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Abstract 

Comprehensive archives of regional real-time transportation system data, drawn from public 

agency fixed and moving detectors and integrated across travel modes, can provide 

unprecedented opportunities for precise and reliable system performance analysis at relatively 

low costs.  Our access to the state-of-the-art Archived Data Management System (ADMS), a 

large transportation data archive in Los Angeles, has made possible new research aimed at 

developing strategies to improve the efficiency and productivity of urban transportation systems.  

This project, an application of the ADMS, presents a flexible framework to examine the 

characteristics and explanatory factors associated with intra-metropolitan variation in highway 

system performance in Los Angeles County.  Using one year of highway data and employing 

three different performance measures that capture network traffic congestion, flow and 

reliability, we analyze the effects of systematic, random and land use factors on performance 

variation.  We find that performance differs across different types of highway segments, and that 

population density and accidents are significant factors in explaining these differences. Our study 

sheds new light on spatiotemporal variations in highway system performance within a large and 

congested metropolitan area.  We underscore the need for investing in regional data archives, and 

applying them for research and analysis in order to improve planning and system management. 
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1. INTRODUCTION 

The increasing availability of archived real-time transportation system data provides new 

opportunities for transportation system performance analysis across highly disaggregate units of 

space and time, and for developing tools and strategies to improve the efficiency and 

productivity of urban transportation systems.  In this research we demonstrate an application of 

the Archived Data Management System (ADMS), a comprehensive archive of real-time multi-

modal transportation system data in the Los Angeles region, to examine the characteristics and 

determinants of intra-metropolitan variation in highway system performance in Los Angeles 

County.  Better understanding of performance variation supports more effective transportation 

system management. 

The ADMS program (2010-) funded by the Los Angeles County Metropolitan 

Transportation Authority (Metro) has two objectives: 1) to develop a comprehensive historical 

archive of real-time (and near real-time) as well as periodically updated transportation network 

and system performance data from a variety of sources and modes (in the Los Angeles 

metropolitan region), with the archive structured as a geo-referenced relational scalable-

queryable database, and 2) to demonstrate how the archive can be used for improving 

transportation planning, operations, and management.  The program resulted in the creation of a 

multi-modal data archive that has few parallels1 in the US in terms of variety (number of modes 

and data items), granularity (both spatial and temporal), and database architecture (e.g. for 

efficient streaming data cleaning, and for big data storage, processing, and querying).  The 

ADMS currently includes historical real-time data (starting October 2011) from over 5,000 

highway sensors, 10,000 arterial sensors, ramp meters, video cameras, bus and rail vehicles 

                                                           
1 Comparable projects include the California PeMS (http://pems.dot.ca.gov/), RITIS 

(http://www.cattlab.umd.edu/?portfolio=ritis), and PORTAL (http://portal.its.pdx.edu/home/); links accessed on 

October 20, 2016. 
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(GPS), and event/incident feeds derived from RIITS (Regional Integration of Intelligent 

Transportation Systems (RIITS; https://www.riits.net/; link accessed on October 20, 2016), that 

integrates ITS data produced by several state and local agencies.  RIITS-based data is 

supplemented with transit service supply, demand, and performance data, and multi-modal 

network configuration data.  The ADMS has built-in data cleaning and processing techniques for 

both streaming and static data to improve the quality and integrity of the archive. 

The ADMS employs new methods for high-rate streaming data retrieval, processing, 

storage, querying, analysis and visualization using Microsoft StreamInsight, Oracle database, and 

hierarchical multi-dimensional Data Cubes.  Transportation applications include integrated 

corridor monitoring (Giuliano et al., 2016), regional monitoring (Giuliano et al., 2014), transit 

performance analysis (Chakrabarti and Giuliano, 2015; Chakrabarti, 2015), etc.  This project is 

an extension of our regional traffic performance monitoring research.  In the past, we developed 

a flexible method for monitoring regional and sub-regional highway and arterial traffic system 

performance across different time periods and locations, taking into account the spatial 

heterogeneity of sensor locations and data unavailability due to failed sensors or poor data 

quality.  In this project, we leverage the ADMS to better understand variation in performance 

across and within functionally comparable highway sections across different time periods and 

locations.  

The limitations of traditional agency traffic counts (e.g. archives of average daily or 

peak-period vehicle counts or spot-speeds at select locations derived from periodic short-

duration surveys) as well as third-party probe data (e.g. archives of traffic parameters derived 

actively or passively from personal GPS device traces using proprietary – “black box” – 

methods) are well established.  Our study demonstrates how archived real-time data from public 
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agency owned fixed highway traffic sensors (infrastructure already available or being installed in 

most US cities) can help analyze system performance (e.g. recurrent and non-recurrent 

congestion, travel time reliability, etc.) better, and thereby advance urban transportation planning 

in addition to real-time information dissemination (via CMS) or incident detection and 

management applications.   

Our analysis consists of four parts: 1) classify the highway system into functionally 

similar clusters or groups, and analyze variation in system performance across the groups; 2) 

investigate whether significant performance variation exists across roadway sections within the 

groups, and also compare within-variations across the groups; 3) analyze the characteristics and 

sources of performance variations (within each group, and regionally) by exploring systematic, 

idiosyncratic/random and land use factors; and 4) consider how our study could be used to help 

regional planners in their system performance improvement efforts.   

We use traffic speed, flow (or volume) and buffer index (a measure of travel time 

unreliability) as test performance measures.  We conduct our analysis using one year (January 1 

to December 31, 2014) of highway traffic data for Los Angeles County from the ADMS, over 

five different weekday time periods (AM peak, PM peak, and three off-peaks).  Our research 

provides new information to transportation agencies for monitoring and managing their systems 

effectively, for evaluating expected performance changes in response to interventions and 

external changes, and for making better informed investment decisions.  

The remainder of this report is organized as follows.  We first present a brief review of 

the state-of-the-art and state-of-practice of highway performance measurement, monitoring, and 

analysis approaches in the US.  Next, we introduce our data and performance measures.  We then 
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present our analysis with discussion on findings.  Finally, we conclude the report with takeaways 

for practice and future directions of research. 
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2. LITERATURE REVIEW 

Regional, sub-regional and corridor-level traffic system performance measurement and 

analysis, across modes, are critical for effective day-to-day operations as well as long-term 

planning and system management (Shaw, 2003).  Performance analysis, across suitable units of 

space and time, help agencies explore, implement and evaluate strategies aimed at increasing 

throughput, minimizing delays and improving travel time reliability.  For the highway system, 

fixed roadway sensors (e.g. loop detectors) can serve as a good data source if they are available 

and provide satisfactory spatial coverage, and if a system for archiving historical data exists.  

Sometimes agencies conduct periodic manual or automatic traffic surveys to supplement sensor 

data for achieving better spatial coverage and quality, particularly for short-duration and special-

needs programs (FHWA, 2013).  Surveys, in fact, are regularly used as the sole basis for 

performance analyses by agencies in poorly instrumented areas, and by those that do not have the 

capacity to store and process large volumes of sensor data.  The recent phenomenon of probe-

based crowd-sourced data from global positioning systems (GPS) and smart phones have led to 

new data via third-party service providers (e.g. INRIX, HERE, etc.) and hence new opportunities 

for performance measurement and analysis (Pu and Meese, 2013).  Such data, however, has 

problems.  Private parties in the increasingly competitive traffic data marketplace typically do 

not disclose the sources from which they derive raw traffic data; they also consider their data 

fusion and processing techniques to be proprietary.  Comparison of INRIX speed data, for 

example, against loop detector data reveal issues such as repeated reporting of same speeds (e.g. 

see Kim and Coifman, 2014). 

Data availability and quality determines performance measurement and hence 

comprehensive analysis.  Review of the highway traffic performance measurement literature 
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reveals a disconnect between theory (and small-scale test applications) and practice.  Researchers 

continue to identify various dimensions of corridor-level and regional highway performance 

(particularly capturing recurrent and non-recurrent congestion), propose many innovative 

measures, and suggest new data and infrastructure requirements (Meyer, 1995; Pratt and Lomax, 

1996; Turner et al., 1996; Lomax et al., 1997; Cambridge Systematics et al., 1998; Jackson et al., 

2000; Margiotta et al., 2006; Cambridge Systematics et al., 2008; Cambridge Systematics, 2014; 

Yang et al., 2015; Zhang et al., 2015; Brennan et al., 2015).  And new regional analysis research 

is made possible by new data sources (e.g. Sweet et al., 2015).  The current state of practice in 

performance measurement (and monitoring) and analysis in the US, however, is highly aggregate 

with respect to both space and time, particularly because gathering sufficient (and appropriate) 

traffic data and then archiving the data have proved to be costly and technically challenging for 

government agencies (e.g. see SCAG, 2007; 2015 TTI Urban Mobility Scorecard; National 

Transportation Statistics, etc.).  Government-mandated regular performance monitoring tends to 

happen monthly or annually over large geographies (e.g. state-wide or city-wide) using 

traditional measures (e.g. vehicle miles traveled derived from sample survey data).  The lack of 

precision or spatiotemporal resolution of the underlying data, and hence the system performance 

measures, often limits the analyses required for making critical investment or management 

decisions.   

The most extensive traffic system performance monitoring takes place as a result of 

federal policy.  Federal laws require states to submit both monthly and yearly traffic data to the 

FHWA for two different programs: 1) FHWA Traffic Volume Trends, and 2) Highway 

Performance Monitoring System (HPMS).  These data, primarily derived from periodic manual 

or automatic traffic surveys across a relatively small sample of public roads belonging to various 
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functional classes and published by the US Department of Transportation, are used for assessing 

highway system performance and to aid federal decision-making regarding future highway 

investments.   

At the metropolitan area level, system performance measurement and monitoring 

depends on specific needs and how areas are instrumented.  Transportation agencies in large 

metropolitan areas typically use real-time sensor data for real-time monitoring of traffic 

incidents, current speeds, lane closures and for other short-term needs.  Departments of 

transportation and regional metropolitan planning organizations seldom use real-time traffic 

sensor data for travel demand modeling or long-range planning, relying instead on imprecise 

sample survey data aggregated and averaged across relatively large units of space and/or time. 

Our access to a historical archive of highly disaggregate highway traffic data with good 

quality and spatial coverage from the Los Angeles region made it possible to conduct regional 

system performance analysis in a comprehensive way.  Specifically, the data made possible the 

measurement and comparison of performance across any times of day, days of week, or seasons, 

or across road segments, corridors, or cities.  The possible space/time combinations are almost 

limitless.  Our research demonstrates how metropolitan planning agencies can utilize their assets 

more effectively for conducting performance analysis by investing in and using comprehensive 

data archives.    
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3. DATA AND MEASURES 

In this study, we analyze highway traffic within Los Angeles County – our study area.  

We derive highway network configuration data from three different sources.  We use mainline 

highway sections from the 2012-HPMS shapefile (available from 

https://www.fhwa.dot.gov/policyinformation/hpms/shapefiles.cfm; link last accessed on October 

20, 2016).  We then add on/off ramps and interchanges from the 2012-SCAG (Southern 

California Association of Governments) network file.  Finally, we add HOV/HOT lane 

information from the Caltrans GIS data portal (http://www.dot.ca.gov/hq/tsip/gis/datalibrary/; 

link last accessed on October 20, 2016).  The three data sources complement each other and help 

compile the complete set of fixed network attributes (configuration) required for this analysis.  

Our mainline sections (one- or two-way facilities) fall under the following HPMS-defined 

functional systems: Interstate; Principal Arterial - Other Freeways and Expressways; Principal 

Arterial – Other; and Minor Arterial.  There are a total of 4597 mainline sections (each section is 

a single polyline representing all lanes across both directions) of varying lengths.  Section length 

is defined arbitrarily in the HPMS, and is of no importance in the context of this analysis. 

Traffic data for the LA County highway system is available from 1776 Caltrans (District 

7) traffic sensor stations.  A sensor station provides average speed (mph; capped at 70), 

occupancy (percent of time a sensor is covered, partly or fully, by a vehicle) and flow (vehicles 

per hour per lane) updates, aggregated across all lanes in a given direction, every 30 seconds to 

the ADMS via the RIITS network.  We cleaned the raw data, and aggregated speed and volume 

records to 15-min intervals.  More than 42 million 15-minute aggregated records are used as the 

basis for this analysis. 
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We downloaded geocoded highway traffic accident (collision) data for 2014 from 

California-SWITRS (Statewide Integrated Traffic Records System).  The data is collected from 

accident scenes by California Highway Patrol staff.  34,027 accidents are used in this analysis.   

Census tract level population density data is derived from the American Community 

Survey 2010-14 5-year estimates; average population density of underlying census tracts (in 

persons per sq. mi.) is attached to each highway section. 

We use average (year 2014) speed, volume and buffer index as our performance 

measures for five different time periods of weekday: Early AM (midnight to 6 AM), AM Peak (6 

AM to 9 AM), Midday (9 AM to 3 PM), PM Peak (3 PM to 7 PM) and Night (7 PM to 

midnight).   

Buffer index (defined as the estimated additional time, expressed as percent of the mean 

travel time, that travelers need to budget in order to ensure on-time arrival) of a given section for 

a given time period of day, observed over a specified time (year 2014 in the context of this 

study) is estimated using the following formula: 

𝐵𝑢𝑓𝑓𝑒𝑟 𝐼𝑛𝑑𝑒𝑥 =
95𝑡ℎ 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒 𝑡𝑟𝑎𝑣𝑒𝑙 𝑡𝑖𝑚𝑒−𝑀𝑒𝑎𝑛 𝑡𝑟𝑎𝑣𝑒𝑙 𝑡𝑖𝑚𝑒

𝑀𝑒𝑎𝑛 𝑡𝑟𝑎𝑣𝑒𝑙 𝑡𝑖𝑚𝑒
× 100          (1) 
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4. ANALYSES AND DISCUSSIONS 

4.1 Custer analysis 

The first step is to classify highway sections within Los Angeles County into functionally 

similar clusters or groups.  We select a series of attributes to define a particular highway section, 

and then conduct a cluster analysis on the attributes to group the sections.  The attributes include 

measures of demand or use and roadway configuration or geometry, based on the fundamentals 

of traffic flow and our previous research on regional multi-modal transportation system 

monitoring (Giuliano et al., 2014).  See Table 1.   

Table 1: Summary of section attributes 
Variable (continuous) Count Mean Std. Dev. Min Max 

Annual Average Daily Traffic (AADT) 4,597 164880 94094 185 348000 

Through lanes 4,597 8 3 2 16 

Per-lane AADT 4,597 20261 11004 93 92667 

Variable (binary/categorical) Count (and %) of sections 

HOV/HOT lanes  

No 2270 (49.38%) 

Yes 2327 (50.62%) 

Ramp/intersection density (RID)  

0 (none) 1241 (27.00%) 

1 (low) 573 (12.46%) 

2 (med) 1144 (24.89%) 

3 (high) 1639 (35.65%) 

 

While section level AADT (annual average daily traffic), no. of through lanes, and 

presence of HOV/HOT lanes are available from agency datasets, information on the presence 

(and density) of ramps and interchanges required additional data processing. 

Clusters of ramps and interchanges are identified by first defining 100 m buffers around 

individual on/off ramps and interchange sections, and then by aggregating/merging the buffer 

polygons based on their spatial location (distance between polygons<100 m  combine).  The 

operation produces 256 distinct ramp/interchange clusters.  Based on the sizes of the cluster 

polygons, the ramp/interchange clusters are classified into large (area>90th percentile), medium 
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(area>median but <90th percentile), and small (area<median).  The mainline highway sections 

are each assigned a “ramp/interchange density” (RID) attribute (categorical variable) based on 

the cluster that they intersect with.  Section RID=3, 2, or 1 when an intersecting cluster polygon 

is large, medium, or small respectively.  If a section intersects with two or more clusters falling 

into two or more classes, the larger cluster is considered for determining RID.  If a section does 

not intersect any cluster, then RID=0.  A map of RID values assigned to highways sections 

within LA County is given in Figure 1.  Observe, for example, the high RID values of sections 

near freeway interchanges, and low (or zero) RID values of sections in relatively low-density 

outlying areas. 

Figure 1: Ramp/intersection density (RID) by highway section 

 

Although per-lane AADT is a useful measure of density of demand, we do not include 

the variable in our cluster analysis because it is highly correlated (correlation coefficient of 0.80) 
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with the AADT variable across the 4597 highway sections.  We tested various clustering 

approaches, and finally used the K-means cluster analysis approach with Gower dissimilarity 

measure (suitable for mixed – continuous and binary – data) and five groups.  This method 

produces practical results, and the generated groups are sufficiently distinct from each other in 

terms of demand and geometry.  The output is meaningful and helps understand the structure of 

the highway network in LA County effectively.  Table 2 presents a summary of section 

attributes by group. 

Table 2: Summary of attributes by group 

Attributes 
Group 

A B C D E 

No. of sections 1639 966 275 1144 573 

% of total sections 35.65 21.01 5.98 24.89 12.46 

% of total highway lane miles 31.97 23.49 5.44 25.11 13.98 

      

Avg. AADT 216,273 42,900 181,530 181,900 181,542 

Avg. through lanes 8.68 4.34 8.54 8.28 8.24 

Avg. per lane AADT 26,242 7,914 20,885 21,473 21,245 

HOV/HOT lanes (% sections in group)      

No 39 100 0 37 43 

Yes 61 0 100 63 57 

RID (% sections in group)      

0 (none) 0 100 100 0 0 

1 (low) 0 0 0 0 100 

2 (med) 0 0 0 100 0 

3 (high) 100 0 0 0 0 

HPMS highway functional system (% 

sections in group)      

Interstate  57.17 10.56 51.27 53.85 58.12 

Principal Arterial - Other Fwy. and Exp.  40.51 5.80 32.36 36.45 30.54 

Principal Arterial - Other  2.32 63.15 16.36 9.70 11.34 

Minor Arterial  0 20.50 0 0 0 

 

Group A, the largest group in terms of both number of sections and lane-miles, includes 

highest-volume sections with about nine lanes (both directions), mostly containing HOV/HOT 

lanes and located around interchanges or areas with high density of on/off ramps.  On average, 

sections in Group B have low daily volumes, four lanes (two in each direction), no HOV/HOT 

lanes, and no ramps.  While sections in Groups C, D and E are comparable in terms of their 
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average daily volumes (which is lower than Group A, but higher than Group B sections) and 

number of lanes, they are different in terms of their configuration and location.  All Group C 

sections (small fraction of the LA County highway system) include HOV/HOT lanes but no 

ramps; around 60% of sections in Groups D and E include HOV/HOT lanes, but while all Group 

D sections are located in areas with medium ramp/intersection density, all Group E sections are 

located in areas with low ramp/intersection density. 

Although the shares of interstates and other freeways and expressways, per HPMS 

classification, are comparable across the groups (except Group B, which is an outlier), the groups 

are significantly different from each other in terms of our selected demand and geometric 

attributes.  All parts or segments of a freeway (e.g. I-110) or a state highway (e.g. CA-60) are not 

functionally similar, and therefore cannot be expected to have similar performance.  Our 

clustering or classification scheme captures the variation within the LA County highway network 

more effectively than the HPMS, and is better suited for system performance analysis.  Figure 2 

shows the groups on a map. 
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Figure 2: Groups of highway sections 

 

 

4.2 The data problem 

There are several considerations in analyzing system performance variation across the 

region and within highway groups.  First, instrumentation is not ubiquitous across the network.  

Portions of the network with higher traffic volumes are generally better instrumented (e.g. more 

sensors per mile) than portions with lower volumes, because of the original purpose of the 

detector system to support real-time traffic management.  Second, freeway portions on viaducts 

are not instrumented, and older parts of the system have fewer working sensors.  Finally, there is 

a substantial amount of “bad” or missing data due to malfunctioning detectors that tend to be 

randomly distributed across space.  Table 3 gives the number of functional sensors by group that 

are used in this analysis.   
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17 out of 1776 working sensor stations within LA County available in the ADMS could 

not be assigned to sections, because they are not part of the HPMS highway network used in this 

analysis.  Observe the variation in sensor station density (no. per route mile) across groups.  Low 

density in Group B is due to low traffic volumes across constituent sections.  The majority of 

sections in Group B are not interstates or principal arterials.  Density in Group C is low (relative 

to Groups D and E that have comparable traffic volumes) because of the absence of ramps and 

interchanges. 

Table 3: Sensor stations by group 

Attributes 
Group 

A B C D E 

No. of sensor stations 798 36 64 560 301 

Sensor stations per route-mile (avg.) 3.70 0.11 1.72 3.15 3.03 
Note: Total route-mile = total length of the centerline of the highway network used in this study 

 

4.3 Performance variation across groups 

This analysis reveals the differences in average speed, volume and buffer index, across 

the five highway groups for five weekday time periods, observed over 2014.  See Table 4.  For a 

given time period, while group-level mean speeds and volumes are directly calculated from the 

raw 15-minute aggregated averaged sensor station records, average buffer index is calculated in 

two steps: first at the section level from sensor station data, and then averaged across all sections 

for a given group.   

Analyses of variance (ANOVAs) reveal that mean speeds, mean volumes, and buffer 

indices across the five groups are statistically different (at the 95% confidence level or better) for 

all five time periods.  The statistical significance of differences having small magnitudes is 

expected because of the large volumes of data from which the measures are derived.  In general, 

and as expected, speeds are lower, volumes are higher, and buffer indices are greater during 

peaks relative to off-peaks.  Traffic across Group A highways is slower and more unreliable 
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compared to others on average during peak periods.  On average, Group B sections operate at 

relatively higher speeds during peak periods, significantly lower volumes during all time periods, 

and significantly lower buffer indices at all times except Early AM.  Although statistically 

different, performance of Group C, D, and E highways seem to be comparable.  However, buffer 

index of Group D highways during the weekday PM peak period is higher.  Also, Group C, with 

100% sections with HOV/HOT lanes, accommodates higher volume compared to the other 

groups with same number of lanes on average.   

Our analysis demonstrates the intra-metropolitan variation in highway system 

performance, and lays out a flexible framework for analysis using data over any time span, and 

by aggregating measures across any time of day and day of week. 

Table 4: Mean speed and volume, and average buffer index by group (Weekday) 
Time period Group A Group B Group C Group D Group E 

Early AM 

Speed 60.35 59.28 60.39 60.26 59.47 

Volume 375.87 158.92 444.64 403.94 361.14 

BI (%) 20.99 30.87 44.92 27.48 24.84 

N 3,468,339 162,998 261,364 2,319,928 1,378,123 

 

AM Peak 

Speed 52.17 56.09 54.23 53.62 54.99 

Volume 1299.22 742.46 1468.58 1386.73 1307.12 

BI (%) 97.40 50.49 85.95 81.90 74.19 

N 1,718,411 79,852 129,820 1,150,727 683,352 

 

Midday 

Speed 55.58 55.78 58.42 56.76 57.38 

Volume 1268.75 681.74 1416.43 1339.73 1262.72 

BI (%) 67.01 32.82 43.81 59.31 52.23 

N 3,408,623 154,226 255,028 2,260,541 1,346,734 

 

PM Peak 

Speed 49.15 54.81 54.13 49.93 51.53 

Volume 1326.38 820.48 1542.22 1434.67 1349.98 

BI (%) 114.24 71.41 76.72 104.99 88.84 

N 2,303,644 104,332 172,058 1,528,086 905,639 

 

Night 

Speed 61.20 58.42 62.41 61.42 61.57 

Volume 864.95 446.75 957.27 915.36 833.97 

BI (%) 67.01 32.82 43.81 59.31 52.23 

N 2,925,925 132,679 219,409 1,947,260 1,156,632 
Speed is in mph; volume is in vehicles/lane/hour; buffer index (BI) is in % 

N=15-minute aggregated average records at the sensor station level 
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4.4 Intra-group performance variation 

Next, we analyze performance variation across sections within each of the five groups for 

the same five weekday time periods.  If Pigt be the average performance measure (speed, or 

volume, or buffer index) of section i belonging to group g corresponding to time period t 

observed over year 2014, we determine the coefficient of variation (CV) of Pigt values across all i 

for a given g and a given t, and then compare the CV’s across all g and over all t.   

We do not use the more straightforward metric, standard deviation (SD), to measure 

intra-group performance variation.  This is because SD cannot be meaningfully interpreted 

independent of the mean.  For example, let’s say Group M and Group N both have SD of speed 

(across constituent sections) of 10 mph in the weekday AM peak.  Do they have the same level 

of intra-group performance variation?  In order to answer this question, we require additional 

information on mean speeds (across all constituent sections) of the two groups.  If mean speed of 

Group M and N are 50 mph and 25 mph respectively, it becomes clear that the level of internal 

variation is more in Group N than in Group M.   

Coefficient of variation (CV) = SD/mean is a useful measure for comparing within-group 

variation across groups.  Table 5 presents the CV of speed, volume and buffer index across 

sections by group, by time period.  For a given g and t combination, and where i represents a 

section within group g, CV is computed as 
𝑀𝑒𝑎𝑛(𝑃𝑖𝑔𝑡)

𝑆𝐷(𝑃𝑖𝑔𝑡)
.      

 Speed variation across sections is highest in the PM peak period for all groups.  Groups B 

and D have comparatively higher internal variations in traffic volume.  The level of intra-group 

variation in travel time unreliability (measured in terms of buffer index), for all groups and 

across all time periods, is significantly higher compared to speed and volume.  This demonstrates 

that the level of variability in day-to-day travel conditions vary significantly across space, and 
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even within groups.  Similar to Table 4, Table 5 also lays out a flexible framework for 

performance analysis.  The values can serve as a baseline for system managers.  Reduction in CV 

over time can indicate improvement in travel conditions, all else equal. 

Table 5: CV of speed, volume and buffer index across sections by group (Weekday) 
Time period Group A Group B Group C Group D Group E 

Early AM 

CV of section speed 8.80 12.76 11.64 10.94 9.92 

CV of section volume 34.24 82.85 32.37 112.17 38.68 

CV of section BI 204.00 175.28 266.37 242.53 198.12 

N 418 19 29 303 167 

 

AM Peak 

CV of section speed 19.35 14.22 16.46 21.04 16.72 

CV of section volume 42.00 75.33 40.48 75.43 37.19 

CV of section BI 110.07 150.08 86.04 105.40 105.58 

N 463 20 33 326 180 

 

Midday 

CV of section speed 13.95 15.05 11.28 14.22 11.66 

CV of section volume 42.37 73.54 42.71 81.77 37.71 

CV of section BI 114.28 124.76 93.53 121.38 105.35 

N 463 20 33 326 180 

 

PM Peak 

CV of section speed 25.17 21.88 16.59 26.21 21.38 

CV of section volume 24.90 63.06 12.73 71.87 20.06 

CV of section BI 92.38 196.26 75.06 240.29 104.48 

N 423 20 29 305 167 

 

Night 

CV of section speed 8.50 13.68 9.95 8.72 7.13 

CV of section volume 30.30 72.17 24.01 90.43 29.96 

CV of section BI 161.25 187.83 116.92 126.37 123.10 

N 420 20 29 302 167 
Coefficient of variation (CV) is expressed as % 

Speed is in mph; volume is in vehicles/lane/hour; buffer index (BI) is in % 

N=No. of sections considered in analysis 

 

 Distributions of performance measures across constituent sections within a group for a 

particular time period can be illustrated, and visually compared, using density plots.  Figures 3 

and 4 present kernel density plots of the distributions of speed, volume and buffer index across 

sections by group for the weekday AM and PM peak periods respectively.  The X-axis represents 

performance, and the Y-axis represents the probability P(x) that a randomly chosen section of a 

given group in a given time period has performance value x.  The Y-axis can also be interpreted 
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as the proportion of sections of a given group in a given time period having performance value x.  

The area under the curve between x=x1 and x=x2 gives the total proportion of sections having 

performance value between x1 and x2.  Total area under any curve is 1.  Observe that while the 

spreads (i.e. ranges), shapes (e.g. skewness) and peaks of the various distributions across groups, 

time periods and performance measures are different, Group B is certainly an outlier.  Inspection 

of these plots over time can help monitor system performance changes. 
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Figure 3: Distributions of weekday AM peak speed, volume and buffer index across 

highway sections by group 
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Figure 4: Distributions of weekday PM peak speed, volume and buffer index across 

highway sections by group 
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4.5 Regression analysis 

In the previous section, we presented a descriptive analysis of traffic performance 

variation across and within groups.  In this section, we analyze the determinants (or sources) of 

performance variation across sections within each group, and across sections within the entire 

study region. 

We first explore factors associated with the variation in section performance within each 

group.  We know, from traffic theory and empirical evidence, that time periods affect 

performance.  For example, we expect speeds to be lower and buffer indices to be higher on 

average during peaks relative to off-peaks, particularly in heavily traveled road segments.  We 

run a series of regressions (Model 1), for each group separately, to verify the time period effect 

on average section performance.   

In addition to confirming the time period effect, we test the effects of two exogenous 

factors – accident occurrence and neighboring population density – on performance variation 

across otherwise similar (considering group subscription) highway sections.  The idea is to 

investigate the effects of idiosyncratic and local land use factors, and help agencies make 

spatially targeted investments or traffic management plans to improve system performance 

across problem sections.  We therefore run a second set of regressions (Model 2), for each group 

separately, where the time period dummy variables are essentially used as controls to measure 

accident and density effects. 

Finally, we estimate pooled regressions (i.e. by pooling sections across all groups) to 

compare the contributions of deterministic or systematic (group and time period effects), 

stochastic or idiosyncratic (accident occurrence), and land use (population density) factors to the 

variation in section performance across the region (Model 3).   
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The functional forms of the models are –  

Model 1 (time period effect; by group): 𝑃𝑖𝑔𝑡 = 𝛼 + 𝛽𝑇 + 𝜀    (2) 

Model 2 (exogenous+time effect; by group): 𝑃𝑖𝑔𝑡 = 𝛼 + 𝛽𝐴𝑖𝑔𝑡 + 𝛾𝐷𝑖𝑔 + 𝛿𝑇 + 𝜀  (3) 

Model 3 (regional, pooled):   𝑃𝑖𝑔𝑡 = 𝛼 + 𝛽𝐴𝑖𝑔𝑡 + 𝛾𝐷𝑖𝑔 + 𝛿𝑇 + 𝜇𝑆𝑖𝑔 + 𝜀 (4) 

Where 𝑃𝑖𝑔𝑡 is a performance measure of section i belonging to group g within time period 

t aggregated over 2014;  𝐴𝑖𝑔𝑡 is the number of accidents per mile of section i belonging to group 

g within time period t in 2014;  𝐷𝑖𝑔 is the population density adjacent to section i belonging to 

group g;  𝑇 denotes a series of time period dummies;  𝑆𝑖𝑔 denotes a vector of factors (used in 

cluster analysis) characterizing section i belonging to group g; and 𝜀 is the idiosyncratic error 

term.  Weekdays are considered only.  Since the time periods do not contain equal number of 

hours, average vehicles/lane/hour within a given time period of day is used as the volume 

measure. 

We tested the effect of adjacent employment density in addition to population density.  

Data was derived from x-y level firm location and employment data from SCAG for 2011.  We 

found that: the employment density variable is not statistically significant in most of the 

estimated regression models; it does not significantly improve the explanatory powers of the 

models; and it does not affect the magnitudes and directions of influence of other independent 

variables.  In some cases, however, addition of employment density renders the population 

density variable insignificant.  This is attributable, at least in part, to the correlation between 

population and employment density across sections used in the regressions.  We therefore 

decided to drop employment density from this analysis.   
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Figures 5 and 6 present total accidents per mile (in 2014) and adjacent population 

density, respectively, for the highway sections.  Tables 6-9 summarize regression model results.  

We report standardized (beta) coefficients that help compare effect sizes across variables. 

Although we used AADT in our cluster analysis for classifying sections into groups, we 

do not include the variable in Model 3 (Table 9) because we do not expect average daily traffic 

volume across a section to determine its performance within a given time period of the day (e.g. 

peaks and off-peaks).  We, however, include average traffic volume within a given time period 

(measured in terms of volume/lane/hour) as the determinant of system performance in the speed 

and buffer index models.  Parameter estimates suggest, as expected, that traffic volume affects 

speed and travel time reliability of the highway system.  
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Figure 5: Accidents per mile by highway section (2014) 

 

Figure 6: Population density by highway section 
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Table 6: Regression models 1 and 2 of mean speed (mph) by group 
Model 1 

Variable 
Group A Group B Group C Group D Group E 

Beta P>|t| Beta P>|t| Beta P>|t| Beta P>|t| Beta P>|t| 

Early AM -0.036 0.14 0.039 0.76 -0.106 0.28 -0.057 0.06 -0.106 0.01 

AM Peak -0.286 0.00 -0.023 0.86 -0.307 0.00 -0.246 0.00 -0.255 0.00 

Midday -0.163 0.00 -0.051 0.69 -0.111 0.27 -0.140 0.00 -0.146 0.00 

PM Peak -0.471 0.00 -0.173 0.18 -0.382 0.00 -0.454 0.00 -0.463 0.00 

N 2187 99 153 1562 861 

Adj. R-sq. 0.18 0.00 0.10 0.16 0.15 

Model 2 

Variable 
Group A Group B Group C Group D Group E 

Beta P>|t| Beta P>|t| Beta P>|t| Beta P>|t| Beta P>|t| 

Acc. per mi. -0.137 0.00 -0.207 0.04 -0.107 0.20 -0.175 0.00 -0.178 0.00 

Pop. den -0.093 0.00 0.218 0.03 -0.066 0.39 -0.150 0.00 -0.063 0.04 

Early AM -0.051 0.04 0.039 0.76 -0.106 0.28 -0.075 0.01 -0.126 0.00 

AM Peak -0.276 0.00 -0.015 0.91 -0.290 0.00 -0.240 0.00 -0.253 0.00 

Midday -0.125 0.00 -0.010 0.93 -0.077 0.46 -0.098 0.00 -0.111 0.01 

PM Peak -0.440 0.00 -0.180 0.15 -0.351 0.00 -0.416 0.00 -0.418 0.00 

N 2187 99 153 1562 861 

Adj. R-sq. 0.21 0.05 0.10 0.21 0.18 
Night is the reference time period in both models; constant is not reported in the tables of std. (beta) coefficients; coefficients that 

are statistically significant at the 95% confidence level (corrected up to two decimal places) or better are highlighted in bold text 

 

Table 7: Regression models 1 and 2 of mean volume (veh/lane/hr) by group 
Model 1 

Variable 
Group A Group B Group C Group D Group E 

Beta P>|t| Beta P>|t| Beta P>|t| Beta P>|t| Beta P>|t| 

Early AM -0.382 0.00 -0.221 0.05 -0.395 0.00 -0.210 0.00 -0.384 0.00 

AM Peak 0.264 0.00 0.232 0.04 0.246 0.00 0.152 0.00 0.319 0.00 

Midday 0.238 0.00 0.200 0.08 0.229 0.00 0.138 0.00 0.284 0.00 

PM Peak 0.363 0.00 0.344 0.00 0.422 0.00 0.206 0.00 0.417 0.00 

N 2187 99 153 1562 861 

Adj. R-sq. 0.44 0.21 0.47 0.14 0.52 

Model 2 

Variable 
Group A Group B Group C Group D Group E 

Beta P>|t| Beta P>|t| Beta P>|t| Beta P>|t| Beta P>|t| 

Acc. per mi. 0.016 0.36 0.335 0.00 -0.106 0.08 0.023 0.36 0.091 0.00 

Pop. den 0.052 0.00 0.043 0.61 0.207 0.00 0.111 0.00 0.124 0.00 

Early AM -0.381 0.00 -0.223 0.04 -0.395 0.00 -0.207 0.00 -0.374 0.00 

AM Peak 0.263 0.00 0.219 0.04 0.268 0.00 0.150 0.00 0.318 0.00 

Midday 0.233 0.00 0.134 0.21 0.268 0.00 0.132 0.00 0.267 0.00 

PM Peak 0.359 0.00 0.355 0.00 0.453 0.00 0.201 0.00 0.394 0.00 

N 2187 99 153 1562 861 

Adj. R-sq. 0.44 0.32 0.52 0.15 0.54 
Night is the reference time period in both models; constant is not reported in the tables of std. (beta) coefficients; coefficients that 

are statistically significant at the 95% confidence level (corrected up to two decimal places) or better are highlighted in bold text 
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Table 8: Regression models 1 and 2 of buffer index (%) by group 
Model 1 

Variable 
Group A Group B Group C Group D Group E 

Beta P>|t| Beta P>|t| Beta P>|t| Beta P>|t| Beta P>|t| 

Early AM -0.082 0.00 -0.015 0.91 0.110 0.27 -0.052 0.10 -0.050 0.22 

AM Peak 0.261 0.00 0.081 0.53 0.346 0.00 0.115 0.00 0.234 0.00 

Midday 0.123 0.00 -0.005 0.97 0.110 0.28 0.045 0.16 0.107 0.01 

PM Peak 0.326 0.00 0.183 0.16 0.280 0.01 0.182 0.00 0.310 0.00 

N 2187 99 153 1562 861 

Adj. R-sq. 0.14 0.00 0.07 0.04 0.11 

Model 2 

Variable 
Group A Group B Group C Group D Group E 

Beta P>|t| Beta P>|t| Beta P>|t| Beta P>|t| Beta P>|t| 

Acc. per mi. 0.121 0.00 0.153 0.14 0.126 0.13 0.093 0.00 0.205 0.00 

Pop. den 0.139 0.00 -0.058 0.57 0.039 0.62 0.091 0.00 0.075 0.02 

Early AM -0.069 0.01 -0.015 0.91 0.110 0.27 -0.043 0.18 -0.027 0.50 

AM Peak 0.252 0.00 0.075 0.56 0.325 0.00 0.111 0.00 0.232 0.00 

Midday 0.089 0.00 -0.036 0.78 0.069 0.51 0.023 0.47 0.066 0.10 

PM Peak 0.298 0.00 0.188 0.14 0.244 0.02 0.162 0.00 0.259 0.00 

N 2187 99 153 1562 861 

Adj. R-sq. 0.18 0.00 0.08 0.06 0.15 
Night is the reference time period in both models; constant is not reported in the tables of std. (beta) coefficients; coefficients that 

are statistically significant at the 95% confidence level (corrected up to two decimal places) or better are highlighted in bold text 

 

Table 9: Pooled regression model 3 by performance measure 

Variable 

Speed 

(mph) 

Volume 

(veh/lane/hr) 

Buffer index 

(%) 

Beta P>|t| Beta P>|t| Beta P>|t| 

Acc. per mi -0.152 0.00 0.025 0.05 0.117 0.00 

Pop. den -0.077 0.00 0.098 0.00 0.098 0.00 

Early AM -0.144 0.00 -0.276 0.00 -0.020 0.25 

AM Peak -0.201 0.00 0.202 0.00 0.164 0.00 

Midday -0.062 0.00 0.177 0.00 0.037 0.04 

PM Peak -0.347 0.00 0.272 0.00 0.200 0.00 

Through lanes 0.024 0.07 0.049 0.00 -0.035 0.02 

Vehicles/lane/hour -0.265 0.00 (omitted) - 0.092 0.00 

HOV/HOT lane=1 0.037 0.01 0.096 0.00 -0.010 0.50 

RID=0 -0.007 0.59 -0.007 0.59 -0.014 0.34 

RID=1 0.026 0.05 0.040 0.00 -0.029 0.05 

RID=2 -0.008 0.53 0.086 0.00 -0.011 0.46 

N 4862 4862 4862 

Adj. R-sq. 0.25 0.27 0.12 

Night is the reference time period; E is the reference group; HOV/HOT lane=0 (or absent) and RID=3 are the reference section 

configuration categories; constant is not reported in the table of std. (beta) coefficients; coefficients that are statistically 

significant at the 95% confidence level (corrected up to two decimal places) or better are highlighted in bold text 
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4.6 Findings with discussion 

Model 1 estimates help validate the established effect of time period on highway 

performance – speed, volume, and buffer index – across all groups.  In general, speeds are lower, 

and volumes and buffer indices are higher, in peaks relative to off-peaks across highway sections 

within all five groups.  PM peak traffic performance is worst; early morning and night time 

traffic conditions are comparatively better.  Speed and buffer index of Group B sections, 

interestingly, do not vary across time periods; we provide plausible explanations.   

Comparison of Model 1 and 2 results (for speed, volume, and buffer index) shows that 

addition of accident occurrence and population density variables improves the explanatory 

powers of the regression models in 12/15 cases (except Group C speed, Group A volume, and 

Group B buffer index models).  Moreover, the time period effects remain largely unchanged in 

the expanded models.  Statistical significance and effect sizes of the accident and population 

density variables are discussed. 

Our observations regarding the variation in system performance across highway sections 

within LA County, using Model 2 (expanded model) estimates, are summarized below.  

Parameter estimates with p≤0.05 are considered to be statistically significant.  

Speed: Accident occurrence and population density both have statistically significant 

negative associations with speed, all else equal, in groups A, D and E.  Standardized 

coefficients show that the effect size of accident is bigger than population density.  

Accident and density effects are not statistically significant in Group C.  In Group B, the 

accident variable is statistically significant and has the expected (negative) sign.  The sign 

of the statistically significant population density variable, however, is positive, 

suggesting that higher speeds are associated with sections in higher-density locations.  
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Group B sections are, on average, located in low density outlying areas and have four 

(two in either direction) lanes with low volumes.  The observed effect can be due to 

higher traffic volumes, more lanes, and consequently higher speeds, in parts of Group B 

highways that pass through relatively high density neighborhoods.  Slower speeds in 

mountainous segments can also explain the effect. 

In Groups A, D, and E, average speed is different across all time periods, and 

lower during the peaks.  In Group C, peak speeds are significantly lower than night, but 

speeds during other off-peak periods are not different from each other.  PM peak traffic is 

relatively slower than AM peak traffic in the above groups.  The time period effect is 

missing in Group B.  This could be due to the small number of sections (or observations) 

in this group.  The effect could also be attributed to the absence of large diurnal variation 

in speed (refer Table 4) due to the characteristics (e.g. low traffic volume, location away 

from the central city and high-density population/job centers) of Group B sections. 

Volume: Accident occurrence is not associated with traffic volumes across sections in 

Groups A, C and D, but is positively correlated with section volumes in Groups B and E.  

In general, accidents do not seem to be able to significantly reduce traffic flow or vehicle 

throughput on average.  The positive association in Groups B and E could be due to 

higher frequency of accidents in high traffic zones.  Higher population density–higher 

traffic volume relationship holds across sections within all groups except B.  

Peak volumes are significantly higher than off-peak volumes, and PM peak traffic 

is heaviest, in all groups.  However, there is no difference between midday and night 

volumes in Group B.  In general, volumes are different across time periods as expected. 
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Buffer Index: In groups A, D and E, more accidents and greater density are associated 

with higher buffer index (i.e. lower travel time reliability).  The effects are not 

statistically significant in Group C. 

Peak-period buffer indices are significantly higher than off-peak in all groups 

except B.  Buffer indices in the three off-peak periods, however, are only statistically 

different from each other in Group A, with early morning travel time being most stable or 

predictable.   

For Group B, we cannot reliably determine the association of buffer index with 

any of the independent variables due to poor model fit.   

 Pooled regression model 3 helps comprehensively investigate factors that are 

significantly associated with the variation in speed, volume and buffer index across highway 

sections within LA County by analyzing the full set of variables.  That is, we use group attributes 

rather than the groups themselves. Table 9 shows, on average, that accident occurrence, 

population density, time period, and section location-configuration-demand factors have 

statistically significant effects on performance.  Accident and population density variables are 

negatively associated with speed and travel time reliability, and positively associated with traffic 

volume.  Peak-period speed and travel time reliability is lower, and volume higher, than the off-

peaks.  All else equal: more number of lanes is associated with higher traffic volume and lower 

buffer index; higher traffic volume is associated with lower speed and higher buffer index; and 

presence of HOV/HOT lanes is associated with faster and heavier traffic.  The independent effect 

of ramp/intersection density on traffic performance is mixed.  There is indication, however, that 

speed is higher and buffer index is lower when RID=1 relative to RID=3, which is expected.  

Volume or flow seems to drop when RID=3, relative to RID=1 or 2, possibly due to bottleneck 
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effects.  Comparison of standardized coefficients reveals that peak-period effect on system 

performance dominates.  Overall, our findings highlight the significant roles of deterministic, 

stochastic and land use factors in explaining the variation in highway system performance across 

the study area. 
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5. CONCLUSION 

In this report, we proposed a flexible framework for analyzing intra-metropolitan 

variation in highway system performance using an archive of real-time traffic loop detector data.  

Using Los Angeles County as the study region, 2014 as the test year, and speed, volume and 

buffer index as test performance metrics, we empirically demonstrated our approach.  By 

employing descriptive and inferential statistical tools, we analyzed the characteristics and 

determinants of variation in system performance both within and across groups of functionally 

comparable highway sections, as well as regionally, for different weekday time periods.  

Although results and policy takeaways are specific to the Los Angeles region, methods are 

generalizable.  Our study underscores the benefit of archiving traffic sensor data and effectively 

using it for performance measurement, monitoring, and analysis.  If our study is replicated, the 

research design, including delineation of study area, selection of performance measures and 

explanatory variables, clustering approach, and the level of space-time disaggregation must be 

context specific.  There is no golden rule. 

Better understanding of how and why performance varies can contribute to more efficient 

system management and hence improved mobility and reliability of travel.  Examination of the 

various dimensions of performance variation – e.g. systematic or caused by fixed (time-

invariant) attributes, and idiosyncratic or caused by random fluctuations in demand due to 

accidents or other incidents – can help make strategic capital investments or implement 

innovative traffic management strategies targeted at specific parts of the system at specific times 

in order to not only reduce variation in performance across the system but to improve overall 

system performance.  Our report provides guidance for regional transportation planners.  
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Improving highway system performance is challenging, and hence an analytical 

approach, as outlined in this report, is useful.  If performance is found to be largely a function of 

exogenous factors (e.g. population density), the management implications are for overall 

efficiency or capacity enhancement strategies (e.g. HOT lanes).  If accidents and incidents play a 

major role, strategies that reduce incident duration and impact may be appropriate.  In our study 

of the Los Angeles region, we find evidence to consider both of the above strategies.  In general, 

it is key to analyze the relative importance of different factors and evaluate alternative policy or 

investment choices.    

Although we have solely focused on the highway system, improvement of regional travel 

conditions requires a multi-modal approach.  Highway performance is not independent of arterial 

traffic, transit and other non-motorized modes, and therefore analysis of the characteristics and 

determinants of variation in regional transportation system performance is key.  Policies targeted 

at one mode can affect the performance or productivity of another.  For example, dedicated bus 

lanes and transit signal priority can not only help increase average bus speeds, but may also 

improve arterial traffic flow and person throughput.  Investments in ITS and development of 

regional real-time multi-modal data archives such as ADMS will make such analyses possible.   
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6. DEPLOYMENT AND IMPLEMENTATION 

This research was conducted as part of a larger, long-term effort to work with LA Metro 

and other stakeholders on developing applications from the ADMS data that could be used in 

planning and operations practice.  Results of this research have been shared with LA Metro. City 

of Los Angeles, and Caltrans.  A journal paper based on this report is in progress, and we have 

presented our results at two conferences. 

 Transportation system performance is a critical part of system management, and system 

operators constantly seek better ways to both monitor and manage the system.  This research 

shows the potential of using ADMS data for far more comprehensive system monitoring.  

Better understanding of how and why performance varies can contribute to more efficient 

system management and hence improved mobility and reliability of travel.  Examination of the 

various dimensions of performance variation – e.g. systematic or caused by fixed (time-

invariant) attributes, and idiosyncratic or caused by random fluctuations in demand due to 

accidents or other incidents – can help make strategic capital investments or implement 

innovative traffic management strategies targeted at specific parts of the system at specific times 

in order to not only reduce variation in performance across the system but to improve overall 

system performance.  Better performance results in less congestion, improved energy efficiency, 

and reduced pollution. 

   



METRANS Project 15-08  Giuliano and Chakrabarti 

35 

REFERENCES 

 

1) Annual Urban Mobility Scorecard, Texas A&M Transportation Institute. 

https://mobility.tamu.edu/ums/. Accessed October 20, 2016. 

2) Brennan Jr, T. M., Remias, S. M., & Manili, L. (2015). Performance measures to characterize 

corridor travel time delay based on probe vehicle data. Transportation Research Record: 

Journal of the Transportation Research Board, (2526), 39-50. 

3) Cambridge Systematics Inc. Incorporating Reliability Performance Measures into the 

Transportation Planning and Programming Processes. SHRP Report S2-L05-RW-1. 

Transportation Research Board of the National Academies, Washington, D.C., 2014. 

4) Cambridge Systematics Inc., Dowling Associates, Inc., System Metrics Group, Inc. and 

Texas Transportation Institute. NCHRP Report 618: Cost-Effective Performance Measures 

for Travel Time Delay, Variation, and Reliability. Transportation Research Board of the 

National Academies, Washington, D.C., 2008. 

5) Cambridge Systematics Inc., Transmode Consultants, National Cooperative Highway 

Research Program, American Association of State Highway and Transportation Officials. 

Multimodal corridor and capacity analysis manual. Publication no. 399, Transportation 

Research Board of the National Academies, Washington, D.C., 1998. 

6) Chakrabarti, S. (2015). The demand for reliable transit service: New evidence using stop 

level data from the Los Angeles Metro bus system. Journal of Transport Geography, 48, 

154-164. 

7) Chakrabarti, S., & Giuliano, G. (2015). Does service reliability determine transit patronage? 

Insights from the Los Angeles Metro bus system. Transport Policy, 42, 12-20. 

8) Federal Highway Administration (FHWA). Traffic Monitoring Guide. U.S. Department of 

Transportation, Office of Highway Policy Information, 2013. 

http://www.fhwa.dot.gov/policyinformation/tmguide/tmg_fhwa_pl_13_015.pdf. Accessed 

July 31, 2015. 

9) Giuliano, G., Chakrabarti, S., & Rhoads, M. (2016). Using Regional Archived Multimodal 

Transportation System Data for Policy Analysis A Case Study of the LA Metro Expo 

Line. Journal of Planning Education and Research, 36(2), 195-209. 

10) Giuliano, G., Rhoads, M., & Chakrabarti, S. (2014, April). New data, new applications: using 

transportation system data for regional monitoring. In Transport Research Arena (TRA) 5th 

Conference: Transport Solutions from Research to Deployment. 

11) Jackson, D.L., T.L. Shaw, G. Morgan, D. McLeod and A. Vandervalk, A. Florida’s 

Reliability Method. Florida Department of Transportation, Tallahassee, 2000. 

12) Kim, S., & Coifman, B. (2014). Comparing INRIX speed data against concurrent loop 

detector stations over several months. Transportation Research Part C: Emerging 

Technologies, 49, 59-72. 

13) Lomax, T., S. Turner, G. Shunk, H. S. Levinson, R. H. Pratt, P. N. Bay and G. B. Douglas. 

NCHRP report 398: Quantifying Congestion Volume 1 Final Report. Publication Project 7-

13, Transportation Research Board, National Research Council, Washington, D.C., 1997. 

14) Margiotta, R. A., T. Lomax, M. Hallenbeck, S. Turner, A. Skabardonis, C. Ferrell and B. 

Eisele. Guide to Effective Freeway Performance Measurement: Final Report and Giudebook. 

NCHRP Project 3-68, Transportation Research Board of the National Academies, 

Washington, D.C., 2006 



METRANS Project 15-08  Giuliano and Chakrabarti 

36 

15) Meyer, M. D. Alternative performance measures for transportation planning: evolution 

toward multimodal planning. Publication FTA-GA-26-7000-95-1, Federal Transit 

Administration, 1995. 

16) National Transportation Statistics. 

http://www.rita.dot.gov/bts/sites/rita.dot.gov.bts/files/publications/national_transportation_st

atistics/index.html. Accessed October 20, 2016. 

17) Pratt, R. and T. Lomax. Performance measures for multimodal transportation systems. In 

Transportation Research Record: Journal of the Transportation Research Board, No. 1518, 

Transportation Research Board of the National Academies, Washington, D.C., 1996, pp. 85-

93. 

18) Pu, W. and A. J. Meese. Using New Data Sources to Meet MAP-21 Requirements for 

Performance-Based Planning: National Capital Region’s Experience in Monitoring 

Congestion and Reliability. Presented at the 92nd Annual Meeting of the Transportation 

Research Board, Washington, D.C., 2013. 

19) SCAG. State of the Region Report. Southern California Association of Governments, 2007. 

http://www.scag.ca.gov/NewsAndMedia/Pages/State%20of%20The%20Region.aspx. 

Accessed October 20, 2016. 

20) Shaw, T. Performance measures of operational effectiveness for highway segments and 

systems. Synthesis 311, Transportation Research Board of the National Academies, 

Washington, D.C., 2003. 

21) Sweet, M. N., Harrison, C. J., & Kanaroglou, P. S. (2015). Gridlock in the Greater Toronto 

Area: Its geography and intensity during key periods. Applied Geography, 58, 167-178. 

22) Turner, S. M., M. E. Best and D. L. Schrank. Measures of effectiveness for major investment 

studies. Publication SWUTC/96/467106-1, Texas Transportation Institute and Southwest 

Region University Transportation Center, 1996. 

23) Yang, H., Ozbay, K., & Xie, K. (2015). Improved Travel Time Estimation for Reliable 

Performance Measure Development for Closed Highways.Transportation Research Record: 

Journal of the Transportation Research Board, (2526), 29-38. 

24) Zhang, Yanru, Masoud Hamedi, Ali Haghani, Subrat Mahapatra, and Xuechi Zhang. "How 

Data Affect Travel Time Reliability Measures: An Empirical Study." In Transportation 

Research Board 94th Annual Meeting, no. 15-4330. 2015. 

 

 

 


