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Abstract 
 
Courier delivery services deal with the problem of routing a fleet of vehicles from a depot 
to service a set of customers that are geographically dispersed. In many cases, in addition 
to a regular uncertain demand, the industry is faced with sporadic, tightly constrained, 
urgent requests. An example of such application is the transportation of medical 
specimens, where timely, efficient, and accurate delivery is crucial in providing high 
quality and affordable patient services.  
 
In this work we propose to develop better vehicle routing solutions that can efficiently 
satisfy random demand over time and rapidly adjust to satisfy these sporadic, tightly 
constrained, urgent requests. We formulate a multi-trip vehicle routing problem using 
mixed integer programming. We devise an insertion based heuristic in the first phase, and 
use stochastic programming with recourse for daily plans to address the uncertainty in 
customer occurrence.  The resource action for daily plans, considers a multi-objective 
function that maximizes demand coverage, maximizes the quality of delivery service, and 
minimizes travel cost. Because of the computational difficulty for large size problems, 
Tabu Search has been used to find an efficient solution to the problem.  Simulations have 
been done on randomly generated data and on a real data set provided by a leading 
healthcare provider in Southern California. Our approach has shown significant 
improvement in travel costs as well as in quality of service as measured by route 
similarity than existing methods.   
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1. Introduction 
 

1.1 Background 

The vehicle routing problem (VRP) is a problem of designing optimal routes of 

collection or delivery from one or several depots to a number of geographically dispersed 

customers. This type of problem is faced by many industries such as courier services (i.e. 

UPS, Federal Express, and Overnight United States Postal Service) and local trucking 

companies. In recent years, these types of services have experienced tremendous growth. 

For example, both UPS and Federal Express have a steady increase in annual revenue in 

the past decade, both exceeding $30 billion annually.  

These routing applications not only have to schedule efficient routes for uncertain 

demands, they also have to handle sporadic, tightly constraint, and urgent requests. For 

example, typical courier services have a deadline (e.g. 5pm) for overnight delivery 

service. Requests for overnight services that are received after the deadline are not 

accommodated, although it is possible for these packages to be delivered through some 

other low cost re-routing process.  

Another example application is the transportation of clinical specimens, which is 

pervasive in the healthcare industry. On a daily basis, millions of specimens are delivered 

in the United States from dispersed hospitals and clinics to centralized laboratories for 

testing and reporting. Timely and efficient transportation of specimens is crucial in 

providing high-quality and affordable patient service in the healthcare industry. The 

current situation, however, is far from ideal, where lost or delayed delivery of specimen 

is the most common problem jeopardizing patient safety (Astion et al, 2003). Barenfanger 

et al. (1999) report that a shorter turnaround time (TAT) of microbiological procedures is 

correlated with improved clinical outcomes and financial returns. For the cause of 

excessive TAT, Steindel and Novis (1999) found in their research that specimen 

transportation problems account for 56.3% of delays in the collection-to-receipt phase. 

And according to Steindel and Howanitz (2001) and Holland et al. (2005), the percentage 



 
 

10 
 

of excessive laboratory test TAT is significantly correlated with delay in treatment and 

increased average length of stay in emergency departments. The cost on the 

transportation of clinical specimens is a significant burden to healthcare systems, 

especially for urgent cases which require prompt courier services.  

There are several unique characteristics in the laboratory courier routing problem 

that determines the significance of the proposed research. One of them is the nature of the 

demand. The clinical specimens generally fall into two kinds of delivery time windows in 

terms of testing and reporting. The urgent ones typically need to be transported within an 

hour, and regular ones have several hours of turnaround time. Urgent requests occur at 

random times throughout the day in a laboratory courier service area. In the current 

practice, many of these urgent requests are delivered by an outsourced courier service, 

such as taxis. For mid-to-large scale laboratory systems, the cost of handling urgent 

demands by taxis is significant; therefore, an opportunity of cost reduction is presented 

by incorporating these urgent demands into the routine vehicle routing systems.   

Another characteristic of the laboratory routing system is the two types of the 

facilities that the testing requests come from, namely hospitals and clinics. Hospitals 

normally operate around the clock, whereas clinics typically do not require service during 

nights and weekends. For this reason, optimal routing of courier service will need to take 

into account the changing demand levels at different time periods. Additionally, the 

laboratory courier routing problem includes random customer demands in the healthcare 

industry, which comes from uncertain requests and the strict testing requirements. Also, 

because most specimens are perishable, the courier must strictly follow the delivery time 

windows.  

 

1.2 Problem Description 
We will describe the problem with a real-life example in this section. A leading 

healthcare provider in the Southern California region operates about 200 medical 

facilities. The healthcare provider continuously delivers medical samples, lab-specimens, 

mails, x-rays, and documents etc. between various medical facilities and a central lab for 

testing. The medical facilities are located throughout Southern California, where the 
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travel time between facilities is comparable to a complete trip length.  This makes this 

routing problem one in which there are typically few locations visited per trip.  The 

healthcare provider has about 50 vehicles to carry out the deliveries. Because of the 

random nature of the demand in the healthcare industry, the requests may occur at any 

time during the day. As most medical samples are perishable and should be processed in 

a short time period, the demands have time windows for pickup and for delivery. The 

deterministic routine requests typically have to be delivered to the lab in 4 hours after 

being collected from the customer; the random urgent requests always have to be 

delivered to the lab within an hour after being collected. There are no capacity 

constraints, because the sizes of the samples are small compared to the capacity of the 

vehicles. The vehicles travel through multiple urban areas in several consecutive trips 

each day to serve the requests. The vehicle depot is located at the central lab where all 

routes start and end a trip. Third-party couriers (i.e. taxis) are introduced to serve the 

unmet demands of the regular fleet.  

In this work we propose a multi-trip VRP formulation, with deterministic routine 

requests and random urgent requests, to represent the real world healthcare routing 

problem described above. Particularly, we are making a best possible plan for a horizon 

of several days, with a number of vehicles, to service the customers that send out 

deterministic and stochastic requests that follow certain time window constraints. 

 

1.3 Motivation 
Even though there are a number of studies and published results in the routing 

literature, the scheduling of the urgent request delivery of medical specimens is still a 

manual process in practice. This basically is because of the nature of the demand. Besides 

the routine demands, there is a significant amount of urgent demands that occur randomly 

throughout the day and have tight constraints. The key issue in this problem is how to 

integrate these uncertain demands into the delivery schedule for the routine demands. 

This could be achieved by two systems, a regular system for the routine demands and a 

taxi system for the random urgent ones. However, this is extremely costly, especially for 

a mid-to-large size system. The second reason for the manual process of specimen 
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delivery is the continuous nature of the demand. Because of the random nature of 

customer demands in the healthcare industry, a request for delivery may occur at any 

time of the day. The third reason for the phenomenon is that most medical specimens are 

perishable, and therefore must be processed within a short time window. The tight time 

window requires the algorithms for the routing problem be capable of handling multiple 

trips.  

In this work, we propose to address the gap by developing logistic methods 

considering these specific requirements of routing clinical specimens. When modeling 

the specimen delivery system for the healthcare industry, the following aspects must be 

taken into consideration:  healthcare network configuration, nature of delivery requests, 

the objective of quality of healthcare service, and the cost of unmet demands. 

In the current practice, the healthcare delivery service runs fixed daily routes in 

the planning horizon and services all random requests that cannot be accommodated 

using taxi. Having fixed daily routes uses routes that are similar each day (exactly the 

same), and visits customers by the same vehicle at roughly the same time every day.  

Such stability with routes is desirable in repeating systems where the quality of service is 

important.  If the routes used every day are similar to each other, then drivers become 

more familiar with the area and it becomes easier to adjust to local changes each day due 

to the familiarity of the drivers (Groër et al. 2008, Sungur et. al 2010). However, rigid 

routing strategies, with constant routes, also have a drawback in that it is inefficient when 

there are plenty of random urgent demands.  Currently, most of the random urgent 

specimen bypass the routing system and use a dedicated vehicle, which introduces a 

substantial additional cost. The ability to adapt the routing solutions in response to these 

urgent requests can make a fundamental difference in customer service and operational 

costs, which is essential in the industry. It should be mentioned that, as an abstract 

concept, route similarity is a user defined measurement of how a route resembles another.  

It can correspond to the number of customers that are visited by the same vehicle in 

different days, or the number of arcs that are repeated (Sungur et. al 2010), or measured 

in terms of the area that is covered by each vehicle (Zhong et. al 2007).  We consider 

route similarity a benefit, and the other objectives (travel distance and taxi usage) in this 

study are considered as costs.   We create a new measure to represent the degree of 



 
 

13 
 

similarity in the routes created. This measure, which we refer to as “dissimilarity” 

increases by 1 every time a customer is visited by different vehicles in two days.  

Simply including the urgent requests as part of the possible demand is not 

straightforward. If a chance constraint model or a robust optimization approach is used, 

either the unlikely requests are ignored or the solution considering them is at a high cost. 

We use an approach called stochastic programming with recourse approach to handle the 

urgent requests. This approach requires massive number of scenarios, leading to large 

scale routing problems. To solve this problem, we develop a model with a multi-period 

time horizon to compare the frequency of urgent requests with that of regular ones. The 

overall idea is to understand whether we can sacrifice some optimality with regard to 

regular demand to free some capacity or to obtain more flexible routes, which could 

accommodate more urgent requests at a lower cost.  

In this research, we build a model for this vehicle routing problem, and solve it 

using heuristic algorithms. The model and the heuristic algorithms take into account the 

following characteristics of the healthcare delivery application: continuous demand, 

urgent requests, and multiple objectives. The work is built based on the assumption that it 

may be possible to satisfy the regular demands in a way that the slack of the vehicles can 

be used to address urgent requests. We build a multi-trip formulation and use stochastic 

programming with recourse for the master and daily routes. When formulating the master 

plan, it is desired that the master plan is similar to the daily plans that have uncertainty in 

customer occurrence. We use an approach that forms the master plans that would require 

little modification when adapted to daily schedules. Both the master plan and the recourse 

action for each daily schedule consider a multi-objective function that minimizes the 

delivery cost, minimizes taxi usage, and maximizes the quality of the healthcare customer 

services.       

Besides the modeling and the heuristic algorithms, we investigate how different 

uncertainty modeling decisions impact the quality of the routing solutions. Given the 

nature of the healthcare delivery problem, we evaluate the quality of the planned master 

and daily routes under different demand loads in terms of routing efficiency and route 

similarity. We compare the performance of the routing solutions through simulation 

under different settings and uncertainty scenarios.  
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In summary, there are three major contributions we make with this research:  

1) Propose a routing model suitable for the healthcare industry courier delivery 

problem.  

2) Develop new heuristic algorithms to solve the problem. 

3) Establish recommendations of best practices via simulations.  

Even though the stated application is for the healthcare delivery problem, the 

methods we develop here help the modeling of routing problems with urgent and 

stochastic demand in general.  

 

1.4 Structure of the Report 

The rest of the report is organized as follows. In section 2, a literature review of 

the relevant problems is presented. Section 3 formally introduces the problem 

formulation. In section 4, various problems in constructing heuristics for solving large 

size problems are discussed, and a new heuristic for handling a large size problem is 

proposed. In section 5, experimental results of an application of the proposed heuristic on 

a hypothetical large-size example are presented and discussed. The future research plan 

and timetable is presented in section 6.  
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2. Literature Review 
In this section, we review the literature relevant to our research. First of all, we 

give a brief review on the studies in the healthcare logistics and the general vehicle 

routing problem (VRP). Generally speaking, existing research on healthcare logistics 

does not consider multi-trip delivery, randomness, and urgency exist in the nature of the 

demand. To overcome these limitations, the model for the courier delivery problem of 

medical specimens should take these aspects into consideration. In the following two 

subsections, we focus on the relevant literature in the class of VRP: multi-trip VRP 

(MtVRP) and stochastic VRP (SVRP). Next, we briefly review the literature on customer 

services in the vehicle routing problem. In the last part, we address the gap we fill with 

this research. 

 

2.1 Healthcare Logistics & Vehicle Routing Problem 
Since the most important application of the proposed work is in the logistics and 

the supply chain systems of the healthcare system, we first review the related papers in 

healthcare logistics. The research in the logistic and supply chain systems of the 

healthcare industries has primarily been focused on the pharmaceutical industry (i.e., 

Papagergiou et al. 2001; Shah 2004; Meller et al. 2009). These models focus on 

optimizing the inventory systems or medication repackaging options. Other examples 

studying healthcare system logistics include Nicholson et al. (2004) who study 

outsourcing inventory management decisions, Jarrett (2006) who investigates the 

implementation of just-in-time systems; Vissers and Beech (2005) study the management 

of patient flows between organizations etc.    

Another relevant research area for healthcare logistics is home healthcare (HHC) 

service. HHC is a service that provides nursing assistance to patients, especially to the 

elderly, in their homes. Usually a HHC service operates a fleet of vehicles that are used to 

drive the nurses to the patients, where the nurses perform specific jobs. Begur et al (1997) 

develop an integrated spatial decision support system for scheduling HHC nurses. Both 

Bertels and Fahle (2006) and Steeg and Schroeder (2007) study the heuristics for home 



 
 

16 
 

healthcare problems that is related to the vehicle routing problem and the nurse rostering 

problem. Ganesh and Narendran (2007) present a multistage heuristic for a vehicle 

routing problem that involves a single item pickup, delivery under time window 

constraints; this problem can be applied to blood delivery for a public healthcare system. 

Hemmelmayr et al. (2009) study the delivery of blood products, analyzing the potential 

value of switching to a vendor-managed inventory system (VMI); they present solution 

approaches with integer programming and variable neighborhood search. Bachouch et al. 

(2009) study the drug delivery problem for homecare, using mixed integer programming.  

The courier delivery problem for medical specimens studied by this research falls 

under the class of the vehicle routing problem (VRP), which was first introduced by 

Dantzig and Ramser in 1959. Being a fundamental problem in transportation, distribution, 

and logistics, VRP studies the scheduling a fleet of vehicles to satisfy a set of 

geographically dispersed demands at minimum cost. General review of the VRP can be 

found in a number of literatures, such as Toth and Vigo (2002), Fisher (1995), and 

Laporte and Osman (1995).To the best of our knowledge, there has been no research 

studying courier delivery in multiple trips with stochastic urgent requests, especially for 

the healthcare industry. 

The vehicle routing problem is known to be NP-hard, because the travelling 

salesman problem (TSP), a special case of the VRP, is NP-hard. To solve the vehicle 

routing problem, a number of approaches are proposed in the literature. Exact algorithms 

(i.e. dynamic programming, branch and bound, branch and cut, branch and price), which 

can solve the VRP optimally, are only applicable to small-size problems. To solve 

moderate-size problems, heuristics are proposed and utilized in practice. Heuristics 

include constructive heuristic (e.g., Clarke and Wright, 1964), two phase heuristics (e.g., 

Gillett and Miller, 1974), and improvement methods (e.g., Thompson and Psaraftis, 

1993). In the past two decades, several metaheuristics (e.g.,Tabu search, genetic 

algorithms, simulated annealing, neural networks) have been proposed to solve the 

vehicle routing problems. Gendreau et al. (1994) propose a Tabu search heuristic to solve 

the vehicle routing problem with route length and capacity restrictions. Baker and 

Ayechew (2003) develop a genetic algorithm for the basic vehicle routing problem with 

weight limit and travel distance limit on the vehicles. Breedam (1995) proposes 



 
 

17 
 

simulated-annealing based improvement heuristics for the vehicle routing problems. 

Modares et al. (1999) address several algorithms for the routing problems based on a self-

organizing neural network approach. These metaheuristics typically perform a thorough 

exploration of the solutions, allowing deteriorating even infeasible intermediate ones; 

some of the metaheuristics maintain a pool of good solutions, which can be recombined 

to produce even better ones (Ren, 2011). 

 

2.2 Multi-trip VRP 

Multi-trip VRP (MtVRP), as a variant of the VRP, has gained little attention in 

the literature. In the MtVRP, vehicles can be used more than once during the planning 

horizon. Taillard et al. (1996) are the first researcher who studied the problem. They 

suggest that assigning more routes to a vehicle is a more practical solution in real life. 

They design an algorithm based on Tabu search, and their algorithm tries to avoid 

obtaining a local minimum. 

The study of Brandao and Mercer (1997) made an improvement to that of Taillard 

et al. (1996). This article does not only consider multi-trip VRP, using Tabu search, it 

also includes the delivery time window and the capacity of the vehicles. Moreover, this 

article assumes the flexible hiring of vehicles. Later, a simplified version of the paper is 

published by Brandao and Mercer (1998), with comparison of their study to Taillard’s 

algorithm.  

Petch and Salhi (2003) integrate the approaches proposed by Taillard et al. (1996) 

and Brandao and Mercer (1997 & 1998). Azi et al. (2006) first describe an exact 

algorithm for solving a multi trip VRP problem of one vehicle with time windows. Salhi 

and Petch (2007) make a comprehensive literature review on the multi-trip VRP, and 

present a genetic algorithm based on a heuristic for the solution of MtVRP. 

Another variant of the VRP study which considers periodicity of the usage of 

vehicles is the periodic VRP, which customers have to be visited once or several times in 

the planning horizon (Angelelli and Speranza, 2002). PVRP extends the classic planning 

horizon to several days (Hemmelmayr et. al., 2008). Angelelli and Speranza (2002) 

propose a Tabu search based heuristic for the solution of a PVRP with intermediate 
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facilities, where vehicles can renew their capacities. Francis and Smilowitz (2006) 

present a continuous approximation for service choice of a PVRP with capacity 

constraints. Hemmelmayr et al. (2008) propose a new heuristic for solving PVRP as well 

as a Periodic Travelling Salesman Problem, based on a neighborhood search. The paper 

of Alonso et al. (2008) extends the classic VRP to a periodic and multi-trip VRP with 

site-dependency and proposes a Tabu search based algorithm to solve the problem.  

Besides the models with multiple shifts or trips, overtime can also be an important 

strategy when a multi-trip model is constructed. Overtime has been widely used as an 

effective option in production planning and scheduling; it is however rarely used in the 

study of vehicle routing and scheduling problems. Sniezek and Bodin (2002) propose “a 

Measure of Goodness” criteria for their cost models, which includes capital cost of a 

vehicle, salary cost of the driver, overtime time, mileage cost, and cost of capacity 

renewal at the disposal facilities, to solve their Capacitated Arc Routing Problem with 

Vehicle/Site Dependencies (CARP-VSD). This model confirms that using overtime does 

help in generating less expensive routes because of the saving in the capital cost of 

vehicles. In recent years, Zapfel and Bogla (2008) provide a study of a multi-trip vehicle 

routing and crew scheduling with overtime and outsources options. Ren et al. (2010) 

introduce the usage of shifts into the VRP, and study a new variant of the VRP, which is 

with time windows, multi-shifts, and overtime. The results show that the shift dependent 

heuristics has significant cost savings. However, the proposed Tabu search based 

algorithm applies only to deterministic cases. 
 

2.3 Stochastic VRP 
The stochastic VRP (SVRP) introduces uncertainty in the parameters. A general 

review of the SVRP can be found in Gendreau et al. (1996). The stochastic VRP can be 

classified based on the following criteria:  

(1) Uncertainty in the problem: The uncertainty can be present in several parts of 

the vehicle routing problem, i.e., the presence of a customer, the level of demand, and the 

travel and service times. Generally, the related variants of the problem include VRP with 
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stochastic customers (VRPSC), VRP with stochastic demand (VRPSD), and with 

stochastic service and travel times (VRPSSTT).  

(2) Modeling method: There are several modeling methods prevailing in the 

literature for solving the SVRP. The most common one is stochastic programming, which 

can be further divided into chance constraint programming (CCP) and stochastic 

programming with recourse (SPR).  

(3) Solution technique: Similar to the classic VRP, the solution techniques for the 

SVRP generally fall into two categories: exact methods and heuristic methods.  

When the customer demand follows a given probability distribution, the problem 

is referred to as VRPSD, which consists of routing the vehicles to minimize expected 

total distance travelled such that all demands are served. The first algorithm for the 

VRPSD was developed by Tillman (1969) based on a saving’s algorithm. Early 

contributions on the VRPSD also include Stewart and Golden (1983) who apply chance 

constraint programming and recourse methods in the modeling, and Dror and Trudeau 

(1986) who illustrate the impact of the direction of a designed route on the expected cost. 

When customers are associated with demand that has a probability of being 

present, the vehicle routing problem becomes VRP with stochastic customers (VRPSC) 

(also called probabilistic VRP in the literature), which was initially studied by Jezequel 

(1985) and Jaillet (1988). The routing problems considering both stochastic customers 

and demands are typically classified as the VRP with stochastic customers and demands 

(VRPSCD), and it is a combination of the VRPSC and VRPSD.  

In the recent literature, VRPSD, VRPSC, and VRPSCD have been studied under 

two distinct approaches, the “a-priori optimization” approach and the “re-optimization” 

approach (Secomandi, 2001). Bertsimas (1992) proposes “a-priori sequence” solutions, 

which define a visiting sequence in advance that includes all the demand and skipping of 

the nodes or routes which are known to have no demands. Bertsimas and Simchi-Levi 

(1996) survey the development for the VRPSCD with emphasis on the proposed 

algorithms. In these variants of the routing problems, a number of models and solutions 

allow for recourse actions to adjust an “a-priori solution” after the uncertainty is revealed.  

The recourse actions proposed in the literature include skipping non-occurring customers, 
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returning to the depot when capacity is exceeded, or complete rescheduling for occurring 

customers (Jaillet 1988; Bertsimas et al, 1990; Waters 1989). 

With respect to the re-optimization approach, routing is dynamic in a sense that it 

occurs concurrently with service and no a-priori tours are followed (Secomandi, 2001). 

Dror et al. (1989, 1993) propose a Markov decision process for a single-stage and multi-

stage stochastic model to investigate the VRPSD. However, the algorithms for the re-

optimization approach are limited in the literature because of the computational difficulty 

with this approach. Recent papers include Secomandi (2001) and Secomandi and Margot 

(2009), in which a re-optimization routing policy and a rollout algorithm are developed.  

Another class of the SVRP is the VRP with Stochastic Travel Time and Service 

Time (VRPSSTT), which has received relatively less attention in the VRP literature 

compared to the VRPSC, VRPSD, and VRPSCD. In the VRPSSTT, the traffic condition 

on the roads as well as the service time is uncertain. In other words, the travel time 

between two locations is not a deterministic number, but rather depends on the 

congestion situation on the roads; the service time for each request is not deterministic, 

but depending on the vehicle that is performing the service. Kao (1978) first studies the 

Travelling Salesman Problem with Stochastic Travel Time (TSPSTT) and proposes 

heuristics based on dynamic programming and implicit enumeration. Carraway et al. 

(1989) use a generalized dynamic programming methodology to solve the TSPSTT. 

Laporte et al. (1992) study the VRPSSTT problem and proposes a chance constrained 

model, a 3-index recourse model, and a two-index recourse model. A branch-and-cut 

algorithm is proposed for the three models. Besides the above applications on VRP, the 

VRPSSTT model is also applied to a banking problem and solved with adapting the 

savings algorithm (Lambert et al. 1993).  

Robust optimization, introduced by Ben-Tal and Nemirovski (1998), has also 

been used in solving vehicle routing problems. Sungur et al. (2008) solve a capacitated 

VRP problem with uncertain demand on a fixed set of demand nodes. They use the robust 

optimization technique to formulate a new method for solving the problem, the Robust 

Vehicle Routing Problem (RVRP). Shen et al. (2009) study a routing problem for 

minimizing unmet demand with uncertain demand and travel time. They present a chance 

constraint model and compare it to a robust optimization approach. Sungur et al. (2010) 
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study a Courier Delivery Problem (CDP), which is a Vehicle Routing Problem with Time 

Windows Problem (VRPTW) with uncertain service times and customers. After 

formulating the problem, the authors proposed a two-phase heuristic based on insertion 

and Tabu search. Robust optimization is used to construct a worst-case service time for 

the master plan.  
 

2.4 Customer Service 
The healthcare courier delivery problem differs from the classical vehicle routing 

problem in a few ways. An important one is that it has a high requirement on the quality 

of customer service. In the problem we are considering for example, the clinics and 

hospitals prefer the samples or specimens to be delivered by the same driver in repetitive 

days. This would not only guarantee the promptness in the processing of the requests, but 

also warrant the familiarity of the delivery, both of which are key factors for efficient 

healthcare logistical systems.  

Some recent work has included customer service in the models for fixed route 

delivery systems under stochastic demand (Haughton and Stenger 1998). Haughton (2000) 

develops a framework for quantifying the benefits of route re-optimization, also under 

stochastic customer demands. Zhong et al. (2007) propose an efficient way of designing 

driver service territories, considering uncertainty in customer locations and demand. 

Their method uses a two stage model: in the strategic level, core service territories are 

constructed; in the operational level, customers in the non-core territories are assigned on 

a daily basis to adapt to uncertainty. This approach however does not consider customer 

time windows.  Groer et al. (2008) introduce the Consistent VRP (ConVRP) model. The 

objective is to obtain routes such that the customers are visited by the same driver at 

roughly the same time on each day. They develop an algorithm, ConRTR (ConVRP 

Record-to-Record travel), which first generates a template and then generates daily 

schedules from the template by skipping non-occurring customers and inserting new 

customers. Sungur et al. (2010) introduce the concept of “route similarity” as the number 

of customers of the daily routes that are within a given distance of any customer on the 

master plan route, and use it as a key measure for developing optimal routing strategies. 
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2.5 Research Gap 
Our work is different from the previous research in a few ways. The primary 

distinction in the domain of multi-trip VRP is that the earlier research on multi-trip VRP 

has equal length operation period for all vehicles with the routing in one period 

independent of the next.  In this work we allow continuous operation of non-equal length 

periods for different vehicles. For example, in a planning horizon of one day, an MtVRP 

may require the customers to be visited twice in two trips in a workday, with the length of 

a trip fixed. Or a PVRP may have all the customers be visited in one trip each workday 

during the planning horizon of a week, where the length of a trip of a vehicle is 8 hours 

per day. In our problem, the vehicles operate in multiple trips each workday during the 

planning horizon; the planning horizon is usually multiple days; the length of the trips for 

each vehicle will not be defined at first, but will be flexible according to the time window 

of the demands. There are multiple trips with varying length during the planning horizon 

because when we have a vehicle to visit a customer for pickup of a medical specimen, it 

is required that the specimen should be delivered to the lab by the same vehicle on the 

same trip. This variant of the VRP that has multiple trips with varying length in 

continuous operation over multiple days has not yet been studied in the literature.  

Another distinction of our work from the previous work is that the latter has 

mainly focused on developing daily independent routes without considering the 

integration of regular demand with random urgent requests. This requires the formation 

of master routes that have the flexibility to integrate a high number of urgent requests that 

have tight time windows and that may randomly occur any time of the day.  

Furthermore, the prior work focuses on an objective of minimizing travel cost, 

e.g., the total travel distance and vehicle costs. While in the healthcare domain, customer 

service is another important factor that needs to be taken into consideration. As 

emphasized by the current practice, similar daily plan is a representation of a high quality 

of customer service, with which we will have the same driver visiting the same customer 

such that the promptness and accuracy of delivery is guaranteed. We develop a model 
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that has both the cost of vehicles and taxis in the objective function, but also includes 

route similarity as a measure for the quality level of customer service.  
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3. Vehicle Routing with Urgent Requests 
 

3.1 Model Formulation 

We formulate a multi-trip vehicle routing model for the healthcare industry 

courier delivery problem, taking into account the efficient scheduling of regular and 

urgent requests, as well as route similarities. In this section, we provide a mixed integer 

programming formulation of this multi-trip VRPTW with stochastic clients.  

Assume we are making a routing schedule for a healthcare courier delivery 

service provider. There are 𝑛𝑛 potential customers (hospitals, clinics) in the region that 

must be visited during a planning horizon by a fleet of identical vehicles. Each day, some 

hospitals and clinics out of the 𝑛𝑛 potential customers send out a request that patients’ 

specimen should be picked up at the customer location and delivered to the lab, where 

both the pick-up and the delivery have to follow certain time windows. The locations of 

all the potential customers are known. However, the information of which customers 

have requests is only revealed on the day the requests are made. 

There is one depot (node 0) located at the central lab. Each vehicle should leave 

the depot at the beginning of the day, and return to the depot at the end of the day. It can 

also return to the lab anytime during the day when required (i.e., when there are urgent 

requests that need samples delivered by a certain time at the lab.). As each vehicle has 

multiple trips, we assume a dummy depot (represented by node 𝑛𝑛 + 1) located also at the 

central lab to keep track of which trip the request is on.  An example can be found in 

Figure 3.1 where there are five customers. Nodes 1 to 5 are used to represent the 

customers; node 0 and 6 are used to represent the depot and the dummy one, both of 

which located at the central lab.  

The notation of the model formulation is as follows.  

 

  



 
 

25 
 

 

Figure 3.1: Customers, Depot, and Lab 
 

 
 

The routing parameters: 

𝐷𝐷:  set of days in the planning horizon. 

𝐶𝐶: set of customers, 𝐶𝐶 = {1, … ,𝑛𝑛}. 

𝐾𝐾: set of vehicles.  

𝑊𝑊:  set of daily trips of a vehicle, 𝑊𝑊 = {1, … ,𝑛𝑛}. 

 

The cost parameters: 

𝑡𝑡𝑖𝑖𝑖𝑖 :  minimum travel time between node 𝑖𝑖 and  j. 

𝛼𝛼𝑡𝑡 :  unit travel cost, dollars per mile.  

𝛼𝛼𝑜𝑜 :  unit outsource cost, dollars per taxi trip. 

𝛼𝛼𝑠𝑠:  unit dissimilarity cost, dollars for each count of dissimilarity. 

 

The stochastic parameters:  

𝐶𝐶𝑑𝑑 : set of occurring customer requests on day d. 

𝑠𝑠𝑖𝑖𝑑𝑑 : service time of customer request i on day d. 

𝑎𝑎𝑖𝑖𝑑𝑑 :  the earliest time that the customer can be visited for request i on day d. 

𝑏𝑏𝑖𝑖𝑑𝑑 : the latest time that the customer can be visited for request i on day d. 

𝑙𝑙𝑖𝑖𝑑𝑑 : the latest time that the customer request i can be delivered to the lab on day d. 
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Other parameters: 

𝑀𝑀: a sufficiently large number.  

 

The routing variables: 

𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖𝑑𝑑 = �1,     if vehicle 𝑖𝑖 travels from node 𝑖𝑖 to 𝑖𝑖 on day 𝑑𝑑
0,     otherwise                                                                 

� 

𝑥𝑥0𝑖𝑖𝑖𝑖
𝑤𝑤𝑑𝑑 = �1,     if vehicle 𝑖𝑖 travels from the depot to cusotmer 𝑖𝑖 on trip 𝑤𝑤 on day d

0,     otherwise                                                                                                            
� 

𝑥𝑥𝑖𝑖(𝑛𝑛+1)𝑖𝑖
𝑤𝑤𝑑𝑑 = �1,     if vehicle 𝑖𝑖 travels from customer 𝑖𝑖 to the lab on trip 𝑤𝑤 on day 𝑑𝑑

0,     otherwise                                                                                                       
� 

𝑦𝑦𝑖𝑖𝑖𝑖𝑑𝑑 :  the time vehicle k arrives at customer 𝑖𝑖on day d.  

𝑦𝑦0𝑖𝑖
𝑤𝑤𝑑𝑑 :  the time that vehicle k leaves the depot for its trip w on day d. 

𝑦𝑦(𝑛𝑛+1)𝑖𝑖
𝑤𝑤𝑑𝑑 : the time that vehicle k returns to depot from its trip won day d.  

 

The auxiliary demand variables: 

𝑧𝑧𝑖𝑖𝑖𝑖𝑤𝑤𝑑𝑑 = �1,     if vehicle 𝑖𝑖 visits customer 𝑖𝑖 on trip 𝑤𝑤 on day 𝑑𝑑
0,     otherwise                                                                      

� 

𝑢𝑢𝑖𝑖𝑑𝑑 = �1,     if customer 𝑖𝑖 is visited by a taxi on day 𝑑𝑑
0,     otherwise                                                          

� 

𝑟𝑟𝑖𝑖𝑖𝑖𝑑𝑑 = �1,     if vehicle 𝑖𝑖 visits customer 𝑖𝑖 on either day 𝑑𝑑 or day 0, but not both
0,     otherwise                                                                                                           

� 

  

 Before we present the mathematical formulation of the model, some clarification 

on the parameters and decision variables need to be made.  

1) The planning horizon has a length of |D| days; and d = 0is used to represent the 

planning for the master routes.  

2) The maximum number of trips each vehicle can make in a day is 𝑛𝑛. We allow 

artificial trips that do not deal with any customers, but just “move” from the depot 

to the lab and back to the depot without spending any actual time.  
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3) 𝑡𝑡𝑖𝑖𝑖𝑖 is the minimum travel time between node 𝑖𝑖  and j. Particularly, 𝑡𝑡0𝑖𝑖  is the 

minimum travel distance between the depot and node i ; 𝑡𝑡𝑖𝑖(𝑛𝑛+1) is the minimum 

travel time between node 𝑖𝑖 and the lab. 

4) 𝑟𝑟𝑖𝑖𝑖𝑖𝑑𝑑 is defined as the measure of dissimilarity, with mathematical expression 

𝑟𝑟𝑖𝑖𝑖𝑖𝑑𝑑 = |∑ 𝑧𝑧𝑖𝑖𝑖𝑖𝑤𝑤𝑑𝑑𝑤𝑤∈𝑊𝑊 − ∑ 𝑧𝑧𝑖𝑖𝑖𝑖𝑤𝑤0
𝑤𝑤∈𝑊𝑊 |.𝑟𝑟𝑖𝑖𝑖𝑖𝑑𝑑  equals to 1 if customer i is visited by vehicle 

k either on day d or on day 0, but not both.  𝑟𝑟𝑖𝑖𝑖𝑖𝑑𝑑  equals to 0 if customer 𝑖𝑖 is visited 

by vehicle 𝑖𝑖 both on day d and on day 0, or on neither days. In other words the 

dissimilarity is counted as one if a customer is visited by a different vehicle than 

in the master plan.  

 

Problem formulation: 

Minimize 

𝛼𝛼𝑡𝑡 ∙���� � 𝑡𝑡𝑖𝑖𝑖𝑖 ∙ 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖𝑑𝑑

𝑖𝑖∈𝐶𝐶𝑑𝑑 ,𝑖𝑖≠𝑖𝑖𝑖𝑖∈𝐶𝐶𝑑𝑑
+ � � 𝑡𝑡0𝑖𝑖 ∙ 𝑥𝑥0𝑖𝑖𝑖𝑖

𝑤𝑤𝑑𝑑

𝑖𝑖∈𝐶𝐶𝑑𝑑𝑤𝑤∈𝑊𝑊

+ � � 𝑡𝑡𝑖𝑖(𝑛𝑛+1) ∙ 𝑥𝑥𝑖𝑖(𝑛𝑛+1)𝑖𝑖
𝑤𝑤𝑑𝑑

𝑖𝑖∈𝐶𝐶𝑑𝑑𝑤𝑤∈𝑊𝑊

�
𝑖𝑖𝑘𝑘𝐾𝐾𝑑𝑑𝑘𝑘𝐷𝐷

           

+ 𝛼𝛼𝑜𝑜 ∙� � 𝑢𝑢𝑖𝑖𝑑𝑑

𝑖𝑖𝑘𝑘𝐶𝐶𝑑𝑑𝑑𝑑𝑘𝑘𝐷𝐷

+ 𝛼𝛼𝑠𝑠 ∙ � �� 𝑟𝑟𝑖𝑖𝑖𝑖𝑑𝑑

𝑖𝑖𝑘𝑘𝐶𝐶𝑑𝑑𝑖𝑖𝑘𝑘𝐾𝐾𝑑𝑑𝑘𝑘𝐷𝐷\{0}

 

 

s.t. 

Routing constraints: 

� � 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖𝑑𝑑

𝑖𝑖𝑘𝑘 𝐶𝐶𝑑𝑑 ,𝑖𝑖≠𝑖𝑖𝑖𝑖𝑘𝑘𝐾𝐾

+ � � 𝑥𝑥0𝑖𝑖𝑖𝑖
𝑤𝑤𝑑𝑑

𝑤𝑤∈𝑊𝑊𝑖𝑖𝑘𝑘𝐾𝐾

+ 𝑢𝑢𝑖𝑖𝑑𝑑 = 1,                                                                         𝑖𝑖 ∈ 𝐶𝐶𝑑𝑑 ,𝑑𝑑 ∈ 𝐷𝐷         (1)     

� 𝑥𝑥𝑖𝑖(𝑛𝑛+1)𝑖𝑖
𝑤𝑤𝑑𝑑

𝑤𝑤∈𝑊𝑊

+ � 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖𝑑𝑑

𝑖𝑖𝑘𝑘 𝐶𝐶𝑑𝑑 ,𝑖𝑖≠𝑖𝑖

= � 𝑥𝑥0𝑖𝑖𝑖𝑖
𝑤𝑤𝑑𝑑

𝑤𝑤∈𝑊𝑊

+ � 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖𝑑𝑑

𝑖𝑖𝑘𝑘 𝐶𝐶𝑑𝑑 ,𝑖𝑖≠𝑖𝑖

=  � 𝑧𝑧𝑖𝑖𝑖𝑖𝑤𝑤𝑑𝑑

𝑤𝑤∈𝑊𝑊

,            𝑖𝑖 ∈ 𝐾𝐾, 𝑖𝑖 ∈ 𝐶𝐶𝑑𝑑 ,𝑑𝑑 ∈ 𝐷𝐷          (2) 

� 𝑥𝑥0𝑖𝑖𝑖𝑖
𝑤𝑤𝑑𝑑

𝑖𝑖∈𝐶𝐶𝑑𝑑
= � 𝑥𝑥𝑖𝑖(𝑛𝑛+1)𝑖𝑖

𝑤𝑤𝑑𝑑

𝑖𝑖∈𝐶𝐶𝑑𝑑
≤ 1,                                                                                 𝑖𝑖 ∈ 𝐾𝐾,𝑤𝑤 ∈ 𝑊𝑊,𝑑𝑑 ∈ 𝐷𝐷         (3)   

� 𝑥𝑥0𝑖𝑖𝑖𝑖
𝑤𝑤𝑑𝑑

𝑖𝑖∈𝐶𝐶𝑑𝑑
≥ � 𝑥𝑥𝑖𝑖(𝑛𝑛+1)𝑖𝑖

(𝑤𝑤+1)𝑑𝑑

𝑖𝑖∈𝐶𝐶𝑑𝑑
,                                                                                        𝑖𝑖 ∈ 𝐾𝐾,𝑤𝑤 ∈ 𝑊𝑊,𝑑𝑑 ∈ 𝐷𝐷          (4)   

𝑦𝑦𝑖𝑖𝑖𝑖𝑑𝑑 + 𝑡𝑡𝑖𝑖𝑖𝑖 + 𝑠𝑠𝑖𝑖𝑑𝑑 ≤ 𝑦𝑦𝑖𝑖𝑖𝑖𝑑𝑑 + 𝑀𝑀 ∙ �1 − 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖𝑑𝑑 �,                                       𝑖𝑖 ∈ 𝐶𝐶𝑑𝑑 , 𝑖𝑖 ∈ 𝐶𝐶𝑑𝑑 , 𝑖𝑖 ≠ 𝑖𝑖, 𝑖𝑖 ∈ 𝐾𝐾,𝑑𝑑 ∈ 𝐷𝐷           (5) 

𝑦𝑦0𝑖𝑖
𝑤𝑤𝑑𝑑 + 𝑡𝑡0𝑖𝑖 ≤ 𝑦𝑦𝑖𝑖𝑖𝑖𝑑𝑑 + 𝑀𝑀 ∙ �1 − 𝑥𝑥0𝑖𝑖𝑖𝑖

𝑤𝑤𝑑𝑑 �,                                                         𝑖𝑖 ∈ 𝐶𝐶𝑑𝑑 ,𝑤𝑤 ∈ 𝑊𝑊,𝑑𝑑 ∈ 𝐷𝐷, 𝑖𝑖 ∈ 𝐾𝐾          (6) 

𝑦𝑦𝑖𝑖𝑖𝑖𝑑𝑑 + 𝑡𝑡𝑖𝑖(𝑛𝑛+1) + 𝑠𝑠𝑖𝑖𝑑𝑑 ≤ 𝑦𝑦(𝑛𝑛+1)𝑖𝑖
𝑤𝑤𝑑𝑑 + 𝑀𝑀 ∙ �1 − 𝑥𝑥𝑖𝑖(𝑛𝑛+1)𝑖𝑖

𝑤𝑤𝑑𝑑 �,                            𝑖𝑖 ∈ 𝐶𝐶𝑑𝑑 ,𝑤𝑤 ∈ 𝑊𝑊,𝑑𝑑 ∈ 𝐷𝐷, 𝑖𝑖 ∈ 𝐾𝐾          (7)  

𝑦𝑦(𝑛𝑛+1)𝑖𝑖
𝑤𝑤𝑑𝑑 ≤ 𝑦𝑦0𝑖𝑖

(𝑤𝑤+1)𝑑𝑑 ,                                                                                                    𝑤𝑤 ∈ 𝑊𝑊,𝑑𝑑 ∈ 𝐷𝐷, 𝑖𝑖 ∈ 𝐾𝐾          (8) 

𝑎𝑎𝑖𝑖𝑑𝑑 ≤ 𝑦𝑦𝑖𝑖𝑖𝑖𝑑𝑑 ≤ 𝑏𝑏𝑖𝑖𝑑𝑑 ,                                                                                                            𝑖𝑖 ∈ 𝐶𝐶𝑑𝑑 , 𝑖𝑖 ∈ 𝐾𝐾,𝑑𝑑 ∈ 𝐷𝐷          (9) 
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−𝑀𝑀 ∙ �1 − 𝑧𝑧𝑖𝑖𝑖𝑖𝑤𝑤𝑑𝑑 � + 𝑦𝑦0𝑖𝑖
𝑤𝑤𝑑𝑑 ≤ 𝑦𝑦𝑖𝑖𝑖𝑖𝑑𝑑 ≤ 𝑦𝑦(𝑛𝑛+1)𝑖𝑖

𝑤𝑤𝑑𝑑 + 𝑀𝑀 ∙ �1 − 𝑧𝑧𝑖𝑖𝑖𝑖𝑤𝑤𝑑𝑑 �,             𝑖𝑖 ∈ 𝐶𝐶𝑑𝑑 ,𝑤𝑤 ∈ 𝑊𝑊,𝑑𝑑 ∈ 𝐷𝐷, 𝑖𝑖 ∈ 𝐾𝐾         (10)   

𝑦𝑦(𝑛𝑛+1)𝑖𝑖
𝑤𝑤𝑑𝑑 ≤ 𝑙𝑙𝑖𝑖𝑑𝑑 + 𝑀𝑀 ∙ �1 − 𝑧𝑧𝑖𝑖𝑖𝑖𝑤𝑤𝑑𝑑 �,                                                               𝑖𝑖 ∈ 𝐶𝐶𝑑𝑑  ,𝑤𝑤 ∈ 𝑊𝑊,𝑑𝑑 ∈ 𝐷𝐷, 𝑖𝑖 ∈ 𝐾𝐾         (11) 

−𝑟𝑟𝑖𝑖𝑖𝑖𝑑𝑑 ≤ � 𝑧𝑧𝑖𝑖𝑖𝑖𝑤𝑤𝑑𝑑

𝑤𝑤∈𝑊𝑊

− � 𝑧𝑧𝑖𝑖𝑖𝑖𝑤𝑤0

𝑤𝑤∈𝑊𝑊

  ≤ 𝑟𝑟𝑖𝑖𝑖𝑖𝑑𝑑 ,                                                                     𝑖𝑖 ∈ 𝐶𝐶𝑑𝑑  , 𝑖𝑖 ∈ 𝐾𝐾,𝑑𝑑 ∈ 𝐷𝐷         (12)  

 

Domain constraints: 

𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖𝑑𝑑 ∈ {0,1},                                                                                                                𝑖𝑖 ∈ 𝐶𝐶𝑑𝑑 , 𝑖𝑖 ∈ 𝐾𝐾,𝑑𝑑 ∈ 𝐷𝐷         (13) 

𝑥𝑥0𝑖𝑖𝑖𝑖
𝑤𝑤𝑑𝑑 ∈ {0,1},                                                                                                𝑖𝑖 ∈ 𝐶𝐶𝑑𝑑 ,𝑤𝑤 ∈ 𝑊𝑊, 𝑖𝑖 ∈ 𝐾𝐾,𝑑𝑑 ∈ 𝐷𝐷          (14)  

𝑥𝑥𝑖𝑖(𝑛𝑛+1)𝑖𝑖
𝑤𝑤𝑑𝑑 ∈ {0,1},                                                                                         𝑖𝑖 ∈ 𝐶𝐶𝑑𝑑 ,𝑤𝑤 ∈ 𝑊𝑊, 𝑖𝑖 ∈ 𝐾𝐾,𝑑𝑑 ∈ 𝐷𝐷          (15) 

𝑦𝑦𝑖𝑖𝑖𝑖𝑑𝑑 ≥ 0,                                                                                                                       𝑖𝑖 ∈ 𝑉𝑉𝑑𝑑 , 𝑖𝑖 ∈ 𝐾𝐾,𝑑𝑑 ∈ 𝐷𝐷          (16) 

𝑦𝑦0𝑖𝑖
𝑤𝑤𝑑𝑑 ≥ 0,                                                                                                                    𝑤𝑤 ∈ 𝑊𝑊, 𝑖𝑖 ∈ 𝐾𝐾,𝑑𝑑 ∈ 𝐷𝐷          (17)  

𝑦𝑦(𝑛𝑛+1)𝑖𝑖
𝑤𝑤𝑑𝑑 ≥ 0,                                                                                                              𝑤𝑤 ∈ 𝑊𝑊, 𝑖𝑖 ∈ 𝐾𝐾,𝑑𝑑 ∈ 𝐷𝐷          (18) 

𝑧𝑧𝑖𝑖𝑖𝑖𝑤𝑤𝑑𝑑 ∈ {0,1},                                                                                                               𝑖𝑖 ∈ 𝐶𝐶𝑑𝑑 , 𝑖𝑖 ∈ 𝐾𝐾,𝑑𝑑 ∈ 𝐷𝐷          (19) 

𝑟𝑟𝑖𝑖𝑖𝑖𝑑𝑑 ≥ 0,                                                                                                                        𝑖𝑖 ∈ 𝐶𝐶𝑑𝑑 , 𝑖𝑖 ∈ 𝐾𝐾,𝑑𝑑 ∈ 𝐷𝐷          (20) 

𝑢𝑢𝑖𝑖𝑑𝑑 ∈ {0,1},                                                                                                                              𝑖𝑖 ∈ 𝐶𝐶𝑑𝑑 ,𝑑𝑑 ∈ 𝐷𝐷          (21) 

 
As previously described, the healthcare courier delivery problem should focus not 

only on plans with minimum travelling cost, but also those with high level of customer 

service. Therefore, the objective function of our model is to minimize a total cost, that is 

composed of traveling cost, outsourcing cost, and route dissimilarity cost. The travel cost 

is represented by 𝛼𝛼𝑡𝑡 ∙ ∑ ∑ �∑ ∑ 𝑡𝑡𝑖𝑖𝑖𝑖 ∙ 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖𝑑𝑑𝑖𝑖∈𝐶𝐶𝑑𝑑 ,𝑖𝑖≠𝑖𝑖𝑖𝑖∈𝐶𝐶𝑑𝑑 + ∑ ∑ 𝑡𝑡0𝑖𝑖 ∙ 𝑥𝑥0𝑖𝑖𝑖𝑖
𝑤𝑤𝑑𝑑

𝑖𝑖∈𝐶𝐶𝑑𝑑𝑤𝑤∈𝑊𝑊 +𝑖𝑖𝑘𝑘𝐾𝐾𝑑𝑑𝑘𝑘𝐷𝐷

∑ ∑ 𝑡𝑡𝑖𝑖(𝑛𝑛+1) ∙ 𝑥𝑥𝑖𝑖(𝑛𝑛+1)𝑖𝑖
𝑤𝑤𝑑𝑑

𝑖𝑖∈𝐶𝐶𝑑𝑑𝑤𝑤∈𝑊𝑊 �, which is the total distance traveled by all the vehicles in the 

planning horizon. The outsource cost is represented by 𝛼𝛼𝑜𝑜 ∙ ∑ ∑ 𝑢𝑢𝑖𝑖𝑑𝑑𝑖𝑖𝑘𝑘𝐶𝐶𝑑𝑑𝑑𝑑𝑘𝑘𝑁𝑁𝐷𝐷 , which is the 

total number of trips that a taxi is used to handle the demands unmet by the regular fleet. 

It should be noted that this term could easily include the total taxi distance if we change it 

to 𝛼𝛼𝑜𝑜 ∙ ∑ ∑ 𝑢𝑢𝑖𝑖𝑑𝑑 . 𝑡𝑡𝑜𝑜𝑖𝑖𝑖𝑖𝑘𝑘𝐶𝐶𝑑𝑑𝑑𝑑𝑘𝑘𝑁𝑁𝐷𝐷 . The route dissimilarity is measured by 

𝛼𝛼𝑠𝑠 ∙ ∑ ∑ ∑ 𝑟𝑟𝑖𝑖𝑖𝑖𝑑𝑑𝑖𝑖𝑘𝑘𝐶𝐶𝑑𝑑𝑖𝑖𝑘𝑘𝐾𝐾𝑑𝑑𝑘𝑘𝑁𝑁𝐷𝐷\𝑂𝑂 , the total number of customers in the planning horizon, that 

are serviced by a vehicle different from the one servicing it in the master plan.   

There are two groups of constraints in our model, namely routing constraints and 

domain constraints. Constraint (1) assures on each day that each customer should be 

visited directly from the depot, right after a vehicle services customer 𝑖𝑖, or by a taxi when 

the regular fleet is unavailable. Constraint (2) assures that each vehicle must leave the 
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customer after visiting it. It also addresses the fact that a customer has to be visited by a 

vehicle in one of its trips in a day. Constraint (3) ensures that each individual trip should 

start with leaving the depot and end by returning to the depot. Constraint (4) enforces the 

usage of early trips as much as possible, which force the empty trips close to the end of 

the day instead of at the beginning of the day. Constraint (5) assures the relationship of 

arrival times at customers 𝑖𝑖 and 𝑖𝑖 , when customer 𝑖𝑖  is visited right after 𝑖𝑖  is 

visited.Constraint (6) expresses the relationship of arrival time to customer 𝑖𝑖, when 𝑖𝑖 is 

the first customer request a vehicle handles in a trip.  Constraint (7) expresses the 

relationship of arrival time to customer 𝑖𝑖, when 𝑖𝑖 is the last customer request a vehicle 

handles in a trip. Constraint (8) enforces that the finish time of a trip of a vehicle should 

be no later than the start time of the next trip of the vehicle. Constraint (9) enforces the 

arrival time of a vehicle at a customer to be in the required time window for handling the 

customer request. Constraint (10) requires that the arrival time at a customer on a trip 

should be between the start time and the end time of the trip. Constraint (11) requires that 

each vehicle should visit the lab before the drop-off deadline of each specimen collected 

by a vehicle on a trip.  Constraint (12) is another representation of our expression for 

dissimilarity𝑟𝑟𝑖𝑖𝑖𝑖𝑑𝑑 = |∑ 𝑧𝑧𝑖𝑖𝑖𝑖𝑤𝑤𝑑𝑑𝑤𝑤∈𝑊𝑊 − ∑ 𝑧𝑧𝑖𝑖𝑖𝑖𝑤𝑤0
𝑤𝑤∈𝑊𝑊 |. It removes the usage of the absolute value 

in the expression, so that the system is linearized. Constraints (13) – (21) are the domain 

constraints.  

The following observation can be made from the model:  

1. Multi trip of a vehicle is used because of the time window constraint of the 

customer requests. In other words, a trip of a vehicle needs to be finished so that 

all the medical specimens can be delivered to the lab on time.   

2. It is optimal to combine some customer requests into one trip of a vehicle, such 

that the summation of the travelling time of the vehicle is minimized.  

3. It is optimal to use the same vehicle to visit the same customers on different days 

so that the route similarity is increased.  

4. When the cost of introducing a third party vehicle (e.g., taxi) is comparatively 

high, it is more beneficial to use the regular fleet instead of a third party vehicle.  
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3.2 A Small Sample Problem 
 To illustrate this model, consider the following small example. There is one day 

(Day 1) in the planning horizon, and another day (Day 0) is used to represent the master 

plan. There are five customers in the small problem. All of them request for delivery 

service on Day 1, and all of them will be included in the master plan. The location of the 

customers, the pickup time window, and the deadline for drop-off at the lab are shown in 

Table 3.1. The vehicle is assumed travelling at a speed of 50 km/hour. The other 

coefficients are αt = 1, αs = 1, and αo = 10000. In this small example, we use a high 

value for taxi cost, to discourage the use of taxis and we can focus on the optimal routes 

generated with the vehicles by the healthcare provider.  

The small instance uses c1 to c5 to represent customer 1 to customer 5 requesting 

service, and we use c0 and c6 to represent the depot and the lab.  Notation d0 and d1 are 

used to represent the day for the master plan and day 1, and k1 and k2 are used to 

represent the two vehicles operated by the healthcare provider to handle the service. 

Notation w1 to w5 are used to represent the five trips that a vehicle can make. 

 

Table 3.1: Customer Information for the Sample Problem 

 x  y  Earliest Pickup Latest pickup  Latest Drop-off 

Day 1      

Customer 1 110 70 16 18 22 

Customer 2 113 73 13 15 19 

Customer 3 113 70 6 8 12 

Customer 4 110 73 9 11 15 

Customer 5 108 68 9 11 15 

 

The optimal solution can be illustrated by Figure 3.2. Both in the master (day 0) 

and the daily (day 1) plan, only vehicle k1 is used with two trips. For the first trip, it 

travels from the depot to customer 3, then to customer 4, then customer 5, and then back 

to the depot. It travels from the depot to customer 2, then to customer 1, then back to the 

depot for its second trip. The optimal objective value of the small sample problem is 

21.6km. No taxi is introduced in this problem and there is no cost on route dissimilarity 
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as the daily plan is the same as the master plan. In this example, artificial trips (trips 

between node 0 and node 6) are observed because in the model we assume the maximum 

number of trips each vehicle can make is the number of customer requests. In the optimal 

solution, however, several customer requests can be combined and handled in one trip of 

a vehicle, making a number of artificial trips left.  

 
 

Figure 3.2: The Optimal Routing Solution for Day 0 / 1 
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4. Heuristic 
As discussed in earlier chapters exact solution methods will only be able to solve 

small size instances of this problem. As there are |𝐷𝐷| days during the planning horizon, 

and on each vehicle there is 𝑛𝑛 trips (including real trip and artificial trips), then solving a 

problem with n customers and k vehicles is equivalent to solving a routing problem with 

𝑛𝑛|𝐷𝐷|  customers with 𝑛𝑛|𝐾𝐾|  vehicles. Therefore, heuristic algorithms need to be 

constructed, in order to solve the problem which is huge in size. In this section, we 

present a heuristic to solve this courier delivery problem with urgent requests.  The 

heuristic can be divided into four parts. The first part is the insertion algorithm, which is 

used repeatedly when constructing master and daily routes. The second part is Tabu 

search, which is used to obtain a near-optimal solution for the routing solutions. Insertion 

and Tabu search are generic techniques for this problem and are used to obtain efficient 

routes. The third part is the construction of the master routes, which can be used to build 

daily routes. The last part is the construction of the daily routes, basically focusing on the 

handling of the urgent requests. The construction of master routes against the daily routes 

is a specific separation of the problem in order to be able to manage the problem size.  

 

4.1 Insertion 
Insertion techniques have been widely used as an efficient method for solving 

vehicle routing and scheduling problems. Insertion heuristics are popular because they 

are fast, easy to implement, and produce good solutions, and they are easy to extend to 

handle complicating constraints. A comprehensive review of insertion heuristics can be 

found in Campbell et al. (2004).  

 Our heuristic uses the insertion technique as a basic cell, and builds the master 

routes and the daily plans by calling the insertion heuristic.  The insertion heuristics used 

for constructing master routes and daily routes are different due to the objective function 

considered in each. The insertion for constructing master routes needs only to consider 

the efficiency in travel distance. The insertion for constructing daily routes, however, 

needs to consider travel distance, as well as cost for taxis and route dissimilarity. One 
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reason behind this strategy is not to use taxi in the master routes as long as it is feasible to 

use the fleet of vehicles. The other reason is that route dissimilarity is measured on daily 

routes against master routes, and it is only meaningful to include dissimilarity in the cost 

function for inserting requests into daily routes.  

 
Algorithm 1: Insertion of request to form master routes  

Input: the scheduled routes; a request to insert. 

Output: the updated routes or taxi cost. 

 

for all the positions in all the activated routes 

find the feasible insertion positions with minimum insertion cost;  

if  the insertion is feasible then 

update the routes;  

else if  there is a vehicle to activate then  

put the request on the new vehicle;  

else  update the taxi cost;  

 

An insertion heuristic for building master routes is introduced (Algorithm 1). On a 

daily basis, for the customer requests that are not in the master routes, the insertion 

algorithm changes to Algorithm1.1. In this updated algorithm, the insertion cost is the 

summation of the travel cost and the dissimilarity cost when inserting the request into the 

regular fleet; the taxi cost is the summation of the travelling cost and the dissimilarity 

cost when using the taxi service. 

The basic procedure of an insertion is illustrated in Fig 4.1.In Algorithm 1 and 

Algorithm 1.1, to check the feasibility of an insertion, we need to “update the arrival 

times” after we tentatively insert a pickup or delivery of a request.  The arrival time at 

each node can be calculated as 𝐴𝐴𝑖𝑖 = max(𝐴𝐴𝑖𝑖−1 ,𝐸𝐸𝑖𝑖−1) + 𝑡𝑡𝑖𝑖−1,𝑖𝑖 , where node 𝑖𝑖 − 1  and 

node 𝑖𝑖 are the two nodes consecutively visited by a vehicle. 𝐴𝐴𝑖𝑖  is the arrival time at node 

𝑖𝑖, 𝐸𝐸𝑖𝑖  is the earliest time a vehicle can visit node 𝑖𝑖, and 𝑡𝑡𝑖𝑖−1,𝑖𝑖  is the travel time between 

node 𝑖𝑖 − 1 and node 𝑖𝑖.  
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Algorithm 1.1: Insertion of a daily request not in the master routes  

Input: the scheduled routes; the master routes; a request to insert. 

Output: the updated routes. 

 

for all the positions in all routes 

find the feasible insertion positions with minimum insertion cost;  

calculate taxi cost;  

if minimum insertion cost is smaller than taxi cost 

then use fleet;  

else use taxi;  

if use fleet 

then update the routes;  

if use taxi or infeasible to insert 

then update the taxi cost;  

 

In these algorithms, the feasibility of an insertion can be confirmed by checking if 

𝐴𝐴𝑖𝑖 ≤ 𝐿𝐿𝑖𝑖  for all the nodes in the route, and 𝐿𝐿𝑖𝑖  is the latest time that node 𝑖𝑖 can be visited. It 

should be noted that each customer request corresponds to the handling of a pickup and a 

delivery request pair. For the pickup of a customer request, 𝐸𝐸𝑖𝑖  is the earliest pickup time 

of the specimen and 𝐿𝐿𝑖𝑖  is the latest pickup time of the specimen. For the delivery of the 

customer request, 𝐸𝐸𝑖𝑖  is set to 0 (the earliest time the vehicle can return to the lab for 

delivery) and 𝐿𝐿𝑖𝑖  is the latest time the specimen has to be delivered at the lab. The 

insertion of a customer request is feasible, if both the pickup and the delivery of the 

request are feasible.  
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Figure 4.1: Insertion of Customer Request i 
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𝑝𝑝𝑖𝑖  Pickup of customer request i 
    

 
𝑑𝑑𝑖𝑖  Delivery of customer request i 

    
          

 

The cost on the distance traveled can be calculated as follows.  If the pickup and 

delivery of a request are inserted as two consecutive nodes, i.e., if the pickup is inserted 

as node 𝑖𝑖 − 1 and the delivery is inserted as node 𝑖𝑖  in a route (Figure 4.2), then the 

insertion cost can be calculate as 𝑡𝑡𝑖𝑖−2,𝑖𝑖−1 + 𝑡𝑡𝑖𝑖−1,𝑖𝑖 + 𝑡𝑡𝑖𝑖 ,𝑖𝑖+1 − 𝑡𝑡𝑖𝑖−2,𝑖𝑖+1 . If the pickup and 

delivery of a request are inserted not next to each other, i.e., if the pickup is inserted as 

node 𝑖𝑖 − 1  and the delivery is inserted as node 𝑖𝑖 + 𝑎𝑎  (𝑎𝑎 ≥ 1) (Figure 4.3), then the 

insertion cost can be calculated as 𝑡𝑡𝑖𝑖−2,𝑖𝑖−1 + 𝑡𝑡𝑖𝑖−1,𝑖𝑖 + 𝑡𝑡𝑖𝑖+𝑎𝑎−1,𝑖𝑖+𝑎𝑎 + 𝑡𝑡𝑖𝑖+𝑎𝑎 ,𝑖𝑖+𝑎𝑎+1 − 𝑡𝑡𝑖𝑖−2,𝑖𝑖 −

𝑡𝑡𝑖𝑖+𝑎𝑎−1,𝑖𝑖+𝑎𝑎+1. 



 
 

36 
 

 

Figure 4.2: Pickup is followed directly by delivery 

  
Pickup Delivery 

  
 

i-2 i-1 i i+1 
  

Figure 4.3: Pickup is followed directly by delivery 
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The taxi cost is made up of two parts in the algorithms. One is the fixed cost, 

which is proportion to the number of trips. The other is variable cost, which is in 

proportion to the distance from the pickup location to the delivery location.   

The cost for dissimilarity is calculated by comparing the scheduled routes to the 

master routes. If a request is serviced by the same vehicle, then the dissimilarity is 0; 

otherwise, it is 1.  It should be noted that we assume the dissimilarity cost is always 1 

when a customer is visited by a taxi.  

It should be noted that the described insertion heuristic is a parallel insertion 

procedure. However, to construct the master routes, we first use the activated vehicle for 

the handling of the delivery requests. We activate a new vehicle when it is not feasible to 

handle the request with a currently activated vehicle. This approach is favored for less 

usage of vehicles in the master routes, which is another factor of cost reduction for the 

healthcare provider. In other words, with this approach, we have a better idea on the 

minimum number of vehicles we need to maintain to handle the requests.  

 

4.2 Tabu Search 
 As described above, insertion heuristic algorithms are used to build initial 

solutions for the master and the daily routes. However, in order to obtain efficient 

solutions, a Tabu search algorithm (Algorithm 2) is developed as the post phase 

improvement for the master and the daily routes.  The implementation of the Tabu search 

considers the neighborhoods obtained from the standard 2-opt exchange move (Lin, 1965) 
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and the 𝜆𝜆-interchange move (Osman, 1993). The 𝜆𝜆-interchange operators are generated 

by randomly selecting two requested from two different routes, and exchanging the 

requests by interchanging the pickup and the delivery of each request (Figure 4.4).  As 

the problem requires pickup and delivery of a request handled by the same vehicle, it 

must be assured that the pickup and the delivery of a request stay on the same vehicle. 

The 2-opt exchange operator is generated by randomly selecting two nodes (pickup or 

delivery) on a randomly selected vehicle (Figure 4.5). As a package can only be delivered 

after it is picked up, it must be assured that the delivery of any request is located after the 

pickup of the request.      

 

Algorithm 2: Tabu Search Algorithm  

Input: a master plan or a daily plan to improve  

Output: improved master plan or daily plan  

 

repeat 

 randomly chose two routes from the solution  

 generate 𝜂𝜂𝑚𝑚𝑎𝑎𝑥𝑥  neighbors from λ-interchange operator 

 generate 𝛾𝛾𝑚𝑚𝑎𝑎𝑥𝑥  neighbors from 2-opt operator 

 choose the best solution and make the move;   

 randomly generate tabu tenure 𝜃𝜃 from a uniform distribution U (𝜃𝜃𝑚𝑚𝑎𝑎𝑥𝑥 , 𝜃𝜃𝑚𝑚𝑎𝑎𝑥𝑥  );  

 if the move is 𝜆𝜆-interchange then  

  set the tabu for moving the exchanged requests for 𝜃𝜃 iterations;  

 else 

  set the tabu for moving the exchanged nodes for 𝜃𝜃 iterations;  

until no improvement in 𝐼𝐼𝑚𝑚𝑎𝑎𝑥𝑥  iterations;   

calculate the objective and save the current solution;  

 

In each iteration, the Tabu search generates 𝜂𝜂𝑚𝑚𝑎𝑎𝑥𝑥   𝜆𝜆-interchange neighbors and 

𝛾𝛾𝑚𝑚𝑎𝑎𝑥𝑥  2-opt neighbors of the current solution. The number of Tabu iterations 𝜃𝜃  is a 

random number uniformly distributed in (𝜃𝜃𝑚𝑚𝑖𝑖𝑛𝑛 ,  𝜃𝜃𝑚𝑚𝑎𝑎𝑥𝑥 ). The Tabu search at each iteration 

moves to the best neighbor. A temporary move to a worse solution is allowed to escape 
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from the local minimum. The Tabu status is overwritten if the new solution improves 

from the best solution. The algorithm terminates if there is no improvement in  𝐼𝐼𝑚𝑚𝑎𝑎𝑥𝑥  

iterations. 

The Tabu search algorithm will be applied on both the master routes, and on the 

daily routes. When it is applied on master routes, the objective is to minimize the total 

distance traveled, as to have more slack time to accommodate the random requests. When 

it is applied on daily routes, the objective is to minimize the cost including total distance 

traveled, and route dissimilarity, as to improve the overall efficiency of the final routes. 

 

Figure 4.4: 𝝀𝝀-interchange Operator 

Before the Move:  
       

         
 

Route 1   Pickup 1     Delivery 1   
 

         
 

Route 2     Pickup 2   Delivery 2   
 

         After the Move:  
       

         
 

Route 1   Pickup 2     Delivery 2   
 

         
 

Route 2     Pickup 1   Delivery 1   
 

          

 

Figure 4.5: 2-opt Exchange Operator 

Before the Move:  
       

         
 

Route    Pickup 1 Delivery 1 Pickup 2 Delivery 2   
 

         After the Move:  
       

         
 

Route   Pickup 1 Pickup 2 Delivery 1 Delivery 2   
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4.3 Master Routes 
When forming master routes, we need to consider the following conflicting 

objectives: an efficient template to satisfy regular demands for routine business, but be 

able to rapidly adapt to random and urgent requests that arises throughout the day.  

Therefore we face two main challenges when determining the master plan for the courier 

routing problem:  

1. To determine which requests to include in the master plan.  

2. How to obtain large scale, multi-shift routing solutions under uncertainty.  

 The extreme cases in classifying regular and urgent requests are comparatively 

easy. A customer that requests service every day usually has wide time windows and 

should be considered a regular request and be included in the master plan. A customer 

request in a matter of life and death (i.e. testing of compatibility of donor organs) should 

be considered urgent, and should not be included in the master route as it occurs rarely.  

The problem is how to classify routing requests that have wide windows and 

occur randomly. If the frequency is high, they could be considered regular requests. 

Requests of this sort should be scheduled in the master routes and skipped in the day they 

do not appear. If the request occurs rarely then they should not be included in the master 

plan, but should rather be handled in the most efficient way, such as to be included in 

some master route or use a separate dedicated vehicle.  

 We study different configurations of the courier delivery problem to identify how 

to balance the benefits of master routes and recourse actions to better service urgent 

requests. Specifically, if the master routes are built to service a large amount of regular 

requests, most demand points could be satisfied efficiently; however, there will be less 

slack time left to handle urgent requests which arise later, and will therefore drive up 

costs. On the other hand, if the master plans are built to service very few regular requests, 

then it will be less efficient to service most daily requests and determining the daily 

routes will be more difficult, but more slack could be left in the master routes to handle 

urgent request. In this situation, it is possible that some vehicles would not be used in the 

master routes but be used as a dedicated vehicle to handle urgent requests only. 

 In order to obtain efficient master routes for the courier delivery problem, 

algorithm 3 is developed as the solution procedure. The idea is to include the customers 
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that have a high probability of occurrence. An insertion algorithm is used to construct an 

initial solution for master routes. Tabu search is used to improve the efficiency in travel 

distance so that more slack is obtained for more random urgent requests. The simulation 

results on the comparison of the configuration of the master routes can be found in 

section 5. 

 

Algorithm 3: Formation of a Master Plan  

Input: All the customers to insert; the probability of a customer to request service in a 

day; a threshold for probability of customer occurring  

Output: Master routes 

 

for all the customers do 

if the occurring probability of a customer is larger than the threshold then   

include the customer into the master plan by calling Algorithm 1.1; 

end for 

improve the master routes with Tabu search by calling Algorithm 2;  

 

 

4.4 Daily Plans with Urgent Requests: 
 As described earlier, in the first stage, we obtain the solution of an effective 

master plan, and in the second stage, we adjust the planned routes to handle the urgent 

requests occurred. The objective of the second stage is to accommodate as many of the 

urgent requests as possible with the existing resources, including the slack time of the 

vehicles for the master routes and the dedicated vehicles for urgent requests. In this 

second stage, we need to quickly modify the master plan to service the updated requests.  

 An ideal benchmark solution is obtained by solving the problem once the 

uncertainty is revealed; however, it is impossible to implement because of the size of a 

real problem and the limitation in the current computational power. Alternative recourse 

actions to be implemented must have the three objectives: 

1. Easy and quick to compute 
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2. Obtain a high quality solution 

3. Easy to execute with small deviations from the planned routes 

If the recourse action allows skipping customers then the problem can be 

approximated by a knapsack problem (Kellerer et al., 2004). The recourse strategy is 

inspired by the classic recourse strategy (strategy b) in Bertsimas (1992), which assumes 

the demand will be revealed before the vehicle leaves the depot to service the customer. 

Therefore, a customer will be skipped if it does not request service in a particular day.  

In our strategy, we also make the same assumption that the travel time and the 

actual demand on each day are known before the vehicle departs from the depot. The 

recourse action in each day includes skipping the customers in the master routes that do 

not request service from the master plan and inserting the customers who request service 

into the existing routes if possible.   

The heuristic algorithm for building daily plans by adapting the master plan using 

recourse action can be found in Algorithm 4. In the next section, we compare our 

heuristics to other benchmark approaches.  
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Algorithm 4: Formation of Daily Plans 

Input: the master plan; daily requests 

Output: the daily plans 

 

for each day do 

 take the master plan (generated by Algorithm 3) as the initial daily plan; 

for all the requests in the master plan  

 if the request does not occur on the day then  

 drop the request from the daily plan; 

end for  

for all the requests on the day do  

if a request is NOT included in the master plan then 

insert the request into the daily plan by calling algorithm 1.1;  

end for 

improve the daily plan with Tabu search by calling Algorithm 2;   

for all the requests serviced by taxi do 

insert the request into the daily plan by calling algorithm 1.1;  

end for 
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5. Experimental Results 
 

5.1 Data Generation and Input Parameters 
 We test our model and heuristic using simulation on the following randomly 

generated data set and input parameters. Our vehicles will be servicing the courier 

delivery demands in a city assumed as a square plane.  Consider a city with a two-

dimensional coordinate system, the boundary of the city is from -10 to 10 miles in both 

the x-axis and the y-axis. The depot and the only lab where all the vehicles start and end 

their services every day are located at the center of the city, that is (0, 0) on the two-

dimensional plane. (Fig 5.1) 

 

Figure 5.1: City Size and Customer Locations 
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The locations of all the potential customers are known a priori, and the potential 

customers, in each experiment, are uniformly distributed in the city (see Fig 5.1). Some 

customers request service at a fixed time every day (deterministic requests), while others 

only request services at a fixed time on some of the days (random requests). Each random 

request has a probability𝑝𝑝of occurring on each day where 𝑝𝑝 is sampled from a uniform 

[0, 1] distribution. The earliest pickup time (the earliest time a customer can be visited) of 

a request is uniformly distributed from 9 am to 5 pm on each day. The latest pickup time 

(the latest time a customer can be visited) of the request is 30 minutes after the 

corresponding earliest pickup time. Each request has a latest drop-off time (a deadline by 

which the sample has to be delivered at the lab); the latest drop-off time for regular 

requests is 2 hours after its earliest pickup time, and the latest drop-off time for urgent 

requests is 1 hour after its earliest pickup time (see Table 5.1).  

 

Table 5.1: Time Windows of Regular and Urgent Requests 
 Earliest Pickup Time 

(hours) 
Latest Pickup Time 

(hours) 
Latest Drop-off Time 

(hours)   
Regular Request [9, 17] Uniformly  0.5+Earliest Pickup Time  2 + Earliest Pickup Time 

Urgent Request [9, 17] Uniformly 0.5 + Earliest Pickup Time 1 + Earliest Pickup Time 

 

We assume a given number of vehicles to service the requests, which might be 

different in each experiment. And the vehicles drive at an average speed of 30 miles per 

hour to service the requests.  

 

5.2 Simulations and Results 

In the section, we show the simulation results with the above assumptions and 

data inputs. In each experiment, we assume a fixed number of potential requests, a fixed 

proportion of deterministic requests among all the requests, and a fixed number of 

available vehicles to handle the requests. The result of each experiment is taken by 

averaging the results of 10 replications, each of which takes the average result of 10 days. 

Each replication determines the probability that a customer will request service based on 

random sampling. In other words, in each replication, we randomly select a number of 
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requests to be deterministic requests; for the random request, it has probability 𝑝𝑝  of 

occurrence in each day of the replication. In each day of a replication, we determine the 

occurrence of each request by sampling based on the probability 𝑝𝑝. 

In each experiment, we compare the following four strategies in terms of average 

travel distance, average taxi cost, average route dissimilarity, average number of taxi trips, 

average travel distance per requests, and average total cost, on a daily basis.  

A. TAXI: schedule all the deterministic requests as master routes using the insertion 

heuristic algorithm; use a third party courier, i.e., taxi, for all the random requests. 

(Apply Algorithm 3 with a customer occurrence probability threshold of 1 to 

build the master routes; handle all the random requests by taxi.) 

B. IND: form a schedule independently for each day, using the insertion heuristic. 

(Use Algorithm 1 to build daily routes independently.) 

C. MFIX: schedule the deterministic requests as master routes, and insert the random 

requests into the scheduled routes on each day. Use taxi if it is infeasible or more 

expensive to insert the random request into the scheduled routes. (Use Algorithm 

3 to build the daily plans with a customer occurrence probability threshold of 1.) 

D. MHALF: schedule the deterministic requests and high occurring probability 

requests (those who have an occurrence probability of 0.5 or higher) as master 

routes. In the daily schedules, skip the non-occurring customers and insert the 

unscheduled random requests into the scheduled routes. Use a taxi if it is 

infeasible or more expensive to insert the random request into the scheduled 

routes. (Use Algorithm 3 to build the daily plans with a customer occurrence 

probability threshold of 0.5.)  

The parameters we use in the experiments for the Tabu search algorithms 

are 𝜂𝜂𝑚𝑚𝑎𝑎𝑥𝑥 = 50, 𝛾𝛾𝑚𝑚𝑎𝑎𝑥𝑥 = 50,  𝐼𝐼𝑚𝑚𝑎𝑎𝑥𝑥 = 100, 𝜃𝜃𝑚𝑚𝑖𝑖𝑛𝑛 = 10, and 𝜃𝜃𝑚𝑚𝑎𝑎𝑥𝑥 = 10.  

Table 5.2, 5.3, and 5.4 summarize the simulation results with 50, 100, and 500 

customers respectively. Simulations have been done with different combinations on the 

number of vehicles and cost parameters. In these tables, “#Customers” gives the number 

of potential customers; “#Vehicle” shows the number of vehicles used in the simulation. 

𝛼𝛼𝑡𝑡 is the unit cost per hour traveled. 𝛼𝛼𝑜𝑜_𝑓𝑓  is the fixed cost per trip of taxi. 𝛼𝛼𝑜𝑜_𝑣𝑣  is the 

varying cost per hour the taxi traveled. 𝛼𝛼𝑠𝑠  is the unit cost per count of dissimilarity. 
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Column “Proportion Fix” shows the proportion of deterministic customers among all the 

potential customers.  Column “Strategy” lists the four strategies we are comparing. 

Column “Travel” shows the total distance that a vehicle travels per day on average. 

Column “Taxi Cost” shows the average daily taxi cost. Column “Dissimilarity” shows 

the average dissimilarity, which is the total number of vehicles used in the daily routes 

that is different than the one in the master routes. If a taxi is used, then the dissimilarity is 

increased by one, as we assume that a different taxi will come to service a different 

request. Moreover, as there is no master routes generated for independent scheduling, the 

dissimilarity is calculated by comparing the daily routes to the master routes generated in 

strategy “master fix”. Column “#Taxi Trips” shows the total number of daily taxi trips 

introduced on average. Column “Travel/Requests” shows the distance that a vehicle 

travels to service a request on a daily basis on average. Column “Total Cost” shows the 

average daily total cost including travel cost, taxi cost, and cost on dissimilarity. It is the 

summation of each type of costs weighted by the unit cost of that type.  

 The results are also shown in Figures A.1 – A.18 in the appendix.  
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Table 5.2: Simulation Results with 50 Customers 

 
 

  

#Customers: 50;   #Vehicles: 4;  αt=1, αo_f=100,  αo_v=0.5,  αs=0.01; #Customers: 50;   #Vehicles: 2; αt=1, αo_f=100,  αo_v=0.5,  αs=0.01; 
Proporti
on Fixed

Strategy Travel Taxi 
Cost

Dissmila
rity

# Taxi 
Trips

Travel/R
equest

Total 
Cost

Proporti
on Fixed

Strategy Travel Taxi 
Cost

Dissmila
rity

# Taxi 
Trips

Travel/R
equest

Total 
Cost

0.8 TAXI 2.89 424.53 4.24 4.24 0.28 436.13 0.8 TAXI 5.61 694.87 6.94 6.94 0.3 706.15
IND 3.05 0 21.58 0 0.27 12.43 IND 6.03 294.4 17.23 2.94 0.29 306.63
MFIX 3.14 0 6.08 0 0.28 12.61 MFIX 6.02 300.41 7.46 3 0.29 312.52
MHALF 3.05 0 2.34 0 0.27 12.22 MHALF 6.12 209.28 6.58 2.09 0.29 221.58

0.6 TAXI 2.23 1012.32 10.11 10.11 0.29 1021.34 0.6 TAXI 4.46 1082.41 10.81 10.81 0.3 1091.43
IND 2.94 0 23.32 0 0.29 12.01 IND 5.79 188.27 21.69 1.88 0.3 200.06
MFIX 2.93 0 12.55 0 0.29 11.86 MFIX 5.72 186.29 11.76 1.86 0.3 197.84
MHALF 2.98 0 5.4 0 0.29 11.99 MHALF 5.85 169.25 6.8 1.69 0.3 181.01

0.4 TAXI 1.69 1391.76 13.9 13.9 0.32 1398.66 0.4 TAXI 3.38 1391.76 13.9 13.9 0.32 1398.66
IND 2.71 0 22.84 0 0.31 11.08 IND 5.35 126.18 21.65 1.26 0.32 137.1
MFIX 2.73 0 17.07 0 0.31 11.1 MFIX 5.24 121.19 15.73 1.21 0.31 131.82
MHALF 2.72 0 7.8 0 0.31 10.95 MHALF 5.35 153.21 8.23 1.53 0.32 163.99

0.2 TAXI 1.01 2005.57 20.03 20.03 0.38 2009.81 0.2 TAXI 2.04 2005.57 20.03 20.03 0.38 2009.84
IND 2.62 0 23.94 0 0.34 10.73 IND 5.15 54.08 23.58 0.54 0.34 64.61
MFIX 2.61 0 22.5 0 0.34 10.65 MFIX 5.09 68.1 21.83 0.68 0.34 78.51
MHALF 2.59 0 8.13 0 0.34 10.44 MHALF 5.15 60.09 7.53 0.6 0.34 70.46

#Customers: 50;   #Vehicles: 4; αt=1, αo_f=100,  αo_v=0.5,  αs=100; #Customers: 50;   #Vehicles: 2; αt=1, αo_f=100,  αo_v=0.5,  αs=100; 
Proporti
on Fixed

Strategy Travel Taxi 
Cost

Dissmila
rity

# Taxi 
Trips

Travel/R
equest

Total 
Cost

Proporti
on Fixed

Strategy Travel Taxi 
Cost

Dissmila
rity

# Taxi 
Trips

Travel/R
equest

Total 
Cost

0.8 TAXI 2.88 424.53 4.24 4.24 0.28 860.06 0.8 TAXI 5.61 694.87 6.94 6.94 0.3 1400.09
IND 3.09 0 24.17 0 0.28 2429.37 IND 5.98 222.31 21.22 2.22 0.28 2356.27
MFIX 3.2 0 4.24 0 0.28 436.79 MFIX 6.01 324.45 6.94 3.24 0.29 1030.48
MHALF 3.11 0 1.18 0 0.28 130.44 MHALF 6.22 230.33 5.34 2.3 0.29 776.77

0.6 TAXI 2.22 1012.32 10.11 10.11 0.29 2032.19 0.6 TAXI 4.48 1082.41 10.81 10.81 0.3 2172.38
IND 2.97 0 24.22 0 0.29 2433.89 IND 5.78 155.23 21.72 1.55 0.3 2338.78
MFIX 3.09 0 10.11 0 0.31 1023.37 MFIX 5.77 225.34 10.81 2.25 0.3 1317.87
MHALF 3.09 0 2.38 0 0.31 250.37 MHALF 5.94 191.28 4.75 1.91 0.31 678.15

0.4 TAXI 1.67 1391.76 13.9 13.9 0.32 2788.44 0.4 TAXI 3.37 1391.76 13.9 13.9 0.32 2788.49
IND 2.72 0 23.73 0 0.31 2383.89 IND 5.35 124.18 21.66 1.24 0.32 2300.89
MFIX 2.87 0 13.9 0 0.33 1401.5 MFIX 5.32 147.23 13.9 1.47 0.32 1547.87
MHALF 2.84 0 4.01 0 0.32 412.35 MHALF 5.42 165.24 5.72 1.65 0.32 748.07

0.2 TAXI 1.02 2005.57 20.03 20.03 0.38 4012.64 0.2 TAXI 2.02 2005.57 20.03 20.03 0.38 4012.62
IND 2.6 0 24.38 0 0.34 2448.4 IND 5.1 69.1 24 0.69 0.34 2479.31
MFIX 2.73 0 20.03 0 0.36 2013.93 MFIX 5.29 92.14 20.03 0.92 0.36 2105.71
MHALF 2.68 0 5.04 0 0.35 514.7 MHALF 5.21 66.1 5.49 0.66 0.35 625.52

#Customers: 50;   #Vehicles: 4;  αt=1, αo_f=0.5,  αo_v=0.5,  αs=100; #Customers: 50;   #Vehicles: 2; αt=1, αo_f=0.5,  αo_v=0.5,  αs=100; 
Proporti
on Fixed

Strategy Travel Taxi 
Cost

Dissmila
rity

# Taxi 
Trips

Travel/R
equest

Total 
Cost

Proporti
on Fixed

Strategy Travel Taxi 
Cost

Dissmila
rity

# Taxi 
Trips

Travel/R
equest

Total 
Cost

0.8 TAXI 2.91 2.65 4.24 4.24 0.29 438.28 0.8 TAXI 5.63 4.34 6.94 6.94 0.3 709.61
IND 2.84 1.43 24.37 2.08 0.27 2449.79 IND 5.37 2.74 23.02 4.05 0.26 2315.49
MFIX 3.13 0.36 4.24 0.52 0.28 436.9 MFIX 5.89 2.17 6.94 3.43 0.28 707.96
MHALF 3.07 0.07 1.18 0.1 0.27 130.35 MHALF 6.13 1.84 5.34 2.91 0.29 548.09

0.6 TAXI 2.22 6.37 10.11 10.11 0.29 1026.24 0.6 TAXI 4.41 6.81 10.81 10.81 0.3 1096.63
IND 2.6 1.99 24.83 2.89 0.28 2495.39 IND 5.03 2.82 22.77 4.14 0.28 2289.87
MFIX 2.85 0.91 10.11 1.31 0.29 1023.33 MFIX 5.41 2.13 10.81 3.23 0.29 1093.95
MHALF 2.99 0.25 2.38 0.37 0.3 250.22 MHALF 5.88 1.33 4.75 2.06 0.31 488.09

0.4 TAXI 1.7 8.71 13.9 13.9 0.32 1405.49 0.4 TAXI 3.41 8.71 13.9 13.9 0.32 1405.54
IND 2.34 1.99 23.51 2.9 0.29 2362.34 IND 4.47 2.7 22.15 3.95 0.29 2226.65
MFIX 2.57 1.22 13.9 1.77 0.31 1401.5 MFIX 4.92 1.89 13.9 2.81 0.3 1401.74
MHALF 2.78 0.26 4.01 0.38 0.32 412.4 MHALF 5.33 1.27 5.72 1.95 0.32 583.92

0.2 TAXI 1.01 12.58 20.03 20.03 0.38 2019.62 0.2 TAXI 2.02 12.58 20.03 20.03 0.38 2019.62
IND 2.13 2.18 24.55 3.16 0.31 2465.69 IND 4.21 2.34 24.19 3.41 0.31 2429.76
MFIX 2.31 1.81 20.03 2.62 0.33 2014.05 MFIX 4.5 2.17 20.03 3.19 0.33 2014.18
MHALF 2.6 0.34 5.04 0.49 0.35 514.75 MHALF 5.04 0.73 5.49 1.09 0.34 559.81
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Table 5.3: Simulation Results with100 Customers 

 
 
  

#Customers: 100;   #Vehicles: 8;  αt=1, αo_f=100,  αo_v=0.5,  αs=0.01; #Customers: 100;   #Vehicles: 4; αt=1, αo_f=100,  αo_v=0.5,  αs=0.01; 
Proporti
on Fixed

Strategy Travel Taxi 
Cost

Dissmila
rity

# Taxi 
Trips

Travel/R
equest

Total 
Cost

Proporti
on Fixed

Strategy Travel Taxi 
Cost

Dissmila
rity

# Taxi 
Trips

Travel/R
equest

Total 
Cost

0.8 TAXI 2.31 969.30 9.68 9.68 0.23 987.90 0.8 TAXI 4.64 999.34 9.98 9.98 0.23 1017.99

IND 2.61 0.00 55.72 0.00 0.23 21.46 IND 5.25 45.07 54.09 0.45 0.23 66.61

MFIX 2.63 0.00 13.84 0.00 0.23 21.17 MFIX 5.23 104.17 13.74 1.04 0.23 125.21

MHALF 2.63 0.00 5.57 0.00 0.23 21.06 MHALF 5.20 64.09 6.60 0.64 0.23 84.97

0.6 TAXI 1.91 2060.73 20.58 20.58 0.25 2076.23 0.6 TAXI 3.88 2070.74 20.68 20.68 0.25 2086.45

IND 2.54 0.00 55.64 0.00 0.25 20.90 IND 5.11 42.07 54.46 0.42 0.25 63.07

MFIX 2.54 0.00 26.60 0.00 0.25 20.58 MFIX 5.11 49.09 25.92 0.49 0.25 69.77

MHALF 2.50 0.00 8.92 0.00 0.24 20.06 MHALF 4.98 39.07 9.94 0.39 0.25 59.08

0.4 TAXI 1.45 2844.79 28.41 28.41 0.27 2856.64 0.4 TAXI 2.89 2844.79 28.41 28.41 0.27 2856.64

IND 2.38 0.00 51.23 0.00 0.27 19.58 IND 4.75 20.03 51.38 0.20 0.27 39.56

MFIX 2.39 0.00 33.86 0.00 0.27 19.47 MFIX 4.70 28.05 33.82 0.28 0.26 47.20

MHALF 2.38 0.00 11.32 0.00 0.27 19.13 MHALF 4.68 23.04 12.52 0.23 0.26 41.90

0.2 TAXI 0.94 3765.88 37.61 37.61 0.33 3773.76 0.2 TAXI 1.87 3765.88 37.61 37.61 0.33 3773.75

IND 2.21 0.00 49.71 0.00 0.29 18.19 IND 4.41 12.02 49.94 0.12 0.29 30.14

MFIX 2.22 0.00 42.08 0.00 0.29 18.17 MFIX 4.38 22.04 41.62 0.22 0.29 39.99

MHALF 2.17 0.00 14.84 0.00 0.29 17.48 MHALF 4.34 12.02 15.18 0.12 0.29 29.52
#Customers: 100;   #Vehicles: 8; αt=1, αo_f=100,  αo_v=0.5,  αs=100; #Customers: 100;   #Vehicles: 4; αt=1, αo_f=100,  αo_v=0.5,  αs=100; 
Proporti
on Fixed

Strategy Travel Taxi 
Cost

Dissmila
rity

# Taxi 
Trips

Travel/R
equest

Total 
Cost

Proporti
on Fixed

Strategy Travel Taxi 
Cost

Dissmila
rity

# Taxi 
Trips

Travel/R
equest

Total 
Cost

0.8 TAXI 2.33 969.30 9.68 9.68 0.23 1955.90 0.8 TAXI 4.70 999.34 9.98 9.98 0.23 2016.13

IND 2.65 0.00 58.21 0.00 0.23 5842.18 IND 5.29 53.08 55.02 0.53 0.23 5576.24

MFIX 2.69 0.00 9.68 0.00 0.24 989.48 MFIX 5.30 116.21 9.98 1.16 0.24 1135.41

MHALF 2.71 0.00 2.35 0.00 0.24 256.66 MHALF 5.29 95.14 4.06 0.95 0.24 522.31

0.6 TAXI 1.93 2060.73 20.58 20.58 0.25 4134.14 0.6 TAXI 3.77 2070.74 20.68 20.68 0.25 4153.84

IND 2.55 0.00 55.80 0.00 0.25 5600.41 IND 5.08 49.08 54.13 0.49 0.25 5482.38

MFIX 2.69 0.00 20.58 0.00 0.26 2079.51 MFIX 5.34 49.09 20.68 0.49 0.26 2138.43

MHALF 2.59 0.00 4.50 0.00 0.25 470.72 MHALF 5.06 75.13 5.70 0.75 0.25 665.36

0.4 TAXI 1.44 2844.79 28.41 28.41 0.27 5697.30 0.4 TAXI 2.93 2844.79 28.41 28.41 0.27 5697.51

IND 2.38 0.00 52.34 0.00 0.27 5253.03 IND 4.71 12.02 51.40 0.12 0.26 5170.85

MFIX 2.54 0.00 28.41 0.00 0.28 2861.33 MFIX 4.99 40.07 28.41 0.40 0.28 2901.03

MHALF 2.49 0.00 7.36 0.00 0.28 755.89 MHALF 4.88 26.04 8.08 0.26 0.27 853.57

0.2 TAXI 0.93 3765.88 37.61 37.61 0.32 7534.31 0.2 TAXI 1.86 3765.88 37.61 37.61 0.32 7534.34

IND 2.21 0.00 50.30 0.00 0.29 5047.70 IND 4.41 13.02 49.81 0.13 0.29 5011.65

MFIX 2.36 0.00 37.61 0.00 0.31 3779.86 MFIX 4.69 15.02 37.61 0.15 0.31 3794.77

MHALF 2.31 0.00 10.10 0.00 0.30 1028.46 MHALF 4.60 14.03 10.20 0.14 0.30 1052.44
#Customers: 100;   #Vehicles: 8;  αt=1, αo_f=0.5,  αo_v=0.5,  αs=100; #Customers: 100;   #Vehicles: 4; αt=1, αo_f=0.5,  αo_v=0.5,  αs=100; 
Proporti
on Fixed

Strategy Travel Taxi 
Cost

Dissmila
rity

# Taxi 
Trips

Travel/R
equest

Total 
Cost

Proporti
on Fixed

Strategy Travel Taxi 
Cost

Dissmila
rity

# Taxi 
Trips

Travel/R
equest

Total 
Cost

0.8 TAXI 2.35 6.14 9.68 9.68 0.23 992.92 0.8 TAXI 4.70 6.33 9.98 9.98 0.23 1023.15

IND 2.44 3.23 56.29 4.68 0.23 5651.76 IND 4.88 3.57 55.51 5.19 0.23 5574.11

MFIX 2.57 0.83 9.68 1.21 0.23 989.41 MFIX 5.13 1.22 9.98 1.81 0.23 1019.73

MHALF 2.72 0.13 2.35 0.19 0.24 256.90 MHALF 5.31 0.73 4.06 1.13 0.24 427.95

0.6 TAXI 1.89 13.02 20.58 20.58 0.25 2086.16 0.6 TAXI 3.77 13.08 20.68 20.68 0.25 2096.15

IND 2.31 3.51 55.44 5.08 0.24 5566.03 IND 4.63 3.75 54.28 5.44 0.24 5450.26

MFIX 2.57 1.15 20.58 1.66 0.26 2079.67 MFIX 5.02 1.58 20.68 2.31 0.25 2089.68

MHALF 2.53 0.20 4.50 0.29 0.25 470.48 MHALF 5.10 0.56 5.70 0.84 0.25 590.95

0.4 TAXI 1.44 18.00 28.41 28.41 0.27 2870.55 0.4 TAXI 2.88 18.00 28.41 28.41 0.27 2870.52

IND 2.12 3.32 52.04 4.82 0.25 5224.27 IND 4.24 3.34 51.71 4.85 0.25 5191.29

MFIX 2.30 1.85 28.41 2.69 0.27 2861.27 MFIX 4.63 2.01 28.41 2.92 0.27 2861.53

MHALF 2.38 0.51 7.36 0.74 0.27 755.58 MHALF 4.63 0.79 8.08 1.16 0.26 827.31

0.2 TAXI 0.91 23.68 37.61 37.61 0.32 3791.96 0.2 TAXI 1.85 23.68 37.61 37.61 0.32 3792.10

IND 1.94 3.12 49.73 4.52 0.28 4991.61 IND 3.85 3.17 49.74 4.60 0.28 4992.58

MFIX 2.07 2.57 37.61 3.73 0.29 3780.16 MFIX 4.13 2.65 37.61 3.84 0.29 3780.16

MHALF 2.23 0.59 10.10 0.85 0.30 1028.39 MHALF 4.46 0.71 10.20 1.02 0.30 1038.56
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Table 5.4: Simulation Results with 500 Customers 

 
 

 

#Customers: 500;   #Vehicles: 20;  αt=1, αo_f=100,  αo_v=0.5,  αs=0.01; #Customers: 500;   #Vehicles: 10; αt=1, αo_f=100,  αo_v=0.5,  αs=0.01; 
Proporti
on Fixed

Strategy Travel Taxi 
Cost

Dissmila
rity

# Taxi 
Trips

Travel/R
equest

Total 
Cost

Proporti
on Fixed

Strategy Travel Taxi 
Cost

Dissmila
rity

# Taxi 
Trips

Travel/R
equest

Total 
Cost

0.8 TAXI 3.19 4963.36 49.57 49.57 0.16 5027.59 0.8 TAXI 6.35 5724.57 57.17 57.17 0.16 5788.62
IND 3.64 0.00 349.67 0.00 0.16 76.35 IND 7.11 968.58 347.14 9.67 0.16 1043.20
MFIX 3.60 0.00 64.94 0.00 0.16 72.62 MFIX 7.00 1210.95 72.18 12.09 0.16 1281.69
MHALF 3.61 0.00 32.00 0.00 0.16 72.48 MHALF 7.14 1047.74 52.76 10.46 0.16 1119.64

0.6 TAXI 2.64 10102.10 100.89 100.89 0.17 10155.81 0.6 TAXI 5.13 10132.15 101.19 101.19 0.17 10184.44
IND 3.58 0.00 329.18 0.00 0.18 74.89 IND 7.03 775.28 327.38 7.74 0.18 848.89
MFIX 3.41 0.00 113.19 0.00 0.17 69.26 MFIX 6.86 713.18 112.56 7.12 0.17 782.92
MHALF 3.57 0.00 53.07 0.00 0.18 72.00 MHALF 7.05 870.47 59.88 8.69 0.18 941.55

0.4 TAXI 1.94 14873.09 148.54 148.54 0.19 14913.35 0.4 TAXI 3.70 14873.09 148.54 148.54 0.18 14911.57
IND 3.42 0.00 302.63 0.00 0.19 71.40 IND 6.81 499.83 300.63 4.99 0.19 570.91
MFIX 3.28 0.00 162.81 0.00 0.18 67.16 MFIX 6.53 327.55 162.14 3.27 0.19 394.43
MHALF 3.36 0.00 58.97 0.00 0.19 67.80 MHALF 6.72 456.81 68.69 4.56 0.19 524.69

0.2 TAXI 1.16 19846.46 198.21 198.21 0.23 19871.59 0.2 TAXI 2.22 19846.46 198.21 198.21 0.22 19870.60
IND 3.21 0.00 271.83 0.00 0.22 66.97 IND 6.40 182.31 271.85 1.82 0.22 248.99
MFIX 3.13 0.00 211.62 0.00 0.21 64.71 MFIX 6.32 218.37 208.59 2.18 0.21 283.67
MHALF 3.12 0.00 71.77 0.00 0.21 63.11 MHALF 6.22 219.40 78.57 2.19 0.21 282.40

#Customers: 500;   #Vehicles: 20; αt=1, αo_f=100,  αo_v=0.5,  αs=100; #Customers: 500;   #Vehicles: 10; αt=1, αo_f=100,  αo_v=0.5,  αs=100; 
Proporti
on Fixed

Strategy Travel Taxi 
Cost

Dissmila
rity

# Taxi 
Trips

Travel/R
equest

Total 
Cost

Proporti
on Fixed

Strategy Travel Taxi 
Cost

Dissmila
rity

# Taxi 
Trips

Travel/R
equest

Total 
Cost

0.8 TAXI 3.21 4963.36 49.57 49.57 0.16 9984.51 0.8 TAXI 6.41 5724.57 57.17 57.17 0.16 11505.69
IND 3.63 0.00 356.59 0.00 0.16 35731.55 IND 7.14 1138.83 354.36 11.37 0.16 36646.26
MFIX 3.58 0.00 49.57 0.00 0.16 5028.68 MFIX 7.03 1384.21 57.17 13.82 0.16 7171.46
MHALF 3.71 0.00 12.72 0.00 0.17 1346.11 MHALF 7.24 1371.22 35.98 13.69 0.17 5041.67

0.6 TAXI 2.63 10102.10 100.89 100.89 0.17 20243.74 0.6 TAXI 5.25 10132.15 101.19 101.19 0.17 20303.69
IND 3.53 0.00 331.84 0.00 0.18 33254.60 IND 6.98 701.17 328.71 7.00 0.18 33641.96
MFIX 3.52 0.00 100.89 0.00 0.17 10159.39 MFIX 6.90 828.33 101.19 8.27 0.18 11016.37
MHALF 3.78 0.00 23.79 0.00 0.19 2454.62 MHALF 7.19 1099.84 41.48 10.98 0.18 5319.76

0.4 TAXI 1.87 14873.09 148.54 148.54 0.18 29764.56 0.4 TAXI 3.79 14873.09 148.54 148.54 0.18 29765.04
IND 3.42 0.00 304.67 0.00 0.19 30535.34 IND 6.72 454.77 302.92 4.54 0.19 30814.00
MFIX 3.42 0.00 148.54 0.00 0.19 14922.31 MFIX 6.69 437.73 148.54 4.37 0.19 15358.64
MHALF 3.56 0.00 36.02 0.00 0.20 3673.26 MHALF 6.99 796.36 47.27 7.95 0.20 5593.22

0.2 TAXI 1.14 19846.46 198.21 198.21 0.23 39690.36 0.2 TAXI 2.25 19846.46 198.21 198.21 0.23 39689.96
IND 3.20 0.00 272.97 0.00 0.21 27360.92 IND 6.38 224.38 272.34 2.24 0.22 27522.17
MFIX 3.27 0.00 198.21 0.00 0.22 19886.45 MFIX 6.46 239.41 198.21 2.39 0.22 20125.01
MHALF 3.31 0.00 48.36 0.00 0.22 4902.20 MHALF 6.52 359.63 53.54 3.59 0.22 5778.80

#Customers: 500;   #Vehicles: 20;  αt=1, αo_f=0.5,  αo_v=0.5,  αs=100; #Customers: 500;   #Vehicles: 10; αt=1, αo_f=0.5,  αo_v=0.5,  αs=100; 
Proporti
on Fixed

Strategy Travel Taxi 
Cost

Dissmila
rity

# Taxi 
Trips

Travel/R
equest

Total 
Cost

Proporti
on Fixed

Strategy Travel Taxi 
Cost

Dissmila
rity

# Taxi 
Trips

Travel/R
equest

Total 
Cost

0.8 TAXI 3.21 31.14 49.57 49.57 0.16 5052.31 0.8 TAXI 6.26 36.16 57.17 57.17 0.16 5815.79
IND 3.45 8.62 351.70 12.53 0.16 35247.71 IND 6.73 12.99 353.80 19.03 0.16 35460.30
MFIX 3.55 2.37 49.57 3.43 0.16 5030.38 MFIX 6.87 9.45 57.17 14.19 0.16 5795.20
MHALF 3.67 0.50 12.72 0.72 0.16 1345.81 MHALF 7.28 9.17 35.98 13.88 0.17 3679.95

0.6 TAXI 2.70 63.55 100.89 100.89 0.18 10206.48 0.6 TAXI 5.14 63.74 101.19 101.19 0.17 10234.18
IND 3.30 10.27 327.90 14.94 0.17 32866.21 IND 6.46 12.53 328.73 18.27 0.17 32950.16
MFIX 3.42 4.35 100.89 6.34 0.17 10161.67 MFIX 6.76 8.77 101.19 13.03 0.17 10195.34
MHALF 3.72 0.81 23.79 1.17 0.19 2454.25 MHALF 7.16 7.91 41.48 11.88 0.18 4227.55

0.4 TAXI 1.90 93.37 148.54 148.54 0.18 14985.33 0.4 TAXI 3.73 93.37 148.54 148.54 0.18 14984.68
IND 3.13 10.89 302.23 15.87 0.18 30296.40 IND 6.15 11.64 301.84 16.97 0.18 30257.15
MFIX 3.11 7.31 148.54 10.68 0.18 14923.56 MFIX 6.33 8.88 148.54 13.03 0.19 14926.16
MHALF 3.49 0.89 36.02 1.30 0.20 3672.69 MHALF 6.92 5.71 47.27 8.50 0.20 4801.94

0.2 TAXI 1.14 124.57 198.21 198.21 0.23 19968.27 0.2 TAXI 2.21 124.57 198.21 198.21 0.22 19967.66
IND 2.86 11.64 271.72 16.95 0.20 27240.90 IND 5.65 11.87 271.81 17.30 0.20 27249.35
MFIX 2.92 10.51 198.21 15.30 0.21 19889.82 MFIX 5.82 10.35 198.21 15.09 0.21 19889.57
MHALF 3.23 1.68 48.36 2.43 0.22 4902.25 MHALF 6.39 3.19 53.54 4.67 0.22 5421.10
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From the simulation results presented in the previous section, we get the 

following observations:  

I. Strategy TAXI has the smallest travel distance, because of its inability to use 

the slack times to accommodate the random requests. When handling the 

same amount of requests on the fleet, strategy MFIX and MHALF have 

similar travel distance to that of strategy IND, a near-optimal routing solution. 

This suggests that our Tabu search is effective in bring the routing solutions 

to near optimum. This is further implied by the results for travel per request, 

in which cases the solutions from strategy TAXI, IND, MFIX, and MHALF 

are close.  

II. Strategy TAXI has the largest taxi cost and number of taxi trips, again 

because of its inflexibility of inserting the random requests into the slacks on 

the fleet of vehicles.  

III. Strategy IND has the largest dissimilarity; strategy MHALF has the lowest 

dissimilarity. If we schedule the routing for each day independently without a 

master plan, the routes will become very dissimilar from day to day. Even 

though we get a near optimal solution in terms of routing efficiency as 

measured in travel distance and taxi cost, the quality of service as measured 

in route dissimilarity is poor. If we form master routes with the deterministic 

requests and a number of random requests of high probability of occurrence, 

we will create daily routes which are similar from day to day, without 

scarifying much in routing efficiency.   

IV. When the unit cost for route dissimilarity increases (from 0.01 to 100), while 

the other parameters remain the same, the dissimilarity for strategies with 

master plans decreases and the routing efficiency (travel distance and/or taxi 

cost) increases. This is because when we give a higher weight on 

dissimilarity, the routing solution will favor less dissimilarity, and will trade 

for that with less routing efficiency. The change in the unit cost for route 

dissimilarity does not have significant impact on the solutions of strategies 

TAXI and IND. The reason is that for strategy TAXI, the dissimilarity is 

contributed by the random requests handled by taxi, which remain the same 
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with any set of parameters; for strategy IND, there is no master plan to use to 

construct daily routes, but the dissimilarity is measured against the master 

plan from strategy MFIX, hence the dissimilarity with IND might even 

increase when the unit cost of dissimilarity increases.  

V. When the fixed unit taxi cost decreases (from 100 to 0.5), while all the other 

parameters remain, there will be more taxi use represented by number of taxi 

trips. This implies that as taxi is inexpensive, it becomes a more economical 

solution to use taxi rather than rerouting or picking up packages by the 

regular fleet of vehicles.  

VI. With the same pool of potential customers and the same amount of vehicles, 

as the proportion of fixed customers increase, the total travel time and the 

travel time per request increase, because there are more expected customers 

to service. For the same reason, the taxi cost or number of taxi trips for IND, 

MFIX or MHAL will remain 0 or increase. The taxi cost or number of taxi 

trips for TAXI will decrease because there are less random customers for the 

TAXI strategy to accommodate. The dissimilarity for TAXI, MFIX, and 

MHALF will decrease because there are more customers included in the 

master plan. The dissimilarity for IND will even increase because there is no 

master plan but there are more expected customers to service.  

VII. With the same potential customers, when the fleet size increases, the 

average per vehicle travel time, the taxi cost, and the taxi trips will decrease 

because there are more vehicles to handle the requests. The dissimilarity for 

MHALF will decrease because more customers can be included into the 

master plan.  The other trends of the results discussed above remain the same 

with different size of fleet.  

VIII. When the size of the customer pool increases, the problem size increases, 

resulting larger total cost. The pattern of the above results remains the same 

for different size of pool of potential customers.  
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5.4 Simulations and Results with Real-Life Data 
A study has also been done using real-life data collected from a leading healthcare 

provider in Southern California. There are two types of requests in the data set. One is 

regular daily requests, which needs to be visited every day at a specific time. The other is 

random requests that need to be handled by taxis. We have compared three strategies 

with this set of data.  

1) MD Routes: Include a customer into the master plan if it is deterministic 

requests or if the pickup and delivery location of a request has a probability of 

occurring higher than a threshold (e.g., 10%). Recourse action (drop the non-

occurring requests and insert the occurring requests) is taken for daily plans.   

2) Industry Reroute: Take Kaiser’s existing routes as master routes. Recourse 

action (drop the non-occurring requests and insert the occurring requests) for 

daily plans.    

3) Industry Taxi: Take Kaiser’s existing routes for daily routes. Use Taxi for all 

the random requests.  

It should be noted that Industry’s Taxi is the current practice of industry, and is 

taken by the leading health care provider. In the following simulation of a horizon of 30 

days, there are 85 deterministic requests and 100 random requests on each day. On a 

daily basis, 14 vehicles are used to handle all the requests. The simulation results are 

shown in Table 5.5. As with random data, 𝛼𝛼𝑡𝑡  is the unit fleet cost per hour traveled;𝛼𝛼𝑜𝑜_𝑓𝑓  

is the fixed cost per trip of taxi; 𝛼𝛼𝑜𝑜_𝑣𝑣 is the varying cost per hour the taxi traveled;𝛼𝛼𝑠𝑠 is 

the unit cost per count of dissimilarity. Column “Strategy” lists the three strategies we are 

comparing. Column “Travel” shows the total distance that a vehicle travels per day on 

average. Column “Taxi Cost” shows the daily taxi cost. Column “Dissimilarity” shows 

the average dissimilarity, which is the total number of vehicles used in the daily routes 

that is different than the one in the master routes. If a taxi is used, then the dissimilarity is 

increased by one. Column “#Taxi Trips “shows the total number of daily taxi trips 

introduced on average. Column “Travel/Requests” shows the distance that a vehicle 

travels to service a request on a daily basis on average. Column “Total Cost” shows the 

average daily total cost including travel cost, taxi cost, and cost on dissimilarity. It is the 

summation of each type of costs weighted by the unit cost of that type.  
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Table 5.5: Simulation Results with Real-Life Data 

αt=1, αo_f=100,  αo_v=0.5,  αs=0.01;          

Strategy Travel 
(hours/day) 

Taxi Cost 
($/day) 

Dissimilarity 
(counts/day) 

# Taxi 
Trips 

(trips/day) 

Travel/Request 
(hours/day) 

Total Cost 
($/day) 

MD Routes 8.78 5221.10 148.00 52.10 0.03 5345.50 
Industry Reroute 8.36 6223.40 164.00 62.10 0.03 6342.10 
Industry Taxi 7.24 10023.80 200.00 100.00 0.04 10127.20 
αt=1, αo_f=100,  αo_v=0.5,  αs=100;          

Strategy Travel 
(hours/day) 

Taxi Cost 
($/day) 

Dissimilarity 
(counts/day) 

# Taxi 
Trips 

(trips/day) 

Travel/Request 
(hours/day) 

Total Cost 
($/day) 

MD Routes 8.82 5291.13 143.40 52.77 0.03 19754.60 
Industry Reroute 8.47 6333.60 157.23 63.17 0.03 22175.51 
Industry Taxi 7.24 10023.77 200.00 100.00 0.04 30125.17 
αt=1, αo_f=0.5,  αo_v=0.5,  αs=100;          

Strategy Travel 
(hours/day) 

Taxi Cost 
($/day) 

Dissimilarity 
(counts/day) 

# Taxi 
Trips 

(trips/day) 

Travel/Request 
(hours/day) 

Total Cost 
($/day) 

MD Routes 8.13 43.60 134.23 54.57 0.03 13580.76 
Industry Reroute 8.08 49.79 152.93 64.20 0.03 15456.24 
Industry Taxi 7.24 73.77 200.00 100.00 0.04 20175.17 

 

 The results of the analysis with real-life data shows that our heuristic can improve 

the routing solution by decreasing the taxi cost and dissimilarity cost. With the current 

resource of vehicles, the current deterministic requests, and sampling on current data set, 

our heuristic beats the current industry solution by reducing taxi cost by 45%-48%and 

reducing dissimilarity by 26%-33%, with sensitivity analysis on varying cost parameters. 

If we compare with the daily routes obtained by applying recourse actions on a master 

plan taken from the current practice industry, our heuristic reduces taxi cost by 16%-17% 

and it reduces dissimilarity by 9%-12% with sensitivity analysis on varying cost 

parameters.  
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6. Implementation 
 

This project addresses the area of Courier Delivery Services with urgent demand and 

stochastic customers in multi-trips with variable trip lengths. A typical application of this 

project is in the healthcare delivery system, i.e., delivery of medical specimen. Freight 

transportation is a cost effective way to move the packages among the facilities (i.e., 

hospitals, clinics, and laboratories). Given the fact that a third party courier is the 

prevailing solution in the current practice, which results in high transportation cost and 

low level of customer service, better planning and scheduling tools are needed for this 

industry. In particular, this research focuses on solving the courier delivery scheduling 

and dispatching problems. 

The scheduling heuristics developed in this research are tested on real-world data 

collected from a leading health care provider in Southern California region. The 

performance of the proposed heuristics is compared with the performance of the current 

industry practice and with improved industry practice. The heuristics developed 

outperforms the existing approaches. The implementation of our heuristics will require 

suitable programming software tools such as C++, and access to real-world courier 

delivery data such as distance and/or travel time between facilities, and historical 

information on the earliest time packages are allowed to be picked up, service time of 

processing packages, latest time packages are allowed to be picked up and delivered.  
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7. Conclusions 
In this study, we consider a real-life Courier Delivery Problem (CDP), a variant of 

the Multi-trip Vehicle Routing Problem (MtVRP) with uncertainty in customer 

occurrence and urgency in customer demands. We present a problem formulation with 

mixed integer programming for an example application of the transportation of medical 

specimens. We develop an efficient heuristic based on insertion and Tabu search. Our 

model represents the probabilistic nature of customer occurrence using scenario-based 

stochastic programming with recourse. We benefit from the simplicity and flexibility of a 

master plan with daily recourse actions.  

Our model first includes a master plan problem which represents the uncertainty 

in the customer occurrence by the probabilities customers likely to appear and addresses 

the urgency in delivery time windows by use of the fleet of vehicles in multiple trips. We 

then define a recourse action of partial rescheduling of routes by omitting non-occurring 

customers and rescheduling new customers. The master routes created consider 

efficiency in routing, to represent slack time for accommodating random requests. The 

daily plans created take into account the efficiency in routing, efficiency in alternative 

third party courier, as well as route similarities to boost the quality of service. To solve 

large size problems of the model, we develop a heuristic based on insertion and Tabu 

search.  

We explore experimentally the sensitivity of our heuristic on randomly generated 

problems and a real-life problem collected from the industry. Experiments on randomly 

generated problems include sensitivity analysis in varying problem size, customer 

uncertainty scenarios, resource availability and cost parameters. We compare the quality 

of the solution with independent daily scheduling, and to an industry standard solution. In 

the experiments with real-life data, we compare the quality of solution with current 

industry solution with and without recourse action. Sensitivity analysis on varying cost 

parameters shows that our heuristic produces a better solution than the current practice by 

significantly reducing the cost on taxi use and improving route similarity.  
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Appendix A. Simulation Results on Randomly 
Generated Data 

 
Figure A.1: Travel Time with 50 Customers 
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Figure A.2: Taxi Cost with 50 Customers 
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Figure A.3: Dissimilarity with 50 Customers 
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Figure A.4: Number of Taxi Trips with 50 Customers 
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Figure A.5: Travel Time per Request with 50 Customers 
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Figure A.6: Total Daily Cost with 50 Customers 
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Figure A.7: Travel Time with 100 Customers 
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Figure A.8: Taxi Cost with 100 Customers 
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Figure A.9: Dissimilarity with 100 Customers 

 
# Vehicle =8 # Vehicle =4 

 
  



 
 

73 
 

 

Figure A.10: Number of Taxi Trips with 100 Customers 
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Figure A.11: Travel Time per Request with 100 Customers 
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Figure A.12: Total Daily Cost with 100 Customers 
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Figure A.13: Travel Time with 500 Customers 
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Figure A.14: Taxi Cost with 500 Customers 
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Figure A.15: Dissimilarity with 500 Customers 
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Figure A.16: Number of Taxi Trips with 500 Customers 
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Figure A.17: Travel Time per Request with 500 Customers 
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Figure A.18: Total Daily Cost with 500 Customers 
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