of early

and late among them. In fact, any ordering of advance customers can be used to build the �rst half

of π̄t. The exact ordering does not a�ect the properties of HPOCS, which will be proved in later

sections. The second part of π̄t records the ordering of realized dynamic customers based on the

ordering of their actual request times.

Suppose that t1 and t2 are two time points in the planning horizon with 0 ≤ t1 ≤ t2 ≤ Tmax,

then the corresponding sets of customers C(t1) and C(t2) must satisfy C(t1) ⊆ C(t2) and |C(t1)| ≤

|C(t2)|. In addition, let n be any order index within the range 1 ≤ n ≤ |C(t1)|. Then we must have

π̄t1(n) = π̄t2(n). This is true because by De�nition 3, the special request order is constructed by

appending new customers who request service to the end of the current order. Thus the existing

portion of the special request order is always preserved.
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It is important to point out that πt is a general symbol used to represent any request order,

while π̄t is the request order uniquely de�ned by the realization of the DVRP. Nevertheless, given

time t ∈ [0, Tmax], πt and π̄t will always contain exactly the same set of customers, namely C(t).

Recall that C(0) = AC, meaning that π0 consists of all advance customers. The same is true for

π̄0.

De�nition 4. The grand schedule S̄ is a complete routing solution to the static vehicle routing

problem corresponding to the grand set of customers C, which satis�es the following requirement.

For any dynamic customer i, the time when the assigned vehicle is scheduled to leave from its

predecessor location is no earlier than the request deadline of the dynamic customer, vi. That is,

all arrival and departure times are set based on the wait-�rst strategy. When a vehicle �nishes

service at its current customer and becomes idle, if the next customer on the schedule is a dynamic

customer that has yet to request service, the vehicle should wait at its current location and only be

allowed to travel either when the dynamic customer becomes realized or when its request deadline

has been reached, whichever comes �rst. S̄ takes the form of a set of vehicle routes each assigned to a

single vehicle. S̄ = {rk} where k = 1, . . . ,K. Each route rk speci�es the sequence of customer visits

as well as the exact arrival and departure times at each customer, which satis�es the corresponding

time window constraints and the additional requirement discussed above.

De�nition 5. Let S̄ be a grand schedule corresponding to the set of customers C, and let C ⊂ C

be a subset of customers. S̄(C) is called the partial schedule induced by the grand schedule S̄ and

the set C, which is constructed by removing all of the customers not in C from the grand solution

S̄. In particular, each customer that is not in C is removed from the route, and its predecessor

and successor scheduled on the same vehicle are connected with a direct link. For instance, S̄(AC)

represents the partial schedule induced by the set of advance customers.

Given a feasible grand schedule S̄ and any subset of customers C ⊂ C, it can be easily

shown that a feasible induced schedule S̄(C) is guaranteed to exist, based on the triangle inequality

property of pairwise distances. It is also evident that such induced solutions are usually not unique.

Besides, given the grand schedule S̄, for any time t ∈ [0, Tmax], and any request order πt, we use

the notation S̄ (πt (n)) to represent the partial schedule induced by the set of �rst n customers on

the request order πt. More speci�cally, S̄ (πt (n)) is an equivalent notation used to denote the same

induced solution as S̄(C), where C = {πt (1) , . . . , πt (n)}.

Lemma 6. For any grand schedule S̄, any time t ∈ [0, Tmax] and the corresponding set of customers
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who have requested service C(t), any integer n ∈ [1, |C(t)|], and any two request orders πt and π
′
t

satisfying that the sets of customers {πt (1) , . . . , πt (n)} = {π′t (1) , . . . , π′t (n)}, we have S̄ (πt (n)) =

S̄
(
π
′

t (n)
)
. Equivalently speaking, the induced partial schedule S̄ (πt (n)) is independent of the

request order among the customers it contains.

Proof. The induced schedule S̄ (πt (n)) is constructed by removing customers from the grand so-

lution S̄ rather than by inserting customers sequentially based on πt. As a result, S̄ (πt (n)) is

only concerned with the set of customers that is removed (or otherwise remain), but not about the

ordering of the customers speci�ed by πt. It then follows that S̄ (πt (n)) and S̄
(
π
′

t (n)
)
are exactly

the same schedules.

The following proposition states that given the set of customers who have requested service

by time t, the induced partial schedule is independent from the request order among the customers

within the set.

Proposition 7. For any grand schedule S̄, any time t ∈ [0, Tmax] and the corresponding set of

customers who have requested service C(t), and any two request orders πt and π
′
t, we have

S̄ (πt) = S̄
(
π
′

t

)
= S̄ (C(t)) (7)

Proof. By Lemma 6, we have S̄ (πt (n)) = S̄
(
π
′

t (n)
)
for any n ∈ [1, |C(t)|]. Setting n = |C(t)|, we

have that

S̄ (πt (n)) = S̄ (πt (|C(t)|)) = S̄
(
π
′

t (|C(t)|)
)

= S̄
(
π
′

t (n)
)

(8)

which proves the �rst equality. For the second equality, we note that by de�nition both schedules

S̄
(
π
′

t

)
and S̄ (C(t)) are induced by the same set of customers, namely those customers that have

requested service by time t. In addition, both solutions are constructed in the same way by removing

customers not in C(t) from the grand schedule S̄. The membership and ordering of each customer on

each vehicle route is preserved. It follows that S̄
(
π
′

t

)
and S̄ (C(t)) are exactly the same schedules.

Thus we have completed the proof.

We now de�ne the cost functions used by HPOCS. Some cost functions are based on their

counterparts in the POCS mechanism [21], such as coalition cost per alpha and shared cost. In the

original POCS formulation, it is assumed that customers request service sequentially, and no two

customers will request service at the same time. In the DVRP we study, all of the advance customers
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request service at the same time. Thus we extend the de�nitions in POCS to accommodate both

advance and dynamic customers.

De�nition 8. For any grand schedule S̄, any time t ∈ [0, Tmax] and the corresponding set of

customers who have requested service C(t), and any request order πt, the totalcost
(
S̄ (C(t))

)
is

the total travel cost of the induced partial solution S̄ (C(t)). Equivalently, totalcost
(
S̄ (πt)

)
can

be used to represent the same total cost since the underlying partial schedules are practically the

same, as stated by Proposition 7. We de�ne totalcost
(
S̄ (∅)

)
:= 0.

De�nition 9. The advance cost per alpha value acpa is the average cost per alpha value across all

advance customers. It is calculated by dividing the total travel cost of the partial schedule induced

by the set of advance customers by the sum of alpha values of all advance customers

acpa =
totalcost

(
S̄ (AC)

)∑
i∈AC αi

=
totalcost

(
S̄ (C(0))

)∑
i∈AC αi

(9)

It is important to note that acpa is a constant value given the set of advance customers AC.

De�nition 10. For any grand schedule S̄, any time t ∈ [0, Tmax] and the corresponding set of

customers who have requested service C(t), the special request order π̄t, and any integer n ∈

[1, |C(t)|], totalcost
(
S̄ (π̄t (n))

)
is the total operating cost required to serve the �rst n customers

on request order π̄t. Since C(0) = AC and C(0) ⊆ C(t) for t ≥ 0, we must have |C(t)| ≥ |AC|.

The total cost function is de�ned di�erently for advance and dynamic customers. For the case of

advance customers, let 1 ≤ n∗ ≤ |AC|, so that π̄t(n∗) represents an advance customer. We de�ne

totalcost
(
S̄ (π̄t (n∗))

)
= acpa

n∗∑
n=1

απ̄t(n) (10)

which states that the total cost of serving a group of advance customers is de�ned as the product

of the advance cost per alpha value and the sum of the alpha values of all advance customers in the

group. At n∗ = |AC|, π̄t(n∗) represents the last advance customer on request order π̄t. We de�ne

totalcost
(
S̄ (π̄t (|AC|))

)
= acpa

|AC|∑
n=1

απ̄t(n) (11)

=
totalcost

(
S̄ (AC)

)∑
i∈AC αi

|AC|∑
n=1

απ̄t(n) (12)

= totalcost
(
S̄ (AC)

)
(13)
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The second equality follows from the de�nition of acpa, and the third equality follows from the

fact that
∑
i∈AC αi =

∑|AC|
n=1 απ̄t(n). Equation 13 states that the total cost of serving all advance

customers as de�ned above equals to the total cost of the partial schedule induced by AC. The

boundary condition is satis�ed and the above de�nition is consistent with De�nition 8. For the

case of dynamic customers, assume that |AC| < |C(t)|. Let |AC| < n∗ ≤ |C(t)|, so that π̄t(n∗)

represents a realized dynamic customer. Then totalcost
(
S̄ (π̄t (n∗))

)
is de�ned as the total travel

cost of the induced partial solution corresponding to the �rst n∗ customers on schedule π̄t. Similarly

as in De�nition 8, we de�ne totalcost
(
S̄ (πt (0))

)
:= 0.

De�nition 11. For any grand schedule S̄, any time t ∈ [0, Tmax] and the corresponding set of

customers who have requested service C(t), any request order πt, any customer i ∈ C(t), let n be

the index order of the customer on request order πt. Equivalently, πt(n) = i for some n ∈ [1, |C(t)|].

mc (πt(n)) denotes the marginal cost of serving customer i under request order πt and is de�ned as

the increase in total cost due to its request. That is

mc (πt(n)) := totalcost
(
S̄ (πt (n))

)
− totalcost

(
S̄ (πt (n− 1))

)
(14)

Since the total cost function is de�ned di�erently for advance and dynamic customers, the marginal

cost is also de�ned di�erently. We now de�ne the marginal costs under the special request order

π̄t. For the case of advance customers, let 1 ≤ n∗ ≤ |AC|, so that π̄t(n∗) represents an advance

customer. Based on equations 10 and 14, we de�ne

mc (π̄t (n∗)) = totalcost
(
S̄ (π̄t (n∗))

)
− totalcost

(
S̄ (π̄t (n∗ − 1))

)
(15)

= acpa

n∗∑
n=1

απ̄t(n) − acpa
n∗−1∑
n=1

απ̄t(n) (16)

= acpa× απ̄t(n∗) (17)

which states that the marginal cost of an advance customer equals to the product of the advance cost

per alpha value and its alpha value. For the case of dynamic customers, assume that |AC| < |C(t)|.

Let |AC| < n∗ ≤ |C(t)|, so that π̄t(n∗) represents a realized dynamic customer. The marginal cost

of the customer is de�ned as the increase in total travel cost of the partial solutions induced by the

corresponding sets of customers. That is

mc (π̄t (n∗)) := totalcost
(
S̄ (π̄t (n∗))

)
− totalcost

(
S̄ (π̄t (n∗ − 1))

)
(18)
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We now de�ne the coalition cost per alpha value, how HPOCS calculates the shared cost of

each customer, and the concept of coalition.

De�nition 12. For any time t ∈ [0, Tmax] and the corresponding set of customers who have

requested service C(t), the special request order π̄t, and any two integers n1, n2 ∈ [1, |C(t)|] with

n1 ≤ n2, the coalition cost per alpha value of customers {π̄t (n1) , . . . , π̄t (n2)} at time t under

submit order π̄t is

ccpaπ̄t(n1,n2) :=

∑n2

n=n1
mc (π̄t(n))∑n2

n=n1
απ̄t(n)

(19)

De�nition 13. For any time t ∈ [0, Tmax] and the corresponding set of customers who have

requested service C(t), the special request order π̄t, and any customer i ∈ C(t), let n be the index

order of the customer on request order π̄t. Equivalently, π̄t(n) = i for some 1 ≤ n ≤ |C(t)|. Then

the shared cost of customer i at time t under request order π̄t is de�ned as

costt (π̄t(n)) := απ̄t(n) min
n≤n′≤|C(t)|

max
1≤n′′≤n′

ccpaπ̄t(n′′,n′) (20)

De�nition 14. For any time t ∈ [0, Tmax] and the corresponding set of customers who have

requested service C(t), the special request order π̄t, and any two integers n1, n2 ∈ [1, |C(t)|] with

n1 ≤ n2, a coalition (n1, n2) at time t is a group of customers {π̄t (n1) , . . . , π̄t (n2)} with

costt (π̄t(n))

απ̄t(n)
=
costt (π̄t(n1))

απ̄t(n1)
(21)

for all order indices n1 ≤ n ≤ n2 and

costt (π̄t(n))

απ̄t(n)
6= costt (π̄t(n1))

απ̄t(n1)
(22)

for both order indices with n = n1 − 1 and n = n2 + 1 and 1 ≤ n ≤ |C(t)|.

De�nition 14 suggests that the membership of a coalition is determined solely by the shared

cost per alpha value of each customer. A sequence of customers who request service consecutively

in time and have the same shared cost per alpha value are said to be in the same coalition. In terms

of coalition formation, it is irrelevant whether a customer is an advance customer or a dynamic

customer; a single coalition can consist of both advance and dynamic customers. Nor is it relevant

whether the group of customers are assigned on the same vehicle or not.

The following statements are concerned with the way coalitions form and evolve over time
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under the special request order π̄t.

Proposition 15. At any time t ∈ [0, Tmax], under the special request order π̄t, the coalition cost

per alpha value of any coalition consisting solely of advance customers is a constant value. The

value is �xed given the set of advance customers AC and is independent from the actual subset of

advance customers in the coalition.

Proof. For any grand schedule S̄, any time t ∈ [0, Tmax] and the corresponding set of customers who

have requested service C(t), the special request order π̄t, and any two integers n1, n2 ∈ [1, |C(t)|]

with n1 ≤ n2, suppose that both n1 and n2 represent advance customers. That is, n1, n2 ∈ [1, |AC|].

Then the coalition cost per alpha value of customers {π̄t (n1) , . . . , π̄t (n2)} at time t under submit

order π̄t is

ccpaπ̄t(n1,n2) =

∑n2

n=n1
mc (π̄t(n))∑n2

n=n1
απ̄t(n)

(23)

=

∑n2

n=n1
acpa× απ̄t(n)∑n2

n=n1
απ̄t(n)

(24)

=
acpa

∑n2

n=n1
απ̄t(n)∑n2

n=n1
απ̄t(n)

(25)

= acpa (26)

The second equality follows from equation 17. Note that the coalition cost per alpha value equals

to the advance cost per alpha value, which only depends on the set of advance customers AC and

is independent of n1, n2, and even the request order π̄t. Equivalently speaking, given the set of

advance customers, the coalition cost per alpha value of any coalition formed solely by advance

customers is the same. Thus we have completed the proof.

Proposition 16. At time t = 0, under the special request order π̄0, all advance customers form a

single coalition.

Proof. At time t = 0, for any customer i ∈ AC, let n be the index order of the customer on the

special request order π̄0. Equivalently, π̄0(n) = i for some 1 ≤ n ≤ |AC|. By De�nition 13, the
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shared cost of customer i at time t = 0 under request order π̄0 is

cost0 (π̄0(n)) = απ̄t(n) min
n≤n′≤|AC|

max
1≤n′′≤n′

ccpaπ̄t(n”,n′) (27)

= απ̄t(n) min
n≤n′≤|AC|

max
1≤n′′≤n′

acpa (28)

= απ̄t(n) × acpa (29)

The second equality follows from the fact that both π̄0(n′) and π̄0(n′′) represent advance customers

and that the coalition cost per alpha value of any coalition consisting solely of advance customers

is always equal to acpa (Proposition 15). The third equality follows since the term inside the mini-

mization and maximization operator is a constant and independent from both operators. Equation

29 shows that the shared costs among advance customers at time t = 0 under the special request

order π̄0 obey the proportional cost sharing rule. It then follows that the shared cost per alpha

values of any two advance customers π̄0(n1) and π̄0(n2) with n1, n2 ∈ [1, |AC|] must be the same.

cost0 (π̄0(n1))

απ̄t(n1)
=
costt (π̄t(n2))

απ̄t(n2)
= acpa (30)

which in turn proves that all advance customers form a single coalition at time t = 0 under the

special request order π̄0.

Corollary 17. For any time t ∈ [0, Tmax] and the corresponding set of customers who have requested

service C(t), the special request order π̄t, and any customer i ∈ C(t), let n be the index order of

the customer on request order π̄t. Equivalently, π̄t(n) = i for some 1 ≤ n ≤ |C(t)|. Then

costt (π̄t(n))

απ̄t(n)
= min
n≤n′≤|C(t)|

costuπ̄t(n′) (π̄t(n
′))

απ̄t(n′)
(31)

where uπ̄t(n′) is the request time of customer π̄t(n
′) and costuπ̄t(n′) (π̄t(n

′)) represents the initial

quote this customer receives at the time of its request.

Proof. Consider any time t ∈ [0, Tmax] and the corresponding set of customers who have requested

service C(t), the special request order π̄t, and any customer i ∈ C(t), let n be the index order of

33



the customer on request order π̄t. Equivalently, π̄t(n) = i for some 1 ≤ n ≤ |C(t)|. Then we have

costt (π̄t(n))

απ̄t(n)
= min
n≤n′≤|C(t)|

max
1≤n′′≤n′

ccpaπ̄t(n”,n′) (32)

= min
n≤n′≤|C(t)|

min
n′≤m≤n′

max
1≤n′′≤m

ccpaπ̄t(n”,m) (33)

= min
n≤n′≤|C(t)|

costuπ̄t(n′) (π̄t(n
′))

απ̄t(n′)
(34)

where the �rst and third equalities both follow from De�nition 13.

Lemma 18. Under the special request order π̄t, once a group of customers forms a coalition at

time t, they will remain in the same coalition until the end of the planning horizon. More customers

may join the same coalition over time, but the original group of customers will never depart the

coalition.

Proof. For any time t1 ∈ [0, Tmax) and the corresponding set of customers who have requested

service C(t1), let (n1, n2) be a coalition at time t1 under the special request order π̄t1 , where

1 ≤ n1 ≤ n2 ≤ |C(t1)|. Let t2 ∈ (t1, Tmax] be any later point of time in the planning horizon. Now

consider any customer with the order index n1 ≤ n ≤ n2 under the special request order π̄t1 . Then

min
n≤n′≤|C(t1)|

costuπ̄t1 (n′) (π̄t1(n′))

απ̄t1 (n′)
=
costt1 (π̄t1(n))

απ̄t1 (n)
(35)

=
costt1 (π̄t1(n1))

απ̄t1 (n1)
(36)

= min
n1≤n′≤|C(t1)|

costuπ̄t1 (n′) (π̄t1(n′))

απ̄t1 (n′)
(37)

where the �rst and third equalities both follow from Corollary 17 and the second equality follows

from De�nition 14. In addition, since t1 ≤ t2 ≤ Tmax, request order π̄t2 is an extension of the order

π̄t1 . Thus π̄t2 (m) = π̄t1 (m) for all 1 ≤ m ≤ |C(t1)| by de�nition. Equation 37 can be rewritten as

follows

min
n≤n′≤|C(t1)|

costuπ̄t2 (n′) (π̄t2(n′))

απ̄t2 (n′)
= min
n1≤n′≤|C(t1)|

costuπ̄t2 (n′) (π̄t2(n′))

απ̄t2 (n′)
(38)

Now consider adding the following set of terms to the minimization operators on both sides of

equation 37. {
costuπ̄t2 (j)

(π̄t2(j))

απ̄t2 (j)

}
|C(t1)|<j≤|C(t2)|

(39)

Since the same set of terms are added to both minimization operators, the equality is preserved.
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Equation 37 can be rewritten as follows

min
n≤n′≤|C(t2)|

costuπ̄t2 (n′) (π̄t2(n′))

απ̄t2 (n′)
= min
n1≤n′≤|C(t2)|

costuπ̄t2 (n′) (π̄t2(n′))

απ̄t2 (n′)
(40)

which by Corollary 17 is equivalent to

costt2 (π̄t2(n))

απ̄t2 (n)
=
costt2 (π̄t2(n1))

απ̄t2 (n1)
(41)

We have established that all of the customers in the original coalition at time t1 have the same

shared cost per alpha value at any future time t2. By the de�nition of coalition, all of these

customers must be in the same coalition at time t2. Thus we have completed the proof.

As a corollary to Proposition 16, we prove that under the special request order π̄t, the set of

advance customers will remain in the same coalition throughout the planning horizon.

Corollary 19. At any time t ∈ [0, Tmax], under the special request order π̄t, all advance customers

are in the same coalition.

Proof. At time t = 0, the corollary holds trivially based on Proposition 16. At any time t > 0,

given that all of the advance customers are in the same coalition, by Lemma 18, they will remain

in the same coalition until the end of the planning horizon. Thus we have completed the proof.

We are now well equipped to present the HPOCS mechanism. For a realization of the dynamic

vehicle routing problem, the shared costs are calculated as follows.

Initialization. t = 0.

1. Formulate a static vehicle routing problem corresponding to the set of customers C = AC∪DC

and construct the grand solution S̄.

2. Construct the special request order π̄0 consisting of all advance customers. Any ordering

among advance customers can be used.

Quoting advance customers. All advance customers receive their initial quotes at time

t = 0.

1. Calculate the advance cost per alpha value acpa based on De�nition 9.
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2. Calculate the total cost, marginal cost, coalition cost per alpha, and the shared cost of each

advance customer under the special request order π̄0 by De�nition 10, equation 17, De�nition

12, and equation 29.

3. For each advance customer i ∈ AC, suppose that n is its order index on request order π̄0.

Provide cost0 (π̄0(n)) as the initial quote for customer i.

Quoting dynamic customers. A dynamic customer i receives its initial quote when it

requests service at time t = ui.

1. Append customer i to the end of the special request order π̄ui−1 to form the new special

request order π̄ui . Recall that |C(t)| represents the total number of customers who have

requested service. By de�nition, π̄ui (|C(ui)|) = i.

2. Construct the partial schedule induced by C(ui) and the grand schedule S̄.

3. Calculate and update the total costs, marginal costs, coalition cost per alpha values, and

the shared costs of all existing customers on request order π̄ui by De�nition 10, equation 18,

De�nition 12, and De�nition 13.

4. Provide costui (π̄ui(|C(ui)|)) as the initial quote for customer i.

Final shared costs. t = Tmax.

1. At time t = Tmax, all of the randomness in the system has been realized. The special request

order π̄Tmax consists of all advance and realized dynamic customers, namely the set C(Tmax).

2. For 1 ≤ n ≤ |C(Tmax)|, the shared cost of customer π̄Tmax(n) at time Tmax under the special

request order π̄Tmax is costTmax (π̄Tmax(n)). This is also the �nal cost of service for customer

π̄Tmax(n).

5.2 HPOCS Example

We now use an example to illustrate the HPOCS mechanism. Consider the dynamic vehicle routing

problem based on the network shown in Figure 2 and the set of customers shown in Table 2. There

are six customers and one depot located along a line segment. The distance between adjacent

locations are as labeled. Customers A, B, and C are advance customers, and the rest are dynamic

customers. The demand of all customers are assumed to be 1, so that the alpha value of each

customer equals to the distance from the depot to the customer. For convenience, we set the
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request deadline of each dynamic customer to be equal to the beginning of its service time window.

The length of the service time of all customers are all equal 1 and Tmax = 50. We consider the

realization of the DVRP where customers D and F request service at time 9 and 20 respectively,

and customer E does not request service. It is assumed that all customers will accept any initial

quote provided to them. Equivalently, the willingness-to-pay value of all customers are set to be

equal to in�nity. This assumption allows all of the customers that request service to stay in the

system.

Figure 2: Example II: Network

Customer Demand Alpha Deadline Time Window Service Time Request Time
A 1 4 − [0, 10] 1 0
B 1 5 − [5, 10] 1 0
C 1 7 − [25, 30] 1 0
D 1 6 10 [10, 25] 1 9
E 1 3 25 [25, 35] 1 −
F 1 2 30 [30, 40] 1 20

Table 2: Example V: Customer information

We solve the cost allocation problem associated with this realization of the DVRP in two

cases. In the �rst case, we assume that only one vehicle is available, while in the second case, we

assume that two vehicles are available.

Single-vehicle case.

Initialization.

All of the customers A through F are used to formulate a static VRP. Assuming that only

one vehicle is available, the grand schedule S̄ can take the form

r1 = Depot[−, 0]−A[4, 5]−B[6, 10]−D[21, 24]−C[25, 26]−E[30, 31]−F [36, 37]−Depot[39,−] (42)

where the two numbers in the brackets represent the arrival and departure times at each location.

C(0) = AC = {A,B,C}. Without loss of generality, we let the special request order π̄0 take the

following form.

π̄0 = A−B − C (43)

Quoting advance customers.
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We �rst construct the partial schedule induced by the set AC and the grand schedule S̄ as

follows

S̄ (AC) : r1 = Depot[−, 0]−A[4, 5]−B[6, 13]− C[25, 26]−Depot[33,−] (44)

Note that S̄ (AC) is not unique and any feasible schedule can be used. Then we calculate the acpa

value for advance customers.

acpa =
totalcost

(
S̄ (AC)

)∑
i∈AC αi

(45)

=
4 + 1 + 12 + 7

4 + 5 + 7
(46)

= 1.5 (47)

The total cost, marginal cost, coalition cost per alpha, and the shared cost of each advance customer

under the special request order π̄0 are calculated.

Table 3 shows the total and marginal cost values. For example, the total cost of serving

customer A is calculated as

totalcost
(
S̄ (π̄0 (1))

)
= acpa

1∑
n=1

απ̄t(n) (48)

= aspa× αA (49)

= 1.5× 4 (50)

= 6 (51)

and the corresponding marginal cost is calculated as

mc (π̄0 (1)) = totalcost
(
S̄ (π̄0 (1))

)
− totalcost

(
S̄ (π̄t (0))

)
(52)

= totalcost
(
S̄ (π̄0 (1))

)
− totalcost

(
S̄ (∅)

)
(53)

= 6− 0 (54)

= 6 (55)

Since customer A is an advance customer, the total cost after its request does not necessarily equal

to the total travel cost of the partial solution induced by the set of customers that have requested

service. Nevertheless, the total cost value de�ned on the entire set of advance customers AC is

always equal to the total travel cost of the partial solution induced by the set AC, as shown in
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De�nition 10. In this example, we have

totalcost
(
S̄ (π̄t (|AC|))

)
= acpa

|AC|∑
n=1

απ̄t(n) =
3

2
× (4 + 5 + 7) = 24 = totalcost

(
S̄ (AC)

)
(56)

Time Request Total Cost Marginal Cost
0 A 6.0 6.0
0 B 13.5 7.5
0 C 24.0 10.5
9 D 24.0 0.0
25 F 28.0 4.0

Table 3: Total and marginal costs with one vehicle

Table 4 summarizes the coalition cost per alpha values for each possible coalition formation.

The row label represents the �rst customer in a coalition while the column label represents the

last customer in the coalition. Based on the ccpa values, Table 5 shows the formation of coalitions

among the customers. The shared costs per alpha scpa of each customer are calculated based on

De�nition 13 and customers who have the same scpa value are said to be in the same coalition.

Last but not least, the HPOCS shared costs are calculated by multiplying the scpa value by the

alpha value of each customer. The third row of Table 5 shows the initial quotes provided to advance

customers at time t = 0.

Time Start of Coalition
End of Coalition

A B C D F
0 A 1.5 1.5 1.5 1.1 1.2
0 B 1.5 1.5 0.9 1.0
0 C 1.5 1.1 1.2
9 D 0.0 0.5
25 F 2.0

Table 4: Coalition cost per alpha values with one vehicle

Time Coalitions
Shared Costs per Alpha HPOCS Shared Costs
A B C D F A B C D F

0 (A) 1.5 6.0
0 (A, B) 1.5 1.5 6.0 7.5
0 (A, B, C) 1.5 1.5 1.5 6.0 7.5 10.5
9 (A, B, C, D) 1.1 1.1 1.1 1.1 4.4 5.5 7.6 6.6
25 (A, B, C, D) (F) 1.1 1.1 1.1 1.1 2.0 4.4 5.5 7.6 6.6 4.0
50 (A, B, C, D) (F) 1.1 1.1 1.1 1.1 2.0 4.4 5.5 7.6 6.6 4.0

Table 5: Coalition formation, scpa, and HPOCS shared costs with one vehicle

Quoting dynamic customers.

39



A dynamic customer i receives its initial quote at time t = ui, when it requests service.

At time t = 9, customer D requests service and is appended to the end of the special request

order. π̄9 = A− B − C −D. C(9) = {A,B,C,D}. The partial schedule induced by C(9) and the

grand schedule S̄ is

S̄ (C(9)) : r1 = Depot[−, 0]−A[4, 5]−B[6, 10]−D[21, 24]− C[25, 26]−Depot[33,−] (57)

The total cost, marginal cost, coalition cost per alpha values, and the shared costs of all customers

at time t = 9 under request order π̄9 are calculated.

At time t = 20, customer F requests service and is appended to the end of the special request

order. π̄20 = A−B−C −D−F . C(20) = {A,B,C,D, F}. The partial schedule induced by C(20)

and the grand schedule S̄ is

S̄ (C(20)) : r1 = Depot[−, 0]−A[4, 5]−B[6, 10]−D[21, 24]−C[25, 26]−F [35, 36]−Depot[38,−] (58)

The total cost, marginal cost, coalition cost per alpha values, and the shared costs of all customers

at time t = 20 under request order π̄20 are calculated.

Final shared costs.

At time t = Tmax = 50, all of the randomness in the problem has been realized. Since the

shared costs only change when a dynamic customer requests service and time t = 20 was the last

time a dynamic customer requested service, the �nal shared cost of each customer equals to its

shared cost at time t = 20.

Two-vehicle case.

Initialization. All of the customers A through F are used to formulate a static VRP. Assuming

that two vehicles are available, the grand schedule S̄
′
can take the form

r
′

1 = Depot[−, 0]−A[4, 5]−B[6, 30]− F [33, 34]−Depot[36,−] (59)

r
′

2 = Depot[−, 10]−D[16, 24]− C[25, 26]− E[30, 31]−Depot[34,−] (60)

C(0) = AC = {A,B,C}. Without loss of generality, we let the special request order π̄
′

0 take the

following form.

π̄
′

0 = C −B −A (61)
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Quoting advance customers.

We �rst construct the partial schedule induced by the set AC and the grand schedule S̄
′
.

S̄
′
(AC) can take the form

r
′

1 = Depot[−, 0]−A[4, 5]−B[6, 30]−Depot[35,−] (62)

r
′

2 = Depot[−, 18]− C[25, 26]−Depot[33,−] (63)

Similarly as in the single vehicle case, S̄
′
(AC) is not unique and any feasible schedule can be used.

Now we calculate the advance cost per alpha value for advance customers.

acpa
′

=
totalcost

(
S̄
′
(AC)

)
∑
i∈AC αi

(64)

=
4 + 1 + 5 + 7 + 7

4 + 5 + 7
(65)

= 1.5 (66)

The total cost, marginal cost, coalition cost per alpha, and the shared cost of each advance customer

under the special request order π̄
′

0 are calculated.

Table 6 shows the total and marginal costs. Similarly as in the single-vehicle case, the total

cost value for a subset of advance customers are not necessarily equal to the total travel cost of

the corresponding induced partial solution. Yet, the total cost value de�ned on the entire set of

advance customers AC is always equal to the total travel cost of the partial solution induced by the

set AC.

Time Request Total Cost Marginal Cost
0 C 10.5 10.5
0 B 18.0 7.5
0 A 24.0 6.0
9 D 24.0 0.0
25 F 24.0 0.0

Table 6: Total and marginal costs with two vehicles

Table 7 summarizes the coalition cost per alpha values for each possible coalition formation.

The row label represents the �rst customer in a coalition while the column label represents the last

customer in the coalition. Based on the coalition cost per alpha values, Table 8 shows the formation

of coalitions among customers. The shared costs per alpha scpa of each customer are calculated

based on De�nition 13 and customers who have the same scpa value are said to be in the same
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coalition. Last but not least, the HPOCS shared costs are calculated by multiplying the scpa value

by the alpha value of each customer. The third row of Table 8 shows the initial quotes provided to

the advance customers at time t = 0.

Time Start of Coalition
End of Coalition

C B A D F
0 C 1.5 1.5 1.5 1.1 1.0
0 B 1.5 1.5 0.9 0.8
0 A 1.5 0.6 0.5
9 D 0.0 0.0
25 F 0.0

Table 7: Coalition cost per alpha values with two vehicles

Time Coalitions
Shared Costs per Alpha HPOCS Shared Costs
C B A D F C B A D F

0 (C) 1.5 10.5
0 (C, B) 1.5 1.5 10.5 7.5
0 (C, B, A) 1.5 1.5 1.5 10.5 7.5 6.0
9 (C, B, A, D) 1.1 1.1 1.1 1.1 7.7 5.5 4.4 6.6
25 (C, B, A, D, F) 1.0 1.0 1.0 1.0 1.0 7.0 5.0 4.0 6.0 2.0
50 (C, B, A, D, F) 1.0 1.0 1.0 1.0 1.0 7.0 5.0 4.0 6.0 2.0

Table 8: Coalition formation, scpa, and HPOCS shared costs with two vehicles

Quoting dynamic customers.

A dynamic customer i receives its initial quote at time t = ui, when it requests service.

At time t = 9, customer D requests service and is appended to the end of the special request

order. π̄
′

9 = C − B − A−D. C(9) = {A,B,C,D}. The partial schedule induced by C(9) and the

grand schedule S̄
′
is

r
′

1 = Depot[−, 0]−A[4, 5]−B[6, 30]−Depot[35,−] (67)

r
′

2 = Depot[−, 10]−D[16, 24]− C[25, 26]−Depot[33,−] (68)

The total cost, marginal cost, coalition cost per alpha values, and the shared costs of all customers

at time t = 9 under request order π̄
′

9 are calculated.

At time t = 20, customer F requests service and is appended to the end of the special request

order. π̄
′

20 = C −B−A−D−F . C(20) = {A,B,C,D, F}. The partial schedule induced by C(20)

42



and the grand schedule S̄
′
is

r
′

1 = Depot[−, 0]−A[4, 5]−B[6, 30]− F [33, 34]−Depot[36,−] (69)

r
′

2 = Depot[−, 10]−D[16, 24]− C[25, 26]−Depot[33,−] (70)

The total cost, marginal cost, coalition cost per alpha values, and the shared costs of all customers

at time t = 20 under request order π̄
′

20 are calculated.

Final shared costs.

At time t = Tmax = 50, all of the randomness in the problem has been realized. Similarly as

in the single-vehicle case, since that shared costs only change when a dynamic customer requests

service and time t = 20 was the last time a dynamic customer requested service, the �nal shared

cost of each customer equals to its shared cost at time t = 20.

In this example, customers are assigned across two vehicles but all of the customers end up

forming a single coalition. This observation con�rms the claim that coalitions are formed based on

the shared cost per alpha values and the proximity in request times of the customers, rather than

on their vehicle assignments.

5.3 Analysis of Properties

The HPOCS mechanism de�nes a way to allocate the total travel cost to each customer in the

dynamic vehicle routing problem. By de�nition, this mechanism follows the same framework as the

POCS mechanism, with the exception that the total cost function is de�ned di�erently. Given that

the original POCS mechanism satis�es all of the desirable properties discussed in Section 4.2.3, it

follows that the HPOCS mechanism also possess these properties, if it can be shown that the new

total cost function satis�es the same assumptions as made by the POCS framework.

The POCS framework makes two assumptions of the total cost function. First, the total cost

is non-decreasing over time. Second, the total cost at any time is independent of the request order

among the group of customers that have requested service. These assumptions are, for example,

satis�ed for the minimal operating cost, which is the cost function used in the original POCS paper.

However, optimality is not required in order for all of the desirable properties to be satis�ed, as

long as the cost function follows the two assumptions.

Proposition 20. For any grand schedule S̄, any time t ∈ [0, Tmax] and the corresponding set of cu-

stomers who have requested service C(t), the special request order π̄t, and any integer n ∈ [1, |C(t)|],
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the HPOCS total cost function totalcost
(
S̄ (π̄t (n))

)
is nondecreasing in n and is independent of

the request order of customers {π̄t (1) , . . . , π̄t (n)}. That is, for any request order πt satisfying

{π̄t (1) , . . . , π̄t (n)} = {πt (1) , . . . , πt (n)}, totalcost
(
S̄ (π̄t (n))

)
= totalcost

(
S̄ (πt (n))

)
.

Proof. We �rst prove that totalcost
(
S̄ (π̄t (n))

)
is nondecreasing in n. Without loss of generality,

let n1 be any order index satisfying 1 ≤ n1 < |C(t)| and let n2 = n1 + 1. By de�nition, the partial

schedule S̄ (π̄t (n1)) is constructed by removing customer π̄t (n2) from the schedule S̄ (π̄t (n2)). Let

i− and i+ represent the predecessor and successor locations of customer π̄t (n2) in the schedule

S̄ (π̄t (n2)). Then we have

totalcost
(
S̄ (π̄t (n1))

)
= totalcost

(
S̄ (π̄t (n2))

)
− ci−π̄t(n2) − cπ̄t(n2)i+ + ci−i+ (71)

Based on the triangle inequality property of pairwise distances, we have

ci−π̄t(n2) + cπ̄t(n2)i+ − ci−i+ ≥ 0 (72)

Thus equation 71 implies that

totalcost
(
S̄ (π̄t (n1))

)
≤ totalcost

(
S̄ (π̄t (n2))

)
(73)

We have proved that totalcost
(
S̄ (π̄t (n))

)
is nondecreasing in n. We now prove the total cost is

independent of the request order of customers {π̄t (1) , . . . , π̄t (n)}. Let πt be any request order

satisfying {π̄t (1) , . . . , π̄t (n)} = {πt (1) , . . . , πt (n)}. That is to say, the �rst n positions of πt and of

π̄t consist of the same group of customers. By Lemma 6, S̄ (π̄t (n)) and S̄ (πt (n)) represent the same

induced partial schedule. It then follows that totalcost
(
S̄ (π̄t (n))

)
= totalcost

(
S̄ (πt (n))

)
We have now proved that the total cost function used in the HPOCS mechanism satis�es the

two assumptions required by the POCS framework. When implementing the HPOCS mechanism

to solve the cost allocation problem associated with a DVRP, one must specify the way vehicles are

routed in real time. In order to make the HPOCS mechanism satisfy all of the desirable properties,

we need to de�ne a dynamic vehicle routing strategy that can guarantee that the actual total travel

cost incurred by the vehicles equals to the total cost calculated by the HPOCS mechanism. The

following dynamic routing strategy satis�es this requirement.

1. Vehicles are routed based on the grand schedule S̄.
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2. No re-optimization is done during the planning horizon.

3. At the time when a vehicle is scheduled to depart from its current location and travel to a dy-

namic customer, if the customer has yet to request service, it is skipped and the vehicle travels

directly from the predecessor location to the successor location of the dynamic customer.

Recall that by De�nition 4, the grand schedule S̄ requires that the time when a vehicle starts

to travel to a dynamic customer is no earlier than the request deadline of the customer. If the

customer has yet to request service by this time, it is certain that the customer will not request

service at all. Thus if the customer is removed from the current schedule, it will not request service

at a later time. Equivalently speaking, insertion of new customers is never needed under this routing

strategy. The only diversion of vehicles happen when an unrealized dynamic customer is skipped,

and no traveling is wasted due to the absence of dynamic customers. As a result, the total travel

cost incurred by the vehicles is always equal to the total cost of the induced partial solution as

calculated in De�nition 10.

Thus, we can conclude that under the dynamic routing strategy de�ned above, the HPOCS

mechanism satis�es all of the desirable properties discussed in Section 4.2.3, namely the online

fairness, budget balance, immediate response, individual rationality, and ex-post incentive compa-

tibility properties. The proofs follow directly from the proofs presented in the original POCS paper

[21].

5.4 Experimental Analysis

We now analyze simulation results to study the e�ectiveness of the mechanism in terms of providing

desirable quotes to both the advance and dynamic customers.

Simulations are performed on a modi�ed Solomon RC201 instance for the vehicle routing

problem with time windows (VRPTW) [51]. The instance speci�es all of the deterministic infor-

mation on customer locations, demands, service time windows, and �eet capacity. There are 100

customers, N = 100. The length of the planning horizon is 960 time steps, Tmax = 960. A dyna-

mic vehicle routing instance is constructed by specifying two parameters, namely the percentage of

advance customers - ACPercent, and the probability that a dynamic customer requests service -

RequestProb. These two parameters jointly determine the mixture between the number of advance

customers and the expected number of realized dynamic customers in the problem. We assume that

all dynamic customers have the same probability of requesting service. qi = RequestProb, ∀i. We
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use a triangular distribution function to model fi(t), the conditional probability density function of

request time ui. In particular, the minimum value of the distribution is set to 0, and the maximum

value of the distribution is set to be equal to the request deadline, vi. The mode of the distribution

is set to 3
4vi. Within this time frame, the dynamic customers are more likely to make the request

close to the time they need service. A realization of the problem speci�es the actual set of advance

customers, a group of dynamic customers who are to make requests, and the precise request times

of these customers. For each dynamic instance, we simulate 50 realizations and report the average

results. The grand schedule of each realization is calculated based on the assumption that all custo-

mers (both advance and dynamic) are known at the beginning of the planning horizon and must be

served. S̄ is the output of this deterministic VRP solved by construction and local search heuristics

in [13].

When solving the corresponding cost allocation problem, the HPOCS mechanism calculates

the initial quote of a customer at the time it requests service. It is assumed that all customers

will accept any initial quote provided to them. Equivalently, the willingness-to-pay value of all

customers are set to be equal to in�nity. This assumption allows all of the customers that request

service to stay in the system. The shared cost gets updated each time when a new dynamic customer

requests service because existing customers can choose to form a coalition with the new customer if

it can lower their shared costs. It is worth exploring how the sequence of the shared costs changes

over time and how the overall pattern may be di�erent for di�erent customers.

Figure 3 illustrates a graph of a series of HPOCS shared costs of selected customers in the

demand scenario, where ACPercent = 0.25 and RequestProb = 0.75. This setup re�ects an

operating environment with a relatively high proportion of dynamic customers. The number of

advance customers is 100 ∗ 0.25 = 25 and the expected number of realized dynamic customers is

100 ∗ (1− 0.25) ∗ 0.75 ≈ 57. The horizontal axis represents the request order. In this scenario, the

�rst 25 positions of the request order correspond to advance customers. The vertical axis represents

the shared cost per alpha value. Each data point on the graph represents the shared cost per alpha

value of a selected customer at the time when the dynamic customer whose order index corresponds

to the horizontal axis value requests service. Each trajectory on the graph represents the series of

shared cost per alpha values of a selected customer. The �rst data point on each trajectory shows

the initial quote per alpha value of the customer.

For example, the �rst trajectory shows the series of shared cost per alpha values of the �rst

advance customer on the special request order. Since all advance customers have the same shared
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cost per alpha value at any time throughout the planning horizon, it is su�cient to use the �rst

advance customer to represent the entire set. The following four series correspond to four dynamic

customers. �Dynamic 1� corresponds to the �rst dynamic customer to request service. �Dynamic

2� represents the dynamic customer whose request position falls around the �rst 3-quantiles of the

total expected number of realized dynamic customers. In this case, since 57× 1
3 ≈ 19, it corresponds

roughly to the 19th dynamic customer to request service, and equivalently the 44th customer to

request service when counting advance customers. Similarly, �Dynamic 3� represents the dynamic

customer whose request position falls around the second 3-quantiles of the total expected number

of realized dynamic customers. The last series represents a dynamic customer positioned near the

end of the request order.

Figure 3: Trajectories of the HPOCS shared cost per alpha values in base case

It is worth pointing out that the request order shown by the horizontal axis is not equivalent

to time. For instance, the �rst 25 units of the horizontal axis all correspond to time t = 0, because

all of the advance customer requests are known at the same time. Each subsequent value on the

horizontal axis corresponds to the actual request order.

It is evident from the graph that the shared cost of any customer is nondecreasing over the

request order, which is a direct outcome of the way shared costs are calculated in the HPOCS

mechanism. In particular, each time when a new customer requests service, existing customers will

have the opportunity to form a coalition with the new customer. They will choose to form a new

coalition if and only if their shared cost per alpha values can be lowered by doing so. Otherwise,
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Figure 4: The HPOCS initial quotes and �nal shared cost values in base case

existing customers will choose to stay in their current coalitions.

Figure 4 illustrates a graph of the HPOCS initial quotes and the �nal shared costs of all

customers in the base case demand scenario. Recall that the initial quote is the �rst shared cost

value a customer receives and is the value that the customer has to use to make the decision of

whether to accept the service or not. The �nal shared cost is the price that the customer actually

pays for the service. These two values are the two most important shared cost values. All of the

values shown on the graph are on the per-alpha basis. The horizontal axis represents the request

order. In this scenario, the �rst 25 positions of the request order correspond to advance customers.

The vertical axis represents the shared cost per alpha value. The upper series contains the initial

quotes of all customers and the lower series contains the corresponding �nal shared costs. For each

customer, its initial quote is always greater than or equal to its �nal shared cost, as guaranteed by

the immediate response and individual rationality properties.

1. We �rst study the initial quotes provided to all customers. By Proposition 15, the initial quote

per alpha value at time t = 0 of all advance customers are the same, and are equal to the

advance cost per alpha acpa value. This is re�ected by the level segment on the initial quote

curve. For the realized dynamic customers, their initial quotes start higher than that of the

advance customers, but drop very quickly as more dynamic customers become realized. Recall

that the HPOCS mechanism calculates the total costs based on the total travel costs of induced

partial solutions. All of these partial solutions are induced by a single grand solution that is
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constructed at time t = 0 and is �xed throughout the planning horizon. As more customers

request service, the grand schedule is gradually recovered and the synergy among the group

of customers who have requested service increases. The marginal cost decreases, which makes

it more attractive and likely for existing customers to form a new coalition with the customer

who just requested. This in turn causes the initial quote o�ered to the dynamic customer

that just became realized to decrease over time. This phenomenon can be undesirable since

higher initial quotes o�ered to early request dynamic customers may turn them away if a

�nite willingness-to-pay threshold is implemented. If those early request dynamic customers

decline service, the similar high level initial quotes will be o�ered to subsequent dynamic

customers who request service, and the same problem remains. For the same reason, it is also

undesirable that the initial quotes o�er to many realized dynamic customers drop below the

initial quote of advance customers.

2. We then study the �nal shared costs of all customers. It can be clearly seen from the graph that

the �nal shared cost curve nearly represents a �at line. The �nal shared cost per alpha values

across all advance and realized dynamic customers tend to be the same, which suggests that

all of the customers tend to form a single coalition. The synergy among customers becomes

so high that existing customers almost always can lower their shared costs by forming a new

coalition with the dynamic customer that just became realized. This may be undesirable since

customers that request early do not have any advantage over customers that request late. The

lack of di�erentiation in the �nal shared costs fails to encourage customers to request service

early. Given the discussion that the initial quotes o�ered to late request customers also tend

to be lower than those o�ered to early request customers, customers may even be persuaded

to request later.

A good mechanism should be able to demonstrate that it is more advantageous for each

customer to make its service request known early as an advance customer than to request late as

a dynamic customer. We seek to improve the performance of the HPOCS mechanism by providing

an extra incentive for customers to declare their requests early. Thus a modi�cation in HPOCS

mechanism favoring early customers is introduced in Section 5. Next, we propose to incorporate

a re-optimization method in generating total costs for partial schedules in purpose of boosting the

performance of our HPOCS mechanism by reducing the overall shared cost, whether it is the initial

quote or �nal price. The modi�ed HPOCS with the re-optimization method is presented in Section

6.
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6 Hybrid Proportional Online Cost Sharing with Discount

(HPOCSD)

In this section, we introduce a modi�cation of the HPOCS mechanism that aims to incentivize

customers to request service early. Generally speaking, this can be achieved by o�ering discounts

for advance customers to make it less costly to request early, and applying overcharge for dynamic

customers to make it more costly to request late. The actual charge to each customer equals to

its HPOCS shared cost times a cost modi�er, which can either re�ect a discount or an overcharge,

depending on whether the customer is an advance customer or an dynamic customer. The same

discount factor should be used for all advance customers in order to maintain the online fairness

property. However, the overcharge factor can be di�erent for di�erent dynamic customers, and may

be dependent on their actual request times. We design and study multiple heuristic methods for

calculating the suitable overcharge factor for realized dynamic customers, based on their request

orders and the discount factor for advance customers. In the following sections, we formally de�ne

the Hybrid Proportional Online Cost Sharing with Discount (HPOCSD) mechanism, study its

properties, and analyze experimental results under various demand scenarios.

6.1 Mechanism Design

In the HPOCS mechanism, the shared costs are the actual price values provided to the customers.

The idea behind HPOCSD is to use the modi�ed charges to substitute for the HPOCS shared costs

and o�er the modi�ed charges to the customers. All of the calculations of the total costs, marginal

costs, coalition cost per alpha values, shared costs, and the de�nition of coalitions remain the same

as de�ned by the HPOCS mechanism. Additional notations and de�nitions are as follows.

δ the discount factor

λi the cost modi�er of customer i

g(n, δ) the overcharge function

We require that 0 < δ ≤ 1 and that g(n, δ) ≥ 1,∀n, δ.

De�nition 21. For any time t ∈ [0, Tmax] and the corresponding set of customers who have

requested service C(t), the special request order π̄t, and any customer i ∈ C(t), let n be the index

order of the customer on request order π̄t. Equivalently, π̄t(n) = i for some 1 ≤ n ≤ |C(t)|. Then
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the cost modi�er of customer i under request order π̄t is de�ned as

λπ̄t(n) =


(1− δ) for 1 ≤ n ≤ |AC|

(1 + g(n, δ)) for |AC| < n ≤ |C(t)|
(74)

The cost modi�er for all advance customers is the same, and is equal to 1−δ. The cost modi�er for a

dynamic customer depends on the value of the function g(n, δ), which returns the overcharge factor

based on the request index of the customer and the discount factor used for advance customers.

Note that for each customer, its cost modi�er is �xed and independent of time, meaning that the

same factor will be applied to the sequence of shared costs of the customer.

De�nition 22. For any time t ∈ [0, Tmax] and the corresponding set of customers who have

requested service C(t), the special request order π̄t, and any customer i ∈ C(t), let n be the index

order of the customer on request order π̄t. Equivalently, π̄t(n) = i for some 1 ≤ n ≤ |C(t)|. Then

the charge of customer i at time t under request order π̄t is de�ned as

charget (π̄t(n)) = costt (π̄t(n))λπ̄t(n) (75)

where costt (π̄t(n)) denotes the HPOCS shared cost as de�ned in De�nition 13. charget (π̄t(n)) is

the value that is provided to the customer.

We de�ne the HPOCSD mechanism by using the same structure as the HPOCS mechanism

presented in Section 5.1, except that all costt (π̄t(n)) values are replaced with charget (π̄t(n)) values.

The same dynamic routing strategy presented in Section 5.3 is used for scheduling and routing

vehicles.

6.2 Analysis of Properties

We now discuss the properties of the HPOCSD mechanism.

Proposition 23. The HPOCSD mechanism satis�es the online fairness, immediate response, in-

dividual rationality, and ex-post incentive compatibility properties, provided that the overcharge

function g(n, δ) is nondecreasing in n.

Proof. We �rst prove the online fairness property. For any time t ∈ [0, Tmax] and the corresponding

set of customers who have requested service C(t), the special request order π̄t, and any customer
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i ∈ C(t), let n1 and n2 be two indices representing advance customers, 1 ≤ n1 ≤ n2 ≤ |AC|. Since

the HPOCS mechanism satis�es the online fairness property, we have

costt (π̄t(n1))

απ̄t(n1)
=
costt (π̄t(n2))

απ̄t(n2)
(76)

Since both n1 and n2 are advance customers, their cost modi�ers are the same and are equal to δ.

The equation above then implies that

charget (π̄t(n1))

απ̄t(n1)
=
costt (π̄t(n1)) (1− δ)

απ̄t(n1)
=
costt (π̄t(n2)) (1− δ)

απ̄t(n2)
=
charget (π̄t(n2))

απ̄t(n2)
(77)

which proves the online fairness property for advance customers. Now suppose n1 and n2 be two

indices representing dynamic customers, |AC| < n1 ≤ n2 ≤ |C(t)|. Since the HPOCS mechanism

satis�es the online fairness property, we have

costt (π̄t(n1))

απ̄t(n1)
≤ costt (π̄t(n2))

απ̄t(n2)
(78)

Given that both n1 and n2 are dynamic customers and that function g(n, δ) is nondecreasing in n,

we have 1 ≤ g(n1, δ) ≤ g(n2, δ). It then follows that

charget (π̄t(n1))

απ̄t(n1)
=
costt (π̄t(n1)) (1 + g(n1, δ))

απ̄t(n1)
≤ costt (π̄t(n)) 1 + g(n2, δ))

απ̄t(n2)
=
charget (π̄t(n2))

απ̄t(n2)

(79)

We have not proved that the online fairness property is satis�ed for both advance and realized

dynamic customers.

Similarly, given that for each customer i, the cost modi�er λi is �xed and independent of

time, and that the overcharge function g(n, δ) is nondecreasing in n, it can be proved that the

HPOCSD mechanism inherits the immediate response, individual rationality, and ex-post incentive

compatibility properties from the HPOCS mechanism.

Proposition 24. The HPOCSD mechanism is δ−budget balanced. That is to say, at any time

during the planning horizon, the sum of the charges for all customers that have become realized

recovers at least 100 × (1 − δ) percent of the total travel cost of the corresponding induced partial

schedule.
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Proof. For any grand schedule S̄, at time t = 0, C(0) = AC. We have

|AC|∑
n=1

charge0 (π̄0(n)) =

|AC|∑
n=1

cost0 (π̄0(n)) (1− δ) (80)

= (1− δ)× totalcost
(
S̄ (π̄0 (|AC|))

)
(81)

= (1− δ)× totalcost
(
S̄ (C(0))

)
(82)

Which means that at time t = 0, the sum of the charges for advance customers using the HPOCSD

mechanism recovers exactly 100 × (1 − δ) percent of the total travel cost of the partial solution

induced by S̄ and the set AC. Now consider any time during the planning horizon, 1 < t ≤ Tmax.

We have

|C(t)|∑
n=1

charget (π̄t(n)) =

|AC|∑
n=1

costt (π̄t(n)) (1− δ) +

|C(t)|∑
n=|AC|+1

costt (π̄t(n)) (1 + g(n, δ)) (83)

≥
|AC|∑
n=1

costt (π̄t(n)) (1− δ) +

|C(t)|∑
n=|AC|+1

costt (π̄t(n)) (1− δ) (84)

= (1− δ)×
|C(t)|∑
n=1

costt (π̄t(n)) (85)

= (1− δ)× totalcost
(
S̄ (π̄t (|C(t)|))

)
(86)

= (1− δ)× totalcost
(
S̄ (C(t))

)
(87)

where the inequality follows from the fact that the cost modi�er of any dynamic customer is always

greater than or equal to the cost modi�er of any advance customer, g(n, δ) ≥ (1−δ),∀n, δ. Equation

87 implies that the sum of the charges for all customers who have requested service recovers at least

100 × (1 − δ) percent of the total travel cost of the corresponding induced partial solution. Thus

we can conclude that the HPOCSD mechanism is δ−budget balanced.

In addition, we note that the equality in equation 84 is achieved if and only if 1 + g(n, δ) =

1 − δ, ∀n, δ. This can only be true if g(n, δ) = δ = 0, which implies that practically no discount

or overcharge is applied at all. Without the discounts and overcharges, the HPOCSD mechanism

reduces to the HPOCS mechanism. In the HPOCSD setup with strictly positive discounts and

overcharges, equation 84 will always imply an inequality relationship. It then follows that

|C(t)|∑
n=1

charget (π̄t(n)) > (1− δ)× totalcost
(
S̄ (C(t))

)
(88)
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at any time 1 < t ≤ Tmax. This means that the worst-case budget de�cit scenario always happens

at time t = 0, when there is no realized dynamic customer and the sum of the HPOCSD charges

recover exactly 100× (1− δ) percent of the total travel cost.

We have shown that the HPOCSD mechanism is approximately budget balanced. The loss of

the budget balance property is the sacri�ce that has to be made in order to encourage customers

to request early. Proposition 24 provides an upper bound on the worst-case budget de�cit, which

is dependent on the discount factor provided to the advance customers. Intuitively speaking, the

larger the discount, the more incentivize it provides to encourage customers to request early, and

the bigger the risk of not being able to recover the total operating cost. On the other hand,

Proposition 24 does not state that the HPOCSD mechanism will always incur a budget de�cit. It

could happen that the overcharge on dynamic customers recovers fully the discounts provided to

advance customers and a budget balance is achieved. It could also happen that the overcharge over

compensates for the discounts, such that a budget surplus is generated.

6.3 Experimental Analysis

We use the same experimental setup as introduced in Section 5.4. In our experiments, we use

the parameters ACPercent and RequestProb to adjust the mixture between advance and reali-

zed dynamic customers. Recall that ACPercent is the percentage of advance customers, and that

RequestProb is the probability that a dynamic customer requests service. Given the total number

of potential customers N , the number of advance customers is NAC = N × ACPercent, and the

expected number of realized dynamic customers is NERDC = N ×(1−ACPercent)×RequestProb.

For each realization of the dynamic vehicle routing problem, we solve the corresponding cost al-

location problem using the HPOCSD mechanism paired with one of the following three heuristic

methods for calculating the overcharge factors.

Level overcharge. The same overcharge factor is applied to all dynamic customers, no

matter they request early or late.

glevel(n, δ) =
δNAC
NERDC

× γlevel (89)

where δ is the discount factor used for advance customers and γlevel is a model parameter than can

by tuned via experiments. Equation 89 states that the overcharge factor for dynamic customers is

calculated based on and in proportion to the discount factor for advance customers. Since NAC
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and NERDC represent the (expected) number of customers and do not take into account the alpha

values, the parameter γlevel is needed to adjust the actual overcharge level in order to avoid any

systematic bias towards budget de�cit or budget surplus under di�erent demand scenarios.

Linear overcharge. The overcharge factor is designed to be linearly increasing over the

request order. Dynamic customers that request late will be assigned a higher overcharge factor

than those who request early.

glinear(n, δ) =
δNAC
NERDC

× (n+ 1−NAC)

NERDC
× γlinear (90)

Similarly as in the level overcharge heuristic, the above de�nition states that the linear overcharge

factor is calculated based on and in proportion to the discount factor, and is linearly increasing

over the request index n. Again, the parameter γlinear is needed to adjust the actual overcharge

level to avoid bias.

Exponential overcharge. The overcharge factor is designed to be exponentially increasing

over the request order, which provides smaller penalties for early request dynamic customers and

larger penalties for late request dynamic customers as compared to the linear overcharge heuristic.

gexp(n, δ) =
δNAC
NERDC

× (exp (γexp (n+ 1−NAC))− 1)

(exp (γexpNERDC)− 1)
× γ

′

exp (91)

Similarly as in the level overcharge heuristic, the above de�nition states that the exponential over-

charge factor is calculated based on and in proportion to the discount factor, and is exponentially

increasing over the request index n. Two parameters γexp and γ
′

exp are needed to adjust the actual

overcharge level to avoid bias.

Intuitively speaking, the larger the discount, the more signi�cant the e�ect of incentivizing

customers to request early. At the same time, the mechanism may be subject to bigger risks

of not being able to recover the total operating cost. Thus, it is worth examining the perfor-

mance of di�erent overcharge heuristics using di�erent discount factor levels. For each one of the

overcharge heuristics presented above, we perform simulations using four discount factors, namely

δ = 0.1, 0.2, 0.3 and 0.4. We use the same base case demand scenario as used in Section 5.4, where

ACPercent = 0.25 and RequestProb = 0.75.

Figures 5, 6, and 7 illustrate trajectories of the charge per alpha values of selected customers

when using the HPOCSD mechanism, when paired with the level, linear, and exponential overcharge

heuristics respectively. Each �gure contains four panels, and each panel contains the graph of the
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Figure 5: Trajectories of the charge per alpha values under HPOCSD with level overcharge

trajectories corresponding to one of the four discount factors that we have tested. On each graph,

the horizontal axis represents the request order. In this scenario, the �rst 25 positions of the request

order correspond to advance customers. The vertical axis represents the charge per alpha value.

Each trajectory on the graph represents a series of charge per alpha values of a selected customer.

The �rst data point on each trajectory shows the initial quote per alpha value of the customer.

There are �ve trajectories on each graph, and they correspond to the same customers across

di�erent graphs in di�erent �gures. For example, the �rst trajectory on any graph in any �gure

always correspond to the �rst advance customer on the special request order. The following four

series correspond to four dynamic customers. The particular customer they each represent follows

the same matching as shown in Figure 3.

1. It can be clearly observed from the graphs that for any overcharge heuristic using any of

the discount factors we tested, the trajectories corresponding to realized dynamic customers

always lie above the trajectory corresponding to the advance customer. It suggests that

the HPOCSD mechanism is e�ective in terms of separating advance and realized dynamic

customers into di�erent coalitions. The gap between the two groups of trajectories increases
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Figure 6: Trajectories of the charge per alpha values under HPOCSD with linear overcharge

as the discount factor increases, which con�rms the intuition that a larger discount factor

leads to a more signi�cant e�ect.

2. When using the level overcharge heuristic, as shown in Figure 5, the trajectories corresponding

to realized dynamic customers tend to overlap each other, following the same pattern as

observed for the baseline HPOCS mechanism. This is because the level overcharge heuristic

assigns the same overcharge factor to all realized dynamic customers, such that the charge

per alpha values among all dynamic customers tend to remain the same as for the HPOCS

mechanism. On the contrary, as shown in Figures 6 and 7, the linear and exponential heuristics

can di�erentiate realized dynamic customers among themselves, since both heuristics penalize

customers based on their request orders. Late request dynamic customers are penalized more

than early request dynamic customers. The phenomenon is more signi�cant when a larger

discount factor is used.

Figures 8, 9, and 10 show graphs of the initial quote per alpha and the �nal charge per

alpha values of all customers under the HPOCSD mechanism, when paired with the level, linear,

and exponential overcharge heuristics respectively. Each �gure contains four panels, and each
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Figure 7: Trajectories of the charge per alpha values under HPOCSD with exponential overcharge

panel contains the graph of the initial quotes and the �nal charges corresponding to one of the

four discount factors that we have tested. Recall that the initial quote is the �rst charge value a

customer receives and is the value that the customer has to use to make the decision of whether

to accept the service or not. The �nal charge is the price that the customer actually pays for the

service. These two values are the two most important charge values. All of the values shown on the

graph are on the per-alpha basis. On each graph, the horizontal axis represents the request order.

The vertical axis represents the charge per alpha value. The upper series contains the initial quotes

of all customers and the lower series contains the corresponding �nal charges. For each customer,

its initial quote is always greater than or equal to its �nal charge, as guaranteed by the immediate

response and individual rationality properties.

1. We start our analysis by focusing on the initial quote curve. When comparing the shape

of the initial quote curve to that of the baseline HPOCS model, it is evident that the �at

segment corresponding to advance customers is lowered and the part corresponding to realized

dynamic customers is raised. As a result, the probability that an advance customer accepts

its initial quote is increased if a �nite willingness-to-pay value is implemented. Meanwhile,
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Figure 8: Initial quotes and �nal charges under HPOCSD with level overcharge

dynamic customers are e�ectively penalized and the probability that they accept their initial

quotes may decrease. This phenomenon can be observed for all overcharge heuristics using

any of the discount factors we have tested. In addition, all of the overcharge heuristics are

shown to be more e�ective when a larger discount factor is used.

2. As discussed in Section 4.2.3, the online fairness property is only concerned with the �nal

charges of customers, rather than the initial quotes. Thus it is possible for a mechanism that

satis�es the online fairness property to have undesirable behavior associated with the initial

quotes. Indeed, we have discovered such an issue for the baseline HPOCS mechanism based

on Figure 4, namely that the initial quotes o�ered to late request dynamic customers may

drop below that o�ered to advance customers. In order to correct this issue, an e�ective

overcharge heuristic should raise the initial quotes for dynamic customers high enough such

that all of them are at least as high as that o�ered to advance customers. Based on Figure

8, a discount of 40% is needed under the level overcharge heuristic. Figures 9 and 10 suggest

that a discount of 30% is su�cient for the linear and exponential heuristics to be e�ective.

3. We now focus on the segment of the initial quote curve that corresponds to realized dynamic
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Figure 9: Initial quotes and �nal charges under HPOCSD with linear overcharge

customers. When using the level heuristic, this segment tends to keep its original shape as

shown in Figure 4. A spike in the initial quote is caused for dynamic customers who request

early, and the initial quotes for subsequent dynamic customers decrease over time. This e�ect

can be signi�cant when a big discount factor is used, and is clearly undesirable. On the other

hand, the linear and the exponential heuristics tend to �atten the segment of the initial quote

curve corresponding to realized dynamic customers, since both heuristics assign increasingly

larger overcharge factors to customers who request late. When using the exponential heuristic,

in particular, it can be observed that the decreasing trend can even be reversed at the tail of

the initial quote curve when using a discount factor that is large enough.

4. We then analyze the e�ect of discounts and overcharges on the �nal charges. Recall that

under the HPOCS mechanism, the �nal shared costs of all customers tend to be the same as

many dynamic customers become realized, as the synergy among customers becomes too high.

Figure 8, 9, and 10 show that all of the overcharge heuristics tested can prevent the advance

and realized dynamic customers to have the same �nal charge per alpha value, even when a

small discount factor is used. In particular, a jump in the �nal charge value can be observed
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Figure 10: Initial quotes and �nal charges under HPOCSD with exponential overcharge

for the �rst dynamic customer that becomes realized. In addition, the linear and exponential

heuristics cause the �nal charges for dynamic customers to resemble a linear and exponential

pattern respectively. Both e�ects are more signi�cant when a larger discount factor is used.

The simulation results discussed above suggest that larger discount factors are generally more

e�ective in terms of promoting customers to request early. Meanwhile, based on Proposition 24,

a larger discount factor could also lead to a bigger budget de�cit in the worst case. Thus it

is worth examining the performance of the HPOCSD mechanism on budget balance when using

di�erent overcharge heuristics and discount factors. We use the percentage of the cost recovered

as the performance measure. For each realization of the problem, each overcharge heuristic, and

each discount factor, we calculate the percentage of the total travel cost that can be recovered by

the sum of the �nal HPOCSD charges for all customers that become realized. In particular, the

percentage of the cost recovered pcr is calculated as

pcr =

∑|C(Tmax)|
n=1 chargeTmax (π̄Tmax (n))

totalcost(C (Tmax))
(92)
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By de�nition, pcr is a random variable that changes its value as the realization of the DVRP

changes. pcr = 100% suggests that perfect budget balance is achieved. pcr < 100% implies a

budget de�cit; the total charges collected from the customers cannot recover the total operating

cost. pcr > 100% means that the total charges collected exceeds the total operating cost, and a

surplus is generated. Due to the nature of the dynamic vehicle routing problem, each realization of

the problem may be di�erent in terms of the actual group of customers that become realized and

the request order among these customers. When positive discounts and overcharges are used, no

overcharge heuristic can guarantee consistently budget balance performance. Instead, the goal is

to eliminate systematic bias towards budget de�cit or surplus. This can be achieved by �ne tuning

the parameters of each overcharge heuristic such that the budget is balanced in the average sense.

Table 9 summarizes the percentage of the cost recovered values under the level, linear, and

exponential overcharge heuristics using di�erent discount factors ranging from 0.1 to 0.4. The results

shown are based on the demand scenario, where ACPercent = 0.25 and RequestProb = 0.75. We

simulate each heuristic paired with each discount level on 50 realizations of the DVRP. The same set

of realizations are used for all of the heuristic and discount level combinations. For each heuristic at

each discount level, we report the average percentage of the cost recovered, the minimum percentage

of the cost recovered among all realizations, and the maximum percentage of the cost recovered

among all realizations.

Percentage of the Cost Recovered
Avg. Min. Max. Avg. Min. Max. Avg. Min. Max.

Discount Level Linear Exponential
0.1 100.0% 99.3% 100.7% 100.1% 99.5% 100.7% 100.0% 99.4% 100.8%
0.2 100.0% 98.7% 101.4% 100.2% 98.9% 101.4% 100.1% 98.8% 101.5%
0.3 100.0% 98.0% 102.0% 100.2% 98.4% 102.2% 100.1% 98.2% 102.3%
0.4 100.0% 97.3% 102.7% 100.3% 97.8% 102.9% 100.2% 97.6% 103.0%

Table 9: Budget balance analysis of HPOCSD for the base case

1. The average percentage of the cost recovered across all heuristics at all discount levels are close

to 100%, which is the target value we use when �ne tuning the model parameters. Besides,

for each heuristic and discount level, the minimum and maximum percentage values of the

cost recovered are generally positioned symmetrically around the corresponding mean value.

Equivalently speaking, the maximum de�cit and the maximum surplus incurred among all

realizations are generally the same. For example, when using the level overcharge heuristic

with 10% discount, the maximum de�cit and surplus incurred both equal to 0.7%. This

implies that the parameter settings that we use are not biased towards budget balance or
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surplus, and lead to budget balanced cost allocations in general.

2. For all overcharge heuristics, there is bigger variation in the performance measure when a

larger discount factor is used. For example, when using the level overcharge heuristic with

40% discount, even though the HPOCSD mechanism is generally budget balanced on average,

it could incur either a 2.7% budget de�cit or a 2.7% budget surplus in the worst case. If a 10%

discount is used in the same heuristic, the worst-case deviations are both less than 1%. This

observation con�rms the discussion in Section 6.2, which argues that using larger discount

factors makes the heuristic more risky and vulnerable to worst-case performance.

3. When �xing the discount level, the minimum and maximum percentage of the cost recovered

do not vary signi�cantly across di�erent overcharge heuristics. This observation suggests that

the level, linear, and exponential heuristics display similar worst-case performance.

Based on the above analysis, it can be concluded that the HPOCSD mechanism can indeed

resolve the problems observed for the HPOCS mechanism, at the cost of losing the budget balance

property of the original formulation. Nevertheless, the HPOCSD mechanism remains approximately

budget balanced. Among the heuristics we have tested, the exponential overcharge heuristic is more

e�ective in providing more of an incentive to make an advance or early dynamic request than the

other two options.
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7 Hybrid Proportional Online Cost Sharing with Re-optimization

(HPOCSrO)

In this section, we propose to incorporate re-optimization to tackle the problem in HPOCS that

the grand solution used to calculate total cost may perform poorly when the request probability is

low and the number of realized customers is small since the operation cost of the grand schedule

is less representative of the actual total cost. This problem will not only cause advance customers

to have higher initial quotes and lose the advantage of requesting in advance, but also drive the

�nal total cost far away from optimal, making all the customers' �nal cost less than ideal. In

general, we address the above problem by replacing the grand solution in HPOCS with repeated

re-optimization to compute the schedule that can reduce the total cost and therefore boost the

overall performance of the HPOCS mechanism. However, this modi�cation itself has a major

issue of violating one of the desired properties of a well-designed cost sharing scheme, the ex-post

incentive compatibility property. We �rst introduce the mechanism design for HPOCSrO and then

we analyze the properties of this mechanism. Finally we present some experimental results showing

the advantage of HPOCSrO and investigate the impact it has after losing the ex-post incentive

compatibility property.

7.1 Mechanism Design

The HPOCSrO mechanism shares the same framework as the HPOCS mechanism, with the ex-

ception that the total cost function is de�ned di�erently. Recall in Section 5.4 that the grand

schedule S̄ is calculated based on solving a deterministic VRP problem. Di�erently, the HPOCSrO

mechanism calculates a partial schedule initially as well as throughout the whole time horizon. The

general framework of the proposed mechanism can be summarized as follows.

Initialization. t = 0. Formulate a static vehicle routing problem corresponding to the set

of customers AC and construct the partial solution S̄ (AC) using the same heuristics as the grand

solution S̄.

Quoting advance customers. All advance customers receive their initial quotes at time

t = 0. This step calculates the advance cost per alpha value acpa and the shared cost of each

advance customer using the same method as in HPOCS (see Section 5.1).

Quoting dynamic customers. A dynamic customer i receives its initial quote when it

requests service at time t = ui. Customer i is added into the existing partial schedule using the
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cheapest insertion method [13]. Then the mechanism updates the total cost and calculates the

shared cost accordingly.

Re-optimizing and updating the costs. At each decision epoch, the same heuristics in

[13] are used to optimize the current partial schedule resulting in a reduction in the total cost and

the shared cost of all customers who have requested service by this decision epoch are updated.

Final shared costs. At time t = Tmax, all of the randomness in system has been realized.

The solution schedule consisting of all advance and realized dynamic customers is produced and

the shared cost of these customers at time Tmax is outputted as the �nal cost of service for them.

7.2 Analysis of Property

Given that the HPOCS mechanism is proven to possess all the desirable properties discussed in

Section 5.3, it follows that the HPOCSrO mechanism also possesses these properties except for the

ex-post incentive compatibility property.

Recall in Section 5.3, we explain that in order for a proportional online cost sharing mechanism

to satisfy all �ve desirable properties, its total cost function should be non-decreasing over time and

be independent of the request order at any time. It is trivial to show that the HPOCSrO mechanism

does not satisfy the �rst assumption. The total cost function over time is not an optimal solution

to the current customer group but rather a good solution obtained by local search heuristics. In

other words, adding a customer into the dynamic vehicle route after a re-optimization is executed

may have less total cost than before. Removing this assumption will lead to the loss of ex-post

incentive compatibility property which implies that if we can prove that the total cost function

in the HPOCSrO mechanism satis�es the independence assumption, all the other four desirable

properties are maintained [21].

Proposition 25. For any partial solution St, t ∈ [0, Tmax] and the corresponding set of customers

who have requested service C(t), the special request order π̄t, and any integer n ∈ [1, |C(t)|], the

HPOCSrO total cost function totalcost(St(π̄t(n))) is independent of the request order of customers

{πt (1) , . . . , πt (n)}.

Proof. The partial solution St(πt(n)) is constructed by inserting a new dynamic customer using the

cheapest insertion method. As a result, St(πt(n)) is only concerned with the set of customers that

have requested service, but not about the ordering of the requests. Therefore, for any two di�erent

orderings πt and π
′

t containing the same n customers, we have St(πt(n)) = St(π
′

t(n)).
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Given Proposition 25, and following the same framework as in HPOCS, we can conclude that

the HPOCSrO mechanism satis�es the online fairness, immediate response, individual rationality

and budget balance properties.

7.3 Experimental Analysis

We now present simulation results to show the e�ectiveness of the HPOCSrO mechanism in impro-

ving the overall performance.

In order to compare the result with HPOCS, we use the same experimental setup as in Section

4.4. For HPOCSrO, the number of decision epochs which we use to re-optimize the partial solution

is set at 20 which is shown to be a nice balance between identifying improvements in the solution

quality and computation time [13].

The HPOCS mechanism holds all the desirable properties of a cost-sharing mechanism but

could perform poorly in terms of the �nal shared cost when the number of dynamic customers is

small, and this e�ect is magni�ed when the number of customers requesting service is small. We use

the scenarios as shown in Table 10 to compare the di�erences of the two above routing strategies

where RequestProb represents the probability of requesting service among dynamic customers and

# of Advance Customers represents the number of advance customers in those scenarios.

RequestProb 0.25 0.5
# of Advance Customers 10 25 10 25

Table 10: Scenarios of the simulation instances

Figures 11 - 14 show graphs of the initial quote per alpha value (with legend "Initial quote")

and the �nal shared cost per alpha value (with legend "Final price") of all customers under the two

strategies in each scenario. Each graph represents a scenario and the 2 panels within the graph are

the routing performances corresponding to the two strategies: HPOCS and HPOCSrO.

Based on the simulation results, we can make the following observations:

1. We �rst examine the initial quotes. We �nd that the HPOCS results exhibit a downward

trend with customers who call in later having a lower initial quote than the earlier custo-

mers, favoring those who request later than advance customers as described in Section 5.4.

The HPOCSrO results have a smaller slope which implies dynamic customers bene�t less by

delaying.

2. We then examine the �nal shared cost. We �nd that HPOCSrO has a smaller �nal shared
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Scenario 1: # Advance Customers = 10; RequestProb = 0.25

Figure 11: Initial quote and �nal shared cost of the two methods in scenario 1

Scenario 2: # Advance Customers = 25; RequestProb = 0.25

Figure 12: Initial quote and �nal shared cost of the two methods in scenario 2

cost indicating the e�ciency of the re-optimization approach in reducing the �nal shared cost

of each customer.

3. Next, when we �x the number of advance customers, as the probability of a dynamic customer

calling in (RequestProb) gets higher, both methods encounter a lower �nal price. When we

�x the probability of dynamic customers calling in (RequestProb), as the number of advance

customers gets larger, the initial quote performance for both methods gets better in that less

dynamic customers bene�t from having a lower initial quote than advance customers and

dynamic customers who request later will be less likely to have a lower initial quote than its

predecessors. The �nal shared cost performance depends on the number of total customers

who actually request service.

Given the above analysis, we can conclude that the HPOCSrO mechanism does help improve

the overall performance of the proportional cost sharing design. However, we need to keep in mind
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Scenario 3: # Advance Customers = 10; RequestProb = 0.5

Figure 13: Initial quote and �nal shared cost of the two methods in scenario 3

Scenario 4: # Advance Customers = 25; RequestProb = 0.5

Figure 14: Initial quote and �nal shared cost of the two methods in scenario 4

that it su�ers from the consequences of losing the ex-post incentive compatibility property which

we will investigate next.

To test the impact of losing the ex-post incentive compatibility property, we look into scenarios

where there are 21 dynamic customers and the number of advance customers is 0, 10, and 20

respectively. Notice that each scenario has 100 instances that shares the same generating method

as the previous simulations. We then introduce the concept of Delay Slot which is a slot where

the �rst dynamic customer is delayed to. For example, delay slot 6 means the previous 1st dynamic

customer is now the 6th dynamic customer in the ex-post instance. For each scenario, all 100

instances are evaluated, and for each instance, we select 5 slots that are evenly distributed, namely

the 2nd, 6th, 11th, 16th and 21st slots. This results in altogether 100 × 5 = 500 samples for each

scenario. And if we aggregate all scenarios into one, the 1500 samples with 300 instances for each

delay slot give us the general impact of losing ex-post incentive compatibility property regardless

of scenario settings.
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All scenarios are compared based on �nal shared cost per alpha value. The average results of

the 500 samples for each scenario is displayed in Table 11. The 2nd, 3rd and 4th columns of the table

display the percentage of getting a lower or higher or the same �nal shared cost when a dynamic

customer delays its request submission. The 5th column depicts how the �nal shared cost for a

delayed customer changes overall in each scenario. Speci�cally, a positive percentage indicates the

�nal shared cost of the customer generally gets worse by delaying its submission while a negative

percentage indicates the other way around. Table 11 shows that as the number of advance customers

increases, both the chances of resulting in a higher �nal shared cost and a lower �nal shared cost

increase. And in total, 32.1% of the time, a customer who delays its request submission shall end

up with lower �nal shared cost while 55% of the time the cost ends up higher.

Scenarios % Better o� % Worse % Same AVG Price Change
0AC_21DC 27.2% 50.6% 22.2% 8.871%
10AC_21DC 32.4% 56.8% 10.8% 8.623%
20AC_21DC 36.6% 57.6% 5.8% 5.921%

Total 32.1% 55.0% 12.9% 7.805%

Table 11: Average gap results of 500 samples in each scenario

We next take a closer look at the detailed results for each slot. Notice that each slot has 100

instances as samples. Percentage-wise, we observe in Table 12 a downward trend after slot 11 in

each scenario and an upward trend showing positive correlation between the number of advance

customers and the percentage of customers getting better o� if delayed until slot 16. Similarly in

Table 13, we observe an upward trend of the percentage of customers getting worse o� across all

scenarios.

Scenarios Slot 2 Slot 6 Slot 11 Slot 16 Slot 21
0AC_21DC 20% 37% 28% 33% 18%
10AC_21DC 30% 39% 39% 31% 23%
20AC_21DC 44% 40% 44% 41% 14%

Total 31.3% 38.7% 37.0% 35.0% 18.3%

Table 12: Percentage of customers better o� in each slot across di�erent scenarios

Scenarios Slot 2 Slot 6 Slot 11 Slot 16 Slot 21
0AC_21DC 12% 37% 63% 59% 82%
10AC_21DC 35% 50% 55% 67% 77%
20AC_21DC 40% 53% 52% 57% 86%

Total 29.0% 46.7% 56.7% 61.0% 81.7%

Table 13: Percentage of customers worse o� in each slot across di�erent scenarios

How price change performs in the di�erent scenarios are illustrated in Table 14. From the
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results, we can conclude that between slot 2 and slot 16, on average, there is an upward trend for

the level of getting worse o�. In other words, a customer is likely to be charged more as it delays

its submission time to slot 6 or later. And when we look at the results in slot 21, the surge in �nal

shared cost is so high that no customer is likely to delay its request to the last one.

Scenarios Slot 2 Slot 6 Slot 11 Slot 16 Slot 21
0AC_21DC −0.433% 0.837% 1.803% 2.905% 51.782%
10AC_21DC 0.267% 0.036% 1.183% 2.767% 63.275%
20AC_21DC 0.276% 0.706% 1.258% 3.147% 47.849%

Total −0.007% 0.541% 1.449% 2.928% 54.391%

Table 14: Average price change of delayed customers in each slot across di�erent scenarios

In general, the HPOCSrO mechanism can reduce the �nal shared cost of all the customers

but at the expense of loss of the ex-post incentive compatibility property. For the tested scenarios,

in most cases, the customers are worse o� by delaying.

70



8 Implementation

This project addresses a real-time online cost sharing problem with uncertainties in customer re-

quests. A typical application of this project is in the trucking delivery industry, i.e., companies

consolidating and delivering shipments from multiple suppliers to their multiple destinations that

are rather short. Trucking is the major form of transportation used in moving goods within the

Los Angeles region, and has the highest level of interaction with other social functions. Methods

that can encourage consolidated delivery will improve the e�ciency of truck usage and possibly

improve the overall logistics network and reduce tra�c congestion in urban areas. In particular,

this research project tackles the problem by proposing a cost-sharing mechanism that has the de-

sirable properties to stimulate owners with small loads of goods to collaborate with others and

delivering companies to provide sharing delivery services. This is inclined to mitigate truck tra�c

by reducing total vehicle miles and number of vehicles used through better planning when faced

with uncertainties.

The implementation of our proposed mechanism in detail will require suitable programming

software tools such as C++, Java, etc. It also requires access to real-world customer request data

such as distance and/or travel time between facilities, and historical information on the earliest

and the latest time shipments are allowed to be picked up, and the service time of processing the

shipments. The entire solution framework including DVRP heuristics is implemented in C++. The

same code is used to generate the experimental results presented in the report.
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9 Conclusion and Future Directions

In this report, we study the problem of building a real-time cost sharing transportation system,

which results from horizontal cooperation among multiple suppliers. In this problem, part of the

customer requests are known at the beginning of the planning horizon, while the rest of the requests

become realized dynamically over time. There are two major research issues closely related to

the problem we study, namely the dynamic vehicle routing problem (DVRP) and cost-sharing

mechanism design.

Based on the study of the DVRP, we study how the total operating cost should be allocated

to each customer for a dynamic routing environment. To this end, we �rst de�ne the online cost

allocation problem associated with the DVRP, and discuss a list of desirable properties for on-

line cost-sharing mechanisms. We develop the Hybrid Proportional Online Cost Sharing (HPOCS)

mechanism as an online cost-sharing mechanism that combines proportional cost sharing for calcu-

lating the initial quotes for advance customers and the Proportional Online Cost Sharing (POCS)

mechanism [21] for handling dynamic customer requests. The idea behind HPOCS is that customers

can choose to form coalitions with customers who request service directly after them to decrease

their shared costs. It is proved that the HPOCS mechanism satis�es all of the desirable properties

we propose, including online fairness, budget balance, immediate response, individual rationality,

and ex-post incentive compatibility.

The baseline HPOCS model is extended to two directions. One extension is to incorporate

discounts for advance customers and overcharges for dynamic customers, which both help to in-

centivize customers to request early. The new HPOCSD mechanism is proved to be approximately

budget balanced. All of the other properties of HPOCS are preserved. We compare and contrast

multiple heuristics methods for calculating the overcharge factors. Simulation results show that

among the three heuristics we have tested, the exponential overcharge method appears to be the

most e�ective.The other extension is to incorporate periodic re-optimization to improve the perfor-

mance on the �nal shared cost for the customers. In experiments across multiple scenarios, though

losing the ex-post incentive compatibility property, HPOCSrO is shown to be a good mechanism

design alternative to HPOCS when the RequestProb is low and the number of all realized customers

is small since the grand schedule in HPOCS assumes all customers request service before operating

service and is therefore less representative of the actual total cost.

More work can be done along the lines of improving the HPOCS mechanism. For example,

while incorporating the dynamic vehicle framework to calculate the shared costs, we can add cu-
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stomer forecasting to see if it can further reduce the �nal shared costs. Additionally, there may

exist other approaches to improve the HPOCS mechanism, possibly at the cost of sacri�cing one or

more of the desirable properties.
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