
Dynamic Scheduling of Trains in Densely
Populated Congested Areas

Final Report

METRANS Project
February 4, 2011

Principal Investigator:

Maged M. Dessouky, Ph.D.

Graduate Student:

Shi Mu

Daniel J. Epstein Department of Industrial and Systems Engineering

University of Southern California

Los Angeles, California

 2

Disclaimer

The contents of this report reflect the views of the authors, who are responsible for the
facts and the accuracy of the information presented herein. This document is
disseminated under the sponsorship of the Department of Transportation, University
Transportation Centers Program, and California Department of Transportation in the
interest of information exchange. The U.S. Government and California Department of
Transportation assume no liability for the contents or use thereof. The contents do not
necessarily reflect the official views or policies of the State of California or the
Department of Transportation. This report does not constitute a standard, specification,
or regulation.

 3

Abstract

In the U.S., freight railways are one of the major means to transport goods from ports
to inland destinations. According to the Association of American Railroad’s study,
rail companies move more than 40% of the nation’s total freight. Given the fact that
the freight railway industry is already running without much excess capacity, better
planning and scheduling tools are needed to effectively manage the scarce resources,
in order to cope with the rapidly increasing demand for railway transportation. Freight
train scheduling and dispatching is one important aspect of freight railroad
management. This research tries to develop algorithms for static and dynamic
scheduling of freight trains. Two optimization based algorithms are first proposed to
solve the static train scheduling problem for small rail networks. The proposed
LtdFlePath and GA+FixedPath algorithms are able to outperform two existing
heuristics, PureGA and Greedy algorithm, in terms of railway total train delay. And
the CPU solution times of the proposed heuristics are within a reasonable time
constraint. Then two decomposition based heuristics, the Decomp and Parallel
algorithm, are developed to solve the train scheduling problems for larger networks.
Both algorithms significantly outperform existing algorithms. Finally, we move to
dynamic scheduling of trains. We present one heuristic which solves the dynamic
scheduling problem for both small and large networks. This Dynamic algorithm is
able to reduce delay by at least 40% of existing algorithms on representative rail
scenarios.

 4

Disclosure

The project was funded in entirety under this contract to California Department of
Transportation.

 5

Acknowledgement

We would like to thank METRANS for funding this research.

 6

Contents

1 INTRODUCTION ... 10

2 LITERATURE REVIEW ... 13

2.1 Tactical Scheduling .. 14

2.2 Operational Scheduling ... 16

2.3 Real Time Dispatching ... 19

2.4 Gap .. 21

3 RESEARCH ACCOMPLISHMENTS ... 22

4 PROBLEM FORMULATION.. 22

4.1 Network Construction ... 22

4.2 Fixed Path Formulation .. 24

4.3 Flexible Path Formulation... 27

4.4 Experimental Results ... 29

5 ALGORITHMS FOR SMALL NETWORKS ... 32

5.1 LtdFlePath Algorithm ... 32

5.2 Genetic Algorithm and Fixed Path Formulation ... 36

5.3 Pure Genetic Algorithm ... 40

5.4 Greedy Algorithm .. 42

5.5 Experimental Results ... 43

6 ALGORITHMS FOR LARGE NETWORKS ... 45

6.1 Decomp Algorithm ... 45

6.2 Experimental Results ... 47

6.3 Parallel Algorithm .. 49

 7

6.4 Experimental Results ... 51

7 DYNAMIC SCHEDULING ... 52

7.1 Dynamic Algorithm .. 52

7.2 Experimental Results – Small Networks .. 54

7.3 Experimental Results – Large Networks ... 56

8 IMPLEMENTATION ... 57

9 CONCLUSION .. 57

 8

List of Tables

TABLE 1 DESCRIPTION OF THE SCENARIOS (4 TRAINS) ... 30
TABLE 2 FLEXIBLEPATH V.S. FIXEDPATH ... 32
TABLE 3 FLEXIBLEPATH V.S. LTDFLEPATH .. 34
TABLE 4 DESCRIPTION OF SCENARIOS (6 TRAINS) .. 35
TABLE 5 LTDFLEPATH V.S. FIXEDPATH .. 35
TABLE 6 LTDFLEPATH V.S. FIXEDPATH V.S GA+FIXEDPATH ... 40
TABLE 7 DESCRIPTION OF SCENARIOS (8 TRAINS) .. 43
TABLE 8 COMPUTATIONAL RESULTS (8 TRAINS) ... 44
TABLE 9 COMPUTATIONAL RESULTS (LARGE NETWORK) ... 48
TABLE 10 EFFECTS OF DIFFERENT CLUSTER SIZE (16 TRAINS) .. 49
TABLE 11 COMPARISON BETWEEN DECOMP AND PARALLEL ALGORITHM (20 TRAINS) 52
TABLE 12 COMPUTATIONAL RESULTS (LARGE NETWORK) ... 52
TABLE 13 COMPUTATIONAL RESULTS OF DYNAMIC ALGORITHM (SMALL NETWORK) 55
TABLE 14 COMPUTATIONAL RESULTS OF DYNAMIC ALGORITHM (LARGE NETWORK) 56

 9

List of Figures

FIGURE 1 NETWORK CONSTRUCTION ... 23
FIGURE 2 SIMPLE NETWORK ... 26
FIGURE 3 SMALL NETWORK FOR NUMERICAL EXAMPLE ... 30
FIGURE 4 PATH ASSIGNMENT FOR FIXEDPATH MODEL ... 31
FIGURE 5 AN EXAMPLE OF A POORLY CONSTRUCTED PATH .. 33
FIGURE 6 CANDIDATE PATHS FOR LTDFLEPATH ... 34
FIGURE 7 NUMBERING OF THE PATHS AND THEIR PROBABILITIES OF BEING SELECTED IN THE INITIAL

POPULATION ... 37
FIGURE 8 GA+FIXEDPATH ALGORITHM .. 38
FIGURE 9 EXAMPLE OF CROSSOVER OPERATOR ... 38
FIGURE 10 EXAMPLE OF MUTATION OPERATOR ... 39
FIGURE 11 GREEDY ALGORITHM .. 42

 10

1 Introduction

 The demand for various methods of transportation has increased due to the

emerging global economy. Imported goods from other countries usually enter the

United States through ports and then transported inland. Every year there are more

than 100 million tons of goods transferred through the Ports of Los Angeles and Long

Beach and this number will double by 2020 (Leachman, 2002). Train transportation is

a cost effective way to move cargo from the ports to distant inland destinations.

According to the Association of American Railroad’s study, rail companies move

more than 40 percent of the nation’s total freight. As the total quantity of freight

increases, by year 2020, the railroad industry expects to see demand increases as

much as double the amount the industry is experiencing today.

 Given the fact that the US freight railroad industry is already running without

much excess capacity, the freight railroad industry has to either expand its

infrastructure or manage its current operations more efficiently to meet the anticipated

increase in demand. It is extremely expensive to build more rail tracks and in some

places like Los Angeles County, due to the limited space, it is almost impossible to

expand the current track. Better planning and scheduling methodologies become an

effective solution to the problems caused by increasing transportation demand under

tight capacity constraint.

 Freight railroad management is a complicated problem as a whole. Thus, the

overall management problem is usually decomposed into several subproblems. They

are:

 Crew scheduling



. The crew assignments to each district, line and train need to be

optimized such that the crew costs and the delays due to the unavailability of

crews are minimal.

Blocking problem. The shipments are classified into different blocks according to

their origins and destinations. The blocking plans for the shipments are optimized

 11

to reduce the total transportation and handling cost.

 Yard location



. This problem is closely related to the blocking problem. The yards

are the places where the old cargo blocks are re-distributed into new blocks and

transferred to different trains.

Train routing



. Given the assignment of the cargo blocks, the routes and departure

times of the trains are determined to minimize transportation cost and delays.

Locomotive scheduling



. Once the train routes are determined the locomotives are

assigned to the trains. The locomotive assignments have to satisfy the

pulling-power requirement and constraints like fueling and maintenance

constraints.

Train scheduling and dispatching

The most studied subproblem in the literature is the blocking problem. This

report focuses on the problem of freight train scheduling and dispatching. Recently,

the train scheduling problem has received increased attention by academic researchers

and industry alike due to two reasons. First, the emergence of affordable computers

with very fast processing speed makes it possible to solve relatively large scale train

scheduling problems using a computer-based optimization model. Second, due to the

increased usage of rail as a mode of transportation, more and more trains are traveling

on limited track resources. Thus a good schedule for the trains becomes vital in order

to prevent the melt-downs of the rail network. In the case where trains are not so

dense on the network, a not-so-well-designed schedule might not perform much worse

than the optimal schedule. However when the networks are close to saturation, a well

designed schedule can make a significant difference in minimizing the delay.

. Operational scheduling of the trains determines

in detail the sequence of the tracks the train travels and the specific locations on

the track where the trains need to stop to wait for the tracks ahead to be cleared.

The objective of the scheduling and dispatching problem is to safely guide the

trains through the network to their destinations so that the delays and deviations

from the planned timetable of the trains are minimized.

 In urban areas like Los Angeles County, the trackage configurations are usually

very complex, compared to rural areas where most trackage configurations are single

 12

tracks with sidings or double tracks. A typical complex network contains triple tracks

and complex junction intersections. The problem of finding the optimal deadlock-free

dispatch times that minimizes the delay for trains in such a general network is known

to be NP-hard (Garey & Johnson, 1979).

 As opposed to passenger train scheduling, freight train scheduling might need

a different approach. The passenger train schedules are relatively static and cyclic.

Passenger train operators normally spend months before their operations to develop a

robust schedule. And this schedule is executed cyclically on a day-to-day basis. In

passenger train scheduling the quality of the schedule is the most important factor,

since the time to develop the schedule is not constrained. Whereas in freight train

scheduling, the scheduling procedure is initiated very close to the time of the

departure of train. The short scheduling time is due to the fact that the departure time

of the train is mainly initiated by the completion of loading the containers onto the

train. And the ready time of the containers to be loaded is very difficult to predict.

This ready time depends on the operations of the ports and the arrival time of the

cargo ships. In most cases, the departure times of trains are known just one day before

its departure. And it is not unusual that freight trains depart without schedules

beforehand. Hence, freight train scheduling focuses on both the solving time and the

solution quality.

 This project focuses on developing optimization-based heuristics for both static

and dynamic freight train scheduling on a complex train network. In order to measure

the performance of the algorithms compared to the optimal solution, a small network

was constructed and the optimal or close to optimal solutions were obtained to

construct a benchmarking tool for any proposed algorithms.

 The rest of the report is organized as follows. In Section 2, a literature review of

the train scheduling problem is presented. Section 3 summarizes our main research

accomplishments. Section 4 formally introduces the problem formulation of static

scheduling. Section 5 compares various existing and proposed algorithms for solving

a static scheduling problem for a relatively small to medium size but not necessarily

simple network. A heuristic is proposed to solve the static scheduling problem for

 13

relatively large scale networks in Section 6. In Section 7, we move to dynamic

scheduling of trains and present a heuristic which is based on sequential optimization.

The conclusion of this project and future research plan are described in Section 8.

2 Literature Review

The train scheduling problem can be categorized into static and dynamic

scheduling. For static scheduling, we have information of all the trains before solving

the problem. This information includes train arrival times, train lengths, train speeds

and so on. For dynamic scheduling, we may only know the information of the trains

when they enter the network. The schedule of the newly entered train is based on the

information of the trains currently in the network. All the information of later arriving

trains is unknown.

The static train scheduling problem can be divided into two sub-categories

according to two different time perspectives: off-line timetabling and real time

dispatching. Off-line timetabling aims to develop detailed timetables for the trains

before the departure of the train. The trains travel on the rail network according to the

timetables. The off-line timetabling problems can be further categorized according to

the type of the trains. Passenger train scheduling belongs to the domain of tactical

scheduling and freight train scheduling is often referred as operational scheduling in

the literature. The trains may not always follow the off-line timetables. There are

many possible incidents that can cause the extra delay of trains at some point in the

network. When a single train deviates from its original timetable, other trains in the

network will be influenced. The delay propagates through the network. The purpose

of real time dispatching is to minimize the unplanned delays in the network and to

restore the railway traffic to the planned timetables.

Cordeau et al. (1998) published a comprehensive survey paper on both train

routing and off-line scheduling. More recently, Caprara et al. (2006) presented a

 14

review on passenger railway optimization which focused more on the European

environment. On the other hand, Ahuja et al. (2005) reviewed network models for

railroad planning and scheduling. Their review focused on the freight railroad in

North America. Next we review the relevant literature by classifying them into three

categories: tactical scheduling, operational scheduling and real time dispatching.

2.1 Tactical Scheduling

 Tactical scheduling is usually carried out several months before the actual

operations. The objective of tactical scheduling is to design the optimal schedules that

satisfy the demand of the various stakeholders for the trains (in most cases, passenger

trains). Models and algorithms for tactical scheduling usually perform optimal slot

allocations for each route or even block section without a strict time limit of

computation (D’Ariano 2008). Scheduling is usually done on a large traffic network

and once the optimal schedules are obtained, it can be used for several years.

 Szpigel (1973) describes one of the earliest scheduling models. The model solves

the scheduling problem on a single track with meet/pass points. Szpigel formulates

the problem similar to the job shop problem with a branch and bound approach used

to solve the model. A single track railroad in Brazil is used as the test case.

 Jovanovic and Harker (1991) propose a system called SCAN for tactical freight

train scheduling. The system is able to design robust train schedules under stochastic

operational conditions. The system works with single and double tracks and develops

daily schedules. An initial schedule is needed and the feasibility of this initial

schedule is verified by solving a linear MIP problem, using a branch and bound

procedure. The train movements and interactions are modeled using a simulation

approach. The infeasible schedules are modified into feasible schedules by a series of

automatic updates. The authors claim that the implementation of the SCAN system at

a major U.S. railroad has helped the company rethink the role of careful scheduling in

light of increasing competitive pressures.

 15

 Brannlund et al. (1998) introduce an optimization model which maximizes the

profit associated with running different types of services at specific times. The

problem is approached by formulating a large integer programming problem which is

solved by Lagrangian relaxation where the track capacity constraints are dualized. For

each single train, the problem is decomposed into a shortest path problem on a

time-space network. Trains are dispatched through the network sequentially and a

priority list is used to resolve the conflicts. Computational experiments show that

feasible solutions can be obtained in a reasonable amount of time and feasible

solutions are within a few percent of the lower bound.

 Capra, Fischetti, Toth (2002) solve the train scheduling problem of a single,

one-direction track connecting two major stations with several intermediate stations in

between. They formulate a linear integer programming model based on a graph

theoretic formulation and apply Lagrangian relaxation to find a good solution. The

relaxation is embedded in a heuristic algorithm which consists of three parts:

constructive, refining and fixing. The algorithm is implemented and tested using

actual data and highly congested instances.

 Ghoseiri et al. (2004) develop a multi-objective optimization model for the

passenger train-scheduling problem on a complex railroad network. The objective

includes minimization of both the fuel consumption and the total passenger-time. The

solution procedure consists of two steps. The Pareto frontier is computed and then the

multi-objective optimization is performed using a distance-based method.

 Zhou and Zhong (2005) formulate an integer programming problem to solve the

multi-objective train scheduling problem. The objectives the authors consider are: (1)

minimizing expected waiting time for high speed trains and (2) minimizing total

traveling time for high-speed and medium-speed trains. A branch-and-bound

algorithm with dominance rules is developed to compute Pareto-optimal schedules. A

beam search algorithm with utility evaluation rules is proposed to generate a

representative set of non-dominated solutions. The proposed algorithm is tested on a

double-track intercity passenger corridor between Beijing and Shanghai.

 Zhou and Zhong (2007) optimally solve a single-track train timetabling problem.

 16

The scheduling problem is formulated as a generalized resource-constrained project

scheduling problem. The track segments and stations are modeled as resources. A

branch and bound procedure is used to find the optimal solution. Three procedures are

proposed to reduce the search space: a Lagrangian relaxation based lower bound rule

is used to relax segment and station headway capacity constraints, an exact lower

bound rule to estimate the least train delay, and an upper bound constructed by a beam

search heuristic method. Numerical experiments are conducted to compare the

performance of the proposed three search space reduction procedures.

2.2 Operational Scheduling

 The biggest distinction between operational scheduling and tactical scheduling is

the duration of the scheduling phase. As opposed to tactical scheduling, which is done

without a strict time constraint, operational scheduling has a much shorter duration. A

typical operational schedule is created in a few hours. It is common that the train

leaves the station without a schedule. Operational scheduling is mostly used in the

North American and Australian freight rail industry. Due to the time constraint of the

scheduling phase, exact optimal solution procedures are not applicable. Thus

heuristics are the most common approaches for operational scheduling.

 Kraay et al. (1991) consider a scheduling and pacing problem which minimizes

both the fuel consumption and travel delays. Instead of assuming trains run at a fixed

speed, the model considers variable speeds of the trains. A nonlinear mixed integer

program is formulated with a convex objective function. Branch-and-bound and a

rounding heuristic are proposed to solve the scheduling and pacing problem.

Numerical experiments show that the fuel consumption can be reduced in the order of

5% and the standard deviation in train arrival times can decrease by 19% using this

approach.

 Kraay and Harker (1995) propose a model to provide a link between tactical and

operational scheduling. They propose a non-linear mixed integer programming model

 17

to optimize the freight train schedules in real-time. The current positions and relative

importance of each train are part of the input to the model. The solution of the model

includes the target time of each train at every important location along the path. The

solution process first determines the integer variables of the model. Then the

sub-problem which only has continuous variables is solved. The efficiency and

efficacy of this algorithm is justified by testing it on a North American railroad

example.

 Carey and Lockwood (1995) describe a mathematical model to dispatch trains on

a one-way single line with sidings and stations. A heuristic is proposed to solve the

problem by dispatching trains one by one. The number of integer variables is

significantly reduced. Thus the sub-MIP problem can be solved using commercially

available optimization software. Several procedures that are based on experienced

human dispatchers are also proposed to reduce the solving time. Carey (1994a)

extends the previous model by embedding a route selection mechanism in the

mathematical model. Carey (1994b) then further expands the model to take two-way

tracks into consideration. The same heuristic algorithm proposed in Carey and

Lockwood (1995) still applies in such networks.

 Huntley et al. (1995) develop a system called computer-aided routing and

scheduling system (CARS) for CSX transportation. The system optimizes the routing

and scheduling problem interactively. The CARS system uses simulated annealing to

perform a global search on the minimum cost solution.

 Higgins et al. (1996) formulate a non-linear mixed integer program to solve the

scheduling problem on a long single-track line. The lower and upper limit of the train

velocity on each track segment is considered. The objective is to minimize both the

fuel consumption and overall tardiness. The train priorities, current train delays and

expected remaining delays of the trains are criterions for conflict resolution. In a

following paper, Higgins and Kozan (1997) extend their work to simultaneously

decide the number and locations of the sidings and the optimal schedule for a

single-track line.

 Ping et al. (2001) use genetic algorithms to adjust the departure order of the

 18

trains on a double track corridor. Simulation results of a case study on

Guangzhou-Shenzhen high-speed railway are presented.

 Lu et al. (2004) introduce train acceleration and deceleration rates into the

scheduling model. The model also considers a very complex trackage configuration

with multi-tracks and complicated crossings. A simulation model is developed and a

greedy construction heuristic is used to dispatch the trains in the simulation model.

The simulation model is tested on a real network from Downtown Los Angeles to the

Eastern Inland Empire area. The results obtained from the simulation model are

validated against actual train running times, and are found to be within a few

percentage of the actual times.

 Dorfman and Medanic (2004) propose a discrete-event model to schedule

traffic on a railway network. This approach is fundamentally different from the

mathematical programming methods. The discrete-event model is computationally

efficient and generates near optimal schedules with respect to a number of

time-of-travel-related criteria.

 Wegele and Schneider (2004) propose an algorithm for fast construction of

timetables. Branch and bound is used to obtain the initial solution and a genetic

algorithm is used to iteratively improve the solution. The objective of the problem is

to minimize the annoyance to passengers.

 Sahin et al. (2004) propose to model the train dispatching problem as a

multi-commodity flow problem on a space-time network. Time is discretized with

respect to equal-length time periods. Most of the practical constraints can be

considered in the model without changing the model structure. An integer

programming based heuristic is proposed to solve the problem. The proposed solution

procedure is tested on extensive numerical experiments. The results of the IP-based

heuristic are compared to two other heuristics proposed by the authors: a

simulation-based construction heuristic and a greedy enumeration heuristic. The

solution quality of the IP-based heuristic is very good and the solving time is also

competitive compared to the other heuristics.

 Dessouky et al. (2006) propose a branch and bound procedure to solve the

 19

dispatching problem for a complex rail network. Adjacent propagation and feasibility

propagation is used to reduce the search space of the branch and bound procedure.

The branch and bound procedure is guaranteed to find the optimal solution. The

proposed solution procedure is tested on a portion of the rail network in Los Angeles

County. The proposed solution is able to significantly reduce the number of nodes to

be explored compared to the number of nodes explored by the CPLEX solver on the

same problem.

2.3 Real Time Dispatching

 Off-line timetables produce a robust schedule to execute. However, in real

railway operations, perturbations can happen. Significant perturbations would create

serious delay propagation. Technical failures might be one cause of the perturbation.

Unavailability of the crew and severe weather conditions are also common causes of

the unscheduled delay. When deviations from the timetable occur, the dispatcher in

the traffic control center needs to quickly solve the unplanned conflicts between the

trains. Common resolutions include changing the train order at busy junctions,

changing the dwell time at the stations and changing the train speeds. Sometimes

rerouting of the trains is also considered. The problem is usually solved regionally,

due to the time constraint. The output of the real time dispatching is a locally optimal

solution and in many cases, just a feasible solution.

 Sahin (1999) solves the dispatching problem by proposing an algorithm that is

constructed on immediate inter-train conflict resolution. The immediate conflict is

solved by choosing the solution that causes less total consequential delay on the

network. The algorithm considers the effects of potential conflicts by using a

look-ahead method. Numerical examples show the heuristic proposed is able to

produce solutions that are as good as the exact solutions. And the heuristic takes less

than one percent of the time of the exact solution method.

 Adenso-Diaz et al. (1999) use a heuristic to solve the MIP formulation of the

 20

real time dispatching problem. The heuristic is based on backtracking and reduces the

search space by elimination of certain branches which are determined to not generate

good solutions. The quality of the solution is determined by the priority of each

service, the passengers transported and the delays of the trains. A tool based on a

proposed heuristic has been implemented for the Spanish National Railway Company.

Mascis et al. (2002) propose to solve the real time scheduling problem using an

alternative graph formulation which is generalized from the job shop scheduling

problem with blocking and no-wait. They show several key properties, from the

literature on the job shop with unlimited buffers, do not hold in the blocking and

no-wait cases. And some ideas used to develop the branch and bound algorithm can

be easily extended from the literature.

D’Ariano et al. (2007) also formulate the dispatching problem as a huge job shop

scheduling problem with no-store constraints. They use the branch and bound

approach to solve the problem. They develop both the dynamic implication and static

implication rules to reduce the search space. To assess the performance of the

proposed procedure, they implement two local simple dispatching rules which

simulate the typical behavior of a human dispatcher, and a greedy heuristic based on

global information. The computational experiments, which are based on a bottleneck

area of the Dutch railway network, show very promising performance of the proposed

algorithm in finding a near optimal solution within short computation times.

Tornquist (2007) formulates and solves a re-scheduling problem on a

geographically large and fine-grained railway network. The author formulates the

problem as a MILP and proposes four strategies for solving the problem. Strategy 1

allows swapping of the track but not for orders, whereas strategy 2 allows swapping

tracks and also implicit order changes. Strategy 3 allows for a certain number of order

swaps. Finally strategy 4 allows all possible changes. Experiments on the network of

the South traffic district in Sweden show that strategy 3 appears to perform well with

respect to computation time and solution quality.

Rodriguez (2007) uses constraint programming to solve the routing and

scheduling of trains travelling through a junction. Three propagation mechanisms are

 21

used to prune many non-feasible decisions. Numerical results based on a real junction

North of Paris show that the proposed method can significantly improve the decisions

applied by the operator, and the computation time is less than the time required to

apply the solution in real conditions.

Real time dispatching is different from operational scheduling in the sense that

real time dispatching has even tighter constraints on the computation time, normally

less than three minutes. The scale of the problem is smaller in real time dispatching,

and in most cases, local near optimal solutions are satisfactory.

2.4 Gap

 Most of the literature in the domain of operational scheduling focus on small

scale rail networks. Optimal procedures have been developed for small networks with

various restrictions. Typical simplification of the network includes one way travelling

and single line railway configuration. This project explores optimal procedures for

solving scheduling problems on small networks without simplifying the network. The

algorithms developed for small networks also serve as benchmarking tools for

algorithms developed for larger networks. Existing procedures in the literature for

solving scheduling problems on large networks use either simulation or a heuristic

approach. This project proposes a decomposition approach for large scale static

scheduling problems. The large problem is decomposed into smaller sub-problems

and then the sub-problems are solved by the procedures proposed for smaller

networks. For dynamic train scheduling, the literature provides very limited

references. This project tries to solve the dynamic scheduling problem using a

sequential optimization approach.

 22

3 Research Accomplishments

As mentioned previously, for static scheduling, most exact methods for small

networks in the literature are done by assuming a simple structure of the network. For

large scale networks, most of the research in the literature is based on pure

simulations or simple heuristics. And there is very limited existing work on dynamic

scheduling of trains in complex rail networks. During the one year of this research

project, our efforts were mainly concentrated in addressing these gaps. The tasks

accomplished can be broadly classified as follows.

1. Develop two optimization based static scheduling algorithms for small

complex rail networks. Use these two algorithms to benchmark

developed heuristics for larger networks.

2. Develop two decomposition based static scheduling algorithms for

large complex rail networks. The large scheduling problem is

decomposed into smaller sub-problems. Each sub-problem is a

standard train scheduling problem that can be solved by algorithms

proposed for small networks.

3. Propose an algorithm for dynamic scheduling on both small and large

networks. This dynamic scheduling algorithm uses the idea of

sequential optimization. The performance of this algorithm is

benchmarked with the performance of one simulation based heuristic.

4 Problem Formulation

4.1 Network Construction

 The objective of operational scheduling for freight trains is to move each train

from its origin to its destination as fast as possible so that the total delay of all the

 23

trains are minimized. The delay of a train is defined to be the difference between its

actual traveling time on the track and the shortest traveling time possible assuming

there are no other trains in the network. In order to formulate the problem

mathematically, the actual rail network needs to be translated into nodes and arcs. The

network construction method in Lu et al. (2004) is adopted. A node denotes a train

track segment, a station or a junction. Different nodes could have different speed

limits imposed on it. An arc denotes the linkage between nodes. Normally, the length

of a junction node is zero, so is the arc element. Each track node has a capacity of one,

which means there can only be one train occupying the track node at any time. And

because of this capacity rule, the length of a track node should not be too long;

otherwise the track resource can not be fully utilized. A network construction of a

portion of a typical complex railway is shown in Figure 1. (Dessouky et al. 2006)

Figure 1 Network Construction

 The length of the train can be longer than the length of a node. Thus a train can

occupy several nodes simultaneously. In reality, a train can travel at various speeds.

The acceleration and deceleration rates depend on a number of factors like locomotive

power, train weight and track slope. Lu et al. (2004) and Suteewong (2006) explicitly

model the acceleration and deceleration rates of the train. However, in order to make

the mathematical model plausible, we assume trains travel at their maximum speed. In

all the following models, no speed limits are imposed on the nodes. Trains pass each

node at its maximum speed. Also the train tracks are divided into nodes with length

greater than the maximum length of all the trains. This ensures a single train can

 24

occupy at most two nodes at a time, while maintaining minimum headway clearance.

 The schedule specifies the path each train takes and the arrival and departure

times of each train on every node of the specified path. A path is the sequence of

nodes to be traversed by the train, from its origin to its destination. Next we are going

to introduce two mathematical formulations of the scheduling problem. The first

formulation assumes the path for each train is given and the second formulation treats

the path of each train as variables of the model.

4.2 Fixed Path Formulation

 The first model in the literature that we use for benchmarking purpose is the

mixed integer programming model introduced by Dessouky et al. (2006). Carey

(1994b) develops a similar model which focuses on passenger railways. We refer the

model formulated by Dessouky et al. (2006) as FixedPath, since the exact path of each

train needs to be specified before solving the model. We now formally introduce the

FixedPath model.

 Notations:

Q : Set of all the trains to be scheduled

N : Set of all rail track nodes

qS : Length of train q, ,q Q∈ 1,2,...,q Q=

qP : Path train q takes. Starts with train q’s origin node, 0
qn , to train q’s

destination node, d
qn . All the nodes train q will be traversing are:

,1 ,2 ,
{ , ,..., }

q
q q q p

n n n , where 0
1, qq nn = and d

qPq nn
q
=,

1
,iqB : The minimal travel time between train q’s head entering into node

iqn , and train q’s head leaving from node iqn , to node 1, +iqn

:2
,iqB The minimal travel time between train q’s head entering into node

iqn , and train q’s tail leaving node iqn ,

 25

:,
a

iqt The time train q’s head arrives at node iqn ,

:,
d

iqt The time train q’s tail leaves from node iqn ,

µ : Minimal safety headway between two consecutive trains

:,, 21 kqqx Binary variable indicates which train gets to pass node k first. 1: train

1q passes node k before train 2q . 0: train 2q passes node k before

train 1q .

M: An arbitrarily large number

 The 0-1 mixed integer programming formulation of FixedPath is described as

follows:

,
min (1)

. .

q

a
q P

q Q
t

s t
∈
∑

1
, 1 , ,

2 1
, , 1 , ,

, for all and 1 1 (2)

, for all

a a
q i q i q i q

d a
q i q i q i q i

t t B q Q i P

t t B B

+

+

− ≥ ∈ ≤ ≤ −

− ≥ −

1 2 1 2

2
, , ,

, , , ,

 and 1 1 (3)

, for all (4)

 for a

q q q

q

d a
q P q P q P

a d
q q k q i q j

q Q i P

t t B q Q

x M t t µ

∈ ≤ ≤ −

− ≥ ∈

+ ≥ +

{ }

1 2

1 2 2 1 1 2

1 2

1 2 , ,

, , , , 1 2 , ,

, , 1 2

ll , and node (5)

(1) for all , and node (6)

0,1 for all , and 1

q i q j

a d
q q k q j q i q i q j

q q k

q q Q k n n

x M t t q q Q k n n

x q q Q k N

µ

∈ = =

− + ≥ + ∈ = =

= ∈ ≤ ≤ (7)

 The objective function (1) minimizes the sum of the arrival times of all trains at

their destinations which is equal to the total delay of all the trains. Constraint (2)

ensures the minimum traveling time of the train on each track. The equal or greater

sign makes it possible for a train to wait for its next required resource to be cleared.

Constraint (3) ensures the minimum time a train needs to completely clear its previous

occupied resource, after its head enters the next node. The deadlock avoidance

 26

mechanism is realized by constraints (4) and (5). These constraints together make sure

that no more than one train can occupy the same node simultaneously. If train 1q

gets to pass node k before train 2q , the arrival time of 2q at node k has to be equal to

or greater than the departure time of 1q from node k plus the safety headway of µ ,

and vice versa.

 The FixedPath model can be used to solve the scheduling problem for any

general network, as long as the length of each node is not shorter than the maximum

length of each train. The formulation of FixedPath can be solved using a

commercially available optimization solver like CPLEX. The major drawback of the

FixedPath algorithm is, as its name suggests, the exact path of each train needs to be

fixed and serves as the input to the model. However, the sequence of nodes a train

travels is an important factor that can affect the delay of the trains. Thus the results

obtained from this model are sub-optimal. To make this point clearer, suppose we

have a single track network with one siding as shown in Figure 2.

Figure 2 Simple network

 Suppose trains travel in both directions, from ST1 to ST2 and from ST2 to ST1.

In order to use FixedPath, for each train, we need to specify if this trains uses siding

C’ or not. There might be extra delays to switch from the main track to siding C’.

Thus if there are no trains traveling in the opposite direction in the network, it is not

optimal to dispatch the train to siding C’. On the other hand, if two trains are traveling

on the network in opposite directions, one of them has to travel to the siding C’ to let

the other train pass. Thus the optimal path a train should take depends on the

travelling direction and location of the other trains. Fixing the path before solving the

scheduling problem can lead to a solution far from the global optimal solution. And if

there are both slow and fast trains on the network, fixing the path might prevent the

A

C

B D E
C’

ST1 ST2

 27

fast train, if it follows a slower train, from overtaking the slower train.

4.3 Flexible Path Formulation

 A natural extension of the FixedPath formulation is to include the path selection

mechanism into the model. Here we formulate an MIP model which is extended from

FixedPath, called FlexiblePath. Carey (1994b) proposes a similar model.

Let V denote the set of all junctions, where a junction is merging points of

multi-tracks on the railway network. New variable I is introduced in FlexiblePath, and

the meaning of variables ,
a
q it and ,

d
q it slightly change. Suppose there are n nodes in

the network, numbered from 1 to n, respectively. ,
a
q it (,

d
q it) formerly indicate the

arrival (departure) time of train q at (from) the ith node on its path P. In FlexiblePath,

,
a
q it (,

d
q it) simply mean the arrival (departure) time of train q at (from) node i. Variable

,q iI is a binary indicator variable with the following meaning:

 ,

1 if train travels on node

0 otherwise q i

q i
I 

= 


Let qO and qD denote the origin and destination nodes of train q, respectively. Let

()e v and ()w v , v V∈ , denote the set of nodes connected to junction v from the East

and West direction, respectively (alternatively, it can refer to the North and South

directions). Let (,)suc i q denote the set of nodes that are immediate successors of

node i in the direction in which train q travels.

 FlexiblePath formulation is as follows:

 28

,min (1)

. .

q

d
q D

q Q
t

s t

∈
∑

,

,

, ,
()

1
 for all (2)

1

q

q

q O

q D

q i q j
i e v j

I
q Q

I

I I
∈ ∈

=  ∈
= 

=∑
()

, for all and all (3)
w v

q Q v V∈ ∈∑

, , ,

1
, , , ,

2 1
, , , , ,

, for all and (4)

(1) ,

(1) ,

a d
q i q i q i

a a
q j q j q i q i

d a
q i q i q j q i q i

I M t t q Q i N

I M t t B

I M t t B B

≥ + ∈ ∈

− + − ≥ 


− + − ≥ − 

 for all and
 (5)

(,)
q Q i N

j suc i q
∈ ∈

∈

1 2 2 1

1 2 1 2 1 2

2
, , ,

, , , ,

, , , , , ,

, for all (6)

(1)

(2)

q q q

d a
q D q D q D

a d
q q i q i q i

a d
q i q i q q i q i q i

t t B q Q

x M t t

I I M x M t t

µ

µ

− ≥ ∈

− + ≥ + 


− − + + ≥ + 

1 2 1

1 2 2

1 2 1 2

, , , 1 2 1 2

, , ,

for all , ,
 (7)
for all

 for all , ,

for all
q q i q i

q q i q i

q q Q q q
i N

x I q q Q q q
x I i N

∈ ≠
∈

≤  ∈ ≠
≤ ∈

{ }

{ }
1 2, , 1 2

,

 (8)

0,1 for all , and (9)

0,1

q q i

q i

x q q Q i N

I

= ∈ ∈

= for all and (10)q Q i N∈ ∈

 Constraint (2) ensures that each train starts at its planned origin and travels to

its destination. Constraint (3) is the train flow conservation equation which is also the

core of the path selection mechanism. The conservation equation states that a train

entering a junction can travel to any track that emits out of the junction (e.g. in Figure

2, a train can travel on either track C or C’ after track B). Constraint (4) states that if a

train does not utilize track node i, then the arrival time and departure time of that train

on node i should be zero. Constraint (5) calculates the arrival time and departure time

on track nodes along the path that the train travels. Constraint (7) is the deadlock

avoidance constraint. In the formulation of FixedPath, variable
1 2, ,q q ix only exists

when both trains 1q and 2q have track node i on their paths. Here in FlexiblePath,

we have the variable
1 2, ,q q ix for any 1q and 2q pair on every track node. If

1 2, ,q q ix

 29

equals to 1, this means 1q and 2q both travel on node i and 1q gets to pass node i

before 2q . If
1 2, ,q q ix equals to 0, either one of the two situations happen: at least one

of the two trains does not travel on node i or both 1q and 2q travel on node i and

2q gets to pass node i before 1q . Constraint (8) forces
1 2, ,q q ix to be 0 when either or

both trains do not travel on node i.

 For the same scheduling problem, the formulation of FlexiblePath contains far

more binary variables than that for FixedPath. The solution computing time of

FlexiblePath would be far greater than the time required for FixedPath. However a

significant reduction of total delay might be achieved by incorporating the path

selection mechanism of FlexiblePath. We now show the performance of both

formulations by a computational experiment on a small network.

4.4 Experimental Results

 The experiment is based on a portion of the real network in Los Angeles County

(see Figure 3). The numbers in Figure 3 denote the lengths of the track components

(in miles). The trains travelling from west to east arrive at point A and are routed to

point D. For the other direction, the trains enter the network from point C and are

routed to point B. From the preliminary computational experiments, we found that for

this network, the maximum number of trains that FlexiblePath can solve optimally is

four, given a solving time constraint of one hour of CPU time. Both formulations are

tested under four scenarios. In each scenario, two trains travel in the eastbound

direction and the other two trains travel in the westbound direction. The details of the

four scenarios are listed in Table 1.

 30

Figure 3 Small network for numerical example

 The parameters of the four scenarios ensure the computational experiments

mimic the real situation as close as possible. The ready times of each train is

uniformly distributed. Scenarios 1 and 2 have tighter schedules than scenarios 3 and 4.

The uniform distribution U(0, 10) and U(0, 20) are chosen so that there is significant

difference between scenarios 1,2 and scenarios 3,4, and trains in all four scenarios are

not too dense nor too sparse. In reality, the maximum speed of a passenger train can

be as high as 1.35 mile/minute, whereas the maximum speed of a freight train can be

as low as 0.7 mile/minute. The four possible speeds (0.75, 1, 1.25 and 1.5) ensure

trains travel at different speeds as they do in reality. The average speed difference in

scenarios 2 and 4 is larger than the difference in scenarios 1 and 3. Also, in reality the

trains have different lengths. Typical passenger and freight trains have lengths of

0.189 and 1.136 mile. These stochastic elements lead to different meet and pass

situation between trains, thus the performances of FixedPath and FlexiblePath are

fully assessed. A penalty time (denoted by p) of 0.5 minute is added for each time a

train switches lines (e.g. a train switches to siding from the main line). This penalty

Table 1 Description of the scenarios (4 trains)

4 trains Train ready time (minute) Train speed (miles/min) Train length (mile)

Scenario 1 Uniform(0,10) 0.75, 1, 1.25 and 1.5 (equally likely) 0.189 and 1.136 (equally likely)

Scenario 2 Uniform(0,10) 0.75 and 1.5 (equally likely) 0.189 and 1.136 (equally likely)

Scenario 3 Uniform(0,20) 0.75, 1, 1.25 and 1.5 (equally likely) 0.189 and 1.136 (equally likely)

Scenario 4 Uniform(0,20) 0.75 and 1.5 (equally likely) 0.189 and 1.136 (equally likely)

2.68

D

2.34

1.68 2.68

1.68 2.68

2.17

1.68

1.68

1.68 A

B

C

S
P Q

SW1 SW2

 31

time can be implemented by modifying constraint (5) of FlexiblePath and constraint

(2) of FixedPath: if travelling from node i to node j involves switching of line, then

1
, , ,

a a
q j q i q it t B p− ≥ + .

In order to solve the scheduling problem using the FixedPath formulation, the

path of each train needs to be specified as input to the model. The path selection for

each train for this numerical example is shown in Figure 4. The logic behind this

assignment is to keep the trains traveling as much as possible on the right hand side

whereby minimizing the number of crossings. However the disadvantage with this

approach is that faster trains may possibly follow a slower train.

Figure 4 Path assignment for FixedPath model

 20 random samples are drawn for each scenario. For each sample, both the

FixedPath and FlexiblePath formulations are used to solve the scheduling problem.

The experiments are conducted on a Linux server with two 3.06 GHz Intel Xeon

CPUs. The software used to solve the MIP problem is CPLEX 9.0. Table 2

summarizes the computation results. The results for each scenario are obtained by

averaging the 20 samples.

The schedules from FlexiblePath are optimal schedules. According to Table 2,

the FlexiblePath model generates schedules with significantly fewer train delay than

for FixedPath. It is observed that the reduction in scenario 2 is greater than in scenario

1, and the reduction in scenario 4 is greater than in scenario 3. One intuitive

explanation is that in scenarios 2 and 4, the differences between train speeds are

greater than those in scenarios 1 and 3. Since FlexiblePath is able to schedule a faster

train to pass a slower train, the reduction in the delay of the faster train is greater

A

B

C

D

Path for trains traveling eastbound

Path for trains traveling westbound

 32

when there is greater difference between the speeds of the two trains. Also, if the

network is less congested, there are more opportunities for a faster train to pass a

slower train. Thus intuitively, the reduction in scenario 3 should be greater than the

reduction in scenario 1, and the reduction in scenario 4 should be greater than

scenario 2. In terms of computing time, FlexiblePath takes significantly more time

than FixedPath.

Table 2 FlexiblePath V.S. FixedPath

 Total train delay

under FixedPath

(minute)

Total train delay

under FlexiblePath

(minute)

FixedPath delay

/FlexiblePath delay

FixedPath

CPU time (sec)

FlexiblePath

CPU time (sec)

Scenario 1 12.00 7.53 1.594 0.02 256.68

Scenario 2 12.91 7.64 1.690 0.02 214.82

Scenario 3 10.50 6.48 1.620 0.02 351.94

Scenario 4 12.25 6.47 1.893 0.02 280.49

5 Algorithms for Small Networks

5.1 LtdFlePath Algorithm

 Since the number of integer variables increase exponentially as the number of

trains increase. Using the flexible path formulation, an optimal solution cannot be

obtained within one hour of CPU time when the number of trains increases to 6 (3 in

each direction). The FlexiblePath formulation tends to explore every possible path for

each train. However not all paths are reasonable. For example, the path shown in

Figure 5 is oddly formed, and in reality, it would never be reasonable to schedule a

train on such a path. If only a subset of all possible paths is allowed to be explored,

then the computing time can be reduced significantly. Still, which paths to use

remains a question. We next propose a procedure to select a subset of the candidate

paths. A model, similar to FlexiblePath, which only allows trains to take the candidate

 33

paths is constructed next. The new model is called LtdFlePath.

 Figure 5 An example of a poorly constructed path

 There are a total of 32 possible paths (16 in each direction) in the example problem.

The criteria that we use to select the candidate paths is as follows:

 The sidings are placed in the network for the purpose of meet and pass.

Thus it is important to leave the siding and the main line track besides the

siding as options for every train to take.

 Trains should have freedom to traverse along any track lines of the double

tracks or triple tracks without switching. This minimizes delay due to

crossovers. In the sample network, for the double tracks between points P

and Q, trains at point P (Q) could choose the upper or lower tracks and

traverse all the way towards point Q (P) without switching.

 If switching between the double or triple tracks are allowed, the first

possible track to switch along the train’s travel direction should be

considered. By doing so, trains traveling in the same direction but at

different speeds, can make use of this switch to complete the pass as early

as possible. In the example, the switch denoted by SW1 can be used by the

trains traveling eastbound. Thus a faster train can take over a slower train

and both trains can continue traveling on the lower line after SW1, leaving

the upper line for the trains traveling westbound. Under the same logic,

trains traveling westbound should be allowed to make use of SW2.

Preliminary experiments show that limiting the number of paths to under six

makes it possible to solve the problem using the LtdFlePath model in a reasonable

amount of time. Following the three proposed criterions for selecting candidate paths,

for the example network, six paths (see Figure 6) for each direction are chosen to be

possible paths for model LtdFlePath. This is a reduction of the 16 possible paths that a

train can take in each direction.

 34

 Figure 6 Candidate paths for LtdFlePath

 LtdFlePath is very similar to FlexiblePath. The only difference in the formulation

is in constraint (2) in FlexiblePath. LtdFlePath modifies constraint (2) so that only the

candidate paths are allowed.

Table 3 FlexiblePath V.S. LtdFlePath

Though the schedules produced by LtdFlePath are not guaranteed to be globally

optimal, they are expected to be very close to the results from FlexiblePath. Using the

same scenarios as before, the performance of both LtdFlePath and FlexiblePath are

presented in Table 3. From Table 3, it is observed that in the case of four trains, the

LtdFlePath is able to produce results that are within 5% of the global optimal

 Total train delay

under LtdFlePath

(minute)

Total train delay

under FlexiblePath

(minute)

LtdFlePath/FlexiblePath LtdFlePath

CPU time (sec)

FlexiblePath

CPU time (sec)

Scenario 1 7.89 7.53 1.048 3.05 256.68

Scenario 2 7.82 7.64 1.024 2.53 214.82

Scenario 3 6.63 6.48 1.023 2.7 351.94

Scenario 4 6.76 6.47 1.045 2.27 280.49

Possible paths for trains traveling eastbound

Possible paths for trains traveling westbound

 35

solutions. Most importantly, the LtdFlePath model significantly reduces the CPU time,

as compared to FlexiblePath.

 With this improved efficiency, LtdFlePath is able to solve the problem of six

trains on the example network. A similar set of scenarios (see Table 4) are created to

compare the performance of LtdFlePath and FixedPath. Train ready times are

generated according to a uniform distribution over a larger interval than the previous

scenarios. One point to note, though the total number of trains may not seem large, six

trains will be running on the 18.73 miles long network simultaneously. This network

scenario is actually relatively congested compared to real freight train networks.

Table 4 Description of scenarios (6 trains)

Table 5 LtdFlePath V.S. FixedPath

6 trains Total train delay

under LtdFlePath

(minute)

Total train delay

under FixedPath

(minute)

FixedPath/LtdFlePath LtdFlePath

CPU time (sec)

FixedPath

CPU time (sec)

Scenario 1 14.10 19.93 1.413 1067.98 0.11

Scenario 2 16.27 25.06 1.541 1662.18 0.09

Scenario 3 9.58 15.64 1.632 934.95 0.06

Scenario 4 10.43 19.18 1.840 266.72 0.05

The numerical results are shown in Table 5. By giving the model the freedom to

optimize both the sequence of trains passing certain track segments and the sequence

of tracks trains take, a much better schedule can be obtained. The LtdFlePath

6 trains Train ready time (minute) Train speed (miles/min) Train length (mile)

Scenario 1 Uniform(0,20) 0.75, 1, 1.25 and 1.5 (equally likely) 0.189 and 1.136 (equally likely)

Scenario 2 Uniform(0,20) 0.75 and 1.5 (equally likely) 0.189 and 1.136 (equally likely)

Scenario 3 Uniform(0,40) 0.75, 1, 1.25 and 1.5 (equally likely) 0.189 and 1.136 (equally likely)

Scenario 4 Uniform(0,40) 0.75 and 1.5 (equally likely) 0.189 and 1.136 (equally likely)

 36

formulation does not necessarily return the global optimal solution, but it is shown to

perform very closely to the FlexiblePath formulation. As the results show, solutions

from FixedPath can be far from optimal. However the LtdFlePath model takes much

more CPU time than the FixedPath to generate a solution. Next we propose a heuristic

procedure, which is improved on the FixedPath formulation. This heuristic finds a

solution much faster than LtdFlePath and yet is able to significantly reduce the delay

of FixedPath.

5.2 Genetic Algorithm and Fixed Path Formulation

The previous analysis showed that once the paths of the trains are specified, the

scheduling problem can be solved fairly quickly (normally in the order of 0.1 CPU

seconds) for the case of six trains. The heuristic, called GA+FixedPath, uses genetic

algorithm to evolve the population of the candidate paths. The FixedPath model is

used to calculate the fitness values for each set of paths.

 The first step in solving any problem by genetic algorithm is to define the

genetic representation of the population, the chromosomes. In GA+FixedPath, the

chromosome represents the set of paths used by the trains. All the possible paths are

first numbered accordingly. For the example problem, there are a total of 16 possible

paths in each direction. They are numbered from 1 to 16 (see Figure 8 for the

numbering of the paths). Instead of using 0s and 1s to represent the chromosome, the

chromosome of the GA+FixedPath model are formed by the numbers that represent

the selected path for each train. For the case of six trains, a chromosome might look

like: (2, 3, 2, 1, 10, 1). The meaning of this chromosome is that: train 1 takes path

number 2; train 2 takes path number 3; train 3 takes path number 2 and so on. Given a

chromosome, the FixedPath formulation can be used to solve the scheduling problem.

The returned delay is treated as the fitness value of this chromosome. Let P denote a

single chromosome. The GA+FixedPath algorithm is described in the flowchart in

Figure 8.

The initial population is randomly generated. However the paths do not have

 37

1:

2:

3:

4:

5:

6:

7:

8:

9:

10:

11:

12:

13:

14:

15:

16:

w/p:0.125

w/p:0.125

w/p:0.125

w/p:0.125

w/p:0.075 w/p:0.075

w/p:0.035

w/p:0.035

w/p:0.035

w/p:0.035

w/p:0.035

w/p:0.035

w/p:0.035

w/p:0.035

w/p:0.035

w/p:0.035

equal probability of being selected by a train. The probabilities are adjusted so that a

common and reasonable path has a higher probability than an odd path (e.g., path 2 in

the example network should be selected with a higher probability than path 7). The

probabilities of each path being selected in the initial population are shown in Figure

7. Once the initial generation is created, the FixedPath formulation is used to obtain

the fitness value of each population in the initial generation. After associating each

population with a fitness value, the roulette wheel selection algorithm is used to select

the parent chromosomes which will be used to produce the next generation. The

roulette wheel selection algorithm assures the higher the fitness a chromosome has,

the higher the chance it is selected.

Figure 7 Numbering of the paths and their probabilities of being selected in the
initial population

The crossover operation is then applied to the parent chromosomes. Since the

first half of the chromosome denote the trains traveling in one direction and the

second half of the chromosome denote the trains traveling in the opposite direction, it

is reasonable to use the single cut point crossover policy. The single cut point is made

at the middle of the chromosome. Figure 9 shows an example of the crossover

operation. The crossover operation is only carried out with a certain probability which

is decided by the crossover ratio.

 38

Figure 8 GA+FixedPath Algorithm

 Figure 9 Example of crossover operator

After the crossover operation, the mutation operation is carried out. The mutation

Randomly generate the initial population of Ps

Start

Use the FixedPath formulation to calculate the fitness
value of each population P

Use the roulette wheel selection rule to select
candidates for the next generation’s population

Apply the crossover and mutation operator on the
candidate population to obtain the next generation

Use the FixedPath formulation to calculate the fitness
value of each population P

Has the termination criteria
been reached?

Terminate

No

Yes

(2, 3, 2, 1, 10, 1)

(10, 1, 2, 11, 1, 2)

Parent 1

Parent 2

Offspring 1

Offspring 2

(2, 3, 2, 11, 1, 2)

(10, 1, 2, 1, 10, 1)

Before crossover After crossover

 39

operation mimics the process of human gene mutation. There is a chance (decided by

a mutation ratio) that each path in a chromosome will mutate. The mutation ratio is

normally set to a very low value (e.g. 0.1). A neighborhood set of paths is defined for

each path. A specific path is only allowed to mutate into one of the paths in its

neighborhood set. The neighborhood set of each path is composed of the paths that

only slightly deviate from that path. To be more specific, the neighborhood set of path

f contains paths that differ from path f by at most two switches (e.g., a neighborhood

set of path 1 is path {2, 10, 11, 12, 15, 16}). In most cases, the chromosome is

represented by 0s and 1s and the mutation operator normally changes 0 to 1 or vice

versa. The mutations are supposed to only slightly change the current chromosome.

By defining the neighborhood set for each path, this property is preserved in our

algorithm. Figure 10 shows the effects of the mutation operation. The crossover

operation and mutation operation are used to direct the search towards the area

beyond the local optimum. The GA+FixedPath algorithm is terminated when the

iteration number of the genetic algorithm reaches a pre-set value.

Figure 10 Example of mutation operator

 The GA+FixedPath algorithm is then tested to solve the same sets of problems

where six trains travel in the network. Various settings of the crossover and mutation

rate are tested, the algorithm performs the best when crossover rate is 0.7 and the

mutation rate is 0.1 The maximum number of iterations before termination is set to be

40. And the population size is 30. The results of GA+FixedPath are shown in Table 6.

The solution quality of GA+FixedPath is much better than the one from FixedPath.

The genetic algorithm is able to find a fairly good path assignment for the trains in a

much shorter time compared to the computing time of LtdFlePath. The

(2, 3, 2, 1, 10, 1) (2, 3, 3, 1, 10, 1)

Before mutation After mutation
Mutation
Position

 40

GA+FixedPath would be able to solve the scheduling problem when the size of the

problem further increases.

Table 6 LtdFlePath V.S. FixedPath V.S GA+FixedPath

 Before we increase the size of the problem and embark our analysis on a large

scale rail network, we introduce two more heuristics that schedule trains on complex

rail networks. The PureGA algorithm, proposed by Suteewong (2006), schedules

trains using genetic algorithm to identify a satisfactory path and priority assignment of

the trains. Another heuristic is the construction heuristic proposed by Lu et al. (2004)

to solve large scale scheduling problem on a complex rail network.

5.3 Pure Genetic Algorithm

 Suteewong (2006) introduces a genetic algorithm to solve the train scheduling

problem (referred as PureGA algorithm). While the GA+FixedPath uses genetic

algorithm to evolve the paths of trains, the PureGA algorithm not only evolves the

paths of each train but also the precedence rules among the trains.

 In PureGA algorithm, there are two types of chromosomes. One represents the

1 2, ,q q ix variable and the other represents the ,q iI variable.
1 2, ,q q ix controls the order of

trains passing through a certain track node. ,q iI equals 1 if train q passes on track i

and 0 otherwise. The chromosome of
1 2, ,q q ix is a three-dimensional matrix whose size

 Total Delay (minutes) Comparison CPU time (seconds)

6 trains LtdFlePath GA+FixedPat

h

FixedPath GA+FixedPath/

LtdFlePath

FixedPath/

LtdFlePath

LtdFlePath

GA+FixedPath FixedPath

Scenario 1 14.10 16.40 19.93 1.163 1.414 1067.98 93.09 0.11

Scenario 2 16.27 19.79 25.06 1.216 1.541 1662.18 78.11 0.09

Scenario 3 9.58 11.71 15.64 1.222 1.632 934.95 58.84 0.06

Scenario 4 10.43 12.99 19.18 1.246 1.840 266.72 57.02 0.05

 41

is n n m× × , where n is the total number of trains and m is the total number track

nodes. ,q iI has a representation that is a two-dimensional matrix whose dimension is

n m× . The procedure of the PureGA algorithm is as below:

1. Randomly generate an initial population for the
1 2, ,q q ix and ,q iI .

2. Calculate the objective function for each population.

3. Use the roulette wheel selection rule to select the parent chromosomes and

then use the crossover and mutation operators.

4. Obtain a new population for the
1 2, ,q q ix and ,q iI binary variables. Replace

the previous
1 2, ,q q ix and ,q iI with the new ones. Evaluate the new

objective function.

5. Check the termination criteria. If it is met, terminate with the solution.

Otherwise, repeat step (3) through (5).

 The x and I variables are correlated. As we stated in FlexiblePath,
1 2, ,q q ix is

only meaningful if
1 ,q iI and

2 ,q iI are both 1 (e.g. both trains q1 and q2 pass node i).

This correlation complicates the process of evolution of the chromosomes. Before the

fitness value of each population is assessed, a Repairing Algorithm needs to be

applied to assure the consistency between X and I variables. The Travel Time for Node

Algorithm (TTN) is developed to determine the travel time for each individual node of

a particular train. Another algorithm called Deadlock Prevention Algorithm, which has

TTN embedded in it as a subroutine, is also developed. Given the new population of

the x and I variables, the Repairing Algorithm is first applied, and then the Deadlock

Prevention Algorithm is applied to return a deadlock-free schedule based on the x and

I variables. The PureGA algorithm, not like the GA+FixedPath algorithm, is not based

on a mixed integer programming model. As we will later see, in general, the PureGA

algorithm runs faster than GA+FixedPath. But in terms of solution quality, the

GA+FixedPath outperforms the PureGA algorithm.

 42

5.4 Greedy Algorithm

 Lu et al. (2004) proposes a construction heuristic to schedule the trains. We call

this algorithm, Greedy, since the construction heuristic is a one-step look-ahead

algorithm. The Greedy algorithm is developed from a simple deadlock-free routing

algorithm (call it FreePath) which allows a train to move to a successor node if all the

nodes and arcs between the current position of the train and its destination are

available. However, the Greedy algorithm differs from the FreePath algorithm in the

way that it dispatches the train through a successor node j as long as there is an

available buffer that passes through node j. A buffer between node i and node j is

defined to be a set of nodes connected as a chain between node i and node j. In the

simple network in Figure 11, the FreePath algorithm would hold train A until train B

reaches station ST1. But the Greedy algorithm would not stop train A since there is a

siding, which is considered as a buffer, between train A and B.

 Figure 11 Greedy algorithm

When there are multiple available successor nodes for train q, the best available

successor node is chosen according to the following factors:

1. The maximum priority difference between the current train and the immediate

successor train running in the same direction if one exists.

2. The maximal number of trains running in the same direction along the path from

the successor node to the train’s destination node.

3. The minimum travel time for the current train from the successor node to the

current train’s destination node assuming there is no downstream conflicting

traffic ahead of the current train.

ST1

Train A Train B

 43

The computing time of the Greedy algorithm is negligible even for relatively

large scale problems. It is the fastest among all the algorithms introduced. And it is

not surprising to see that it produces a schedule with the largest train delays.

5.5 Experimental Results

 As previously pointed out, the train density of the last numerical example (six

trains on an 18.73-mile long network) is considered to be rather high. Now we would

like to further increase the number of the trains from six to eight. The ready times are

sampled from uniform distributions from larger intervals ((0,25), (0,50)) than

previous scenarios. As the train number increases, the integer variables in LtdFlePath

increases exponentially. Thus makes it unable to solve the problem in a reasonable

amount of time. The performances of the four algorithms are compared and the results

are shown in Table 8. For the PureGA algorithm, the crossover and mutation rates are

0.6 and 0.1, respectively. The population size is set to be 50 and the maximum

iteration number is set to be 100.

Table 7 Description of scenarios (8 trains)

 The GA+FixedPath algorithm requires a significant amount of computing time,

compared to the other three approaches. The long computing time is justified by its

solution quality. The PureGA algorithm is outperformed by the GA+FixedPath

algorithm in terms of solution quality. This is because that given a specific path

8 trains Train ready time (minute) Train speed (miles/min) Train length (mile)

Scenario 1 Uniform(0,25) 0.75, 1, 1.25 and 1.5 (equally likely) 0.189 and 1.136 (equally likely)

Scenario 2 Uniform(0,25) 0.75 and 1.5 (equally likely) 0.189 and 1.136 (equally likely)

Scenario 3 Uniform(0,50) 0.75, 1, 1.25 and 1.5 (equally likely) 0.189 and 1.136 (equally likely)

Scenario 4 Uniform(0,50) 0.75 and 1.5 (equally likely) 0.189 and 1.136 (equally likely)

 44

assignment, the GA+FixedPath returns the optimal schedule for this path assignment.

The Greedy algorithm performs the worst in terms of solution quality. The solution of

the Greedy algorithm closely matches current industry practice, thus serves as a

benchmarking tool which tells us how much improvement can be achieved.

Table 8 Computational results (8 trains)

 Total Delay (minutes)

(CPU time (seconds))

Solution Quality Comparisons

8 trains FixedPath GA+FixedPath PureGA Greedy FixedPath/

GA+FixedPath

PureGA/

GA+FixedPath
Greedy/

GA+FixedPath
Scenario 1 33.97

(0.55)

30.53

(418.62)

35.22

(16.84)

78.21

(negligible)

111.25% 115.35% 256.15%

Scenario 2 56.97

(0.69)

48.64

(410.26)

56.87

(18.75)

83.25

(negligible)

117.12% 116.92% 171.14%

Scenario 3 35.19

(0.16)

26.29

(215.25)

30.66

(11.06)

72.32

(negligible)

133.85% 116.59% 275.04%

Scenario 4 42.61

(0.23)

34.79

(293.67)

40.38

(12.98)

65.79

(negligible)

122.46% 116.05% 189.09%

 The PureGA and Greedy algorithm are also tested for the scenarios of four and

six trains. The complete tables which have all the results are shown in Appendix A.

The PureGA tends to work well when the number of trains is small. As the number of

trains increases, the solution quality of PureGA gradually approaches to that of the

FixedPath algorithm. Even when the number of trains is small, there is a significant

gap in terms of solution quality between the Greedy Algorithm and the optimal

algorithms. This suggests that the freight rail industry can benefit a lot if better and

practical operational scheduling methods are implemented.

 45

6 Algorithms for Large Networks

In Section 4, we developed and tested a few algorithms on actual small rail

networks. The optimal schedule (obtained from FlexiblePath) is benchmarked with

the schedule practiced in industry (obtained from Greedy) and some other sub-optimal

schedules. The solution gap is clearly identified. Now we embark on solving large

scale problems. For these large scale problems, the global optimal solution is not

computationally practical to obtain. Any heuristic proposed to solve the large scale

problem can be tested using the small network so that its relative performance

compared to the optimal solution can be inferred.

Among all the algorithms introduced in Section 4, only the Greedy algorithm

can solve a large scale problem in a reasonable amount of time. In this section, we

propose a more efficient heuristic than the Greedy Algorithm to solve the scheduling

problem for a large scale real network.

6.1 Decomp Algorithm

 The divide-and-conquer approach is an effective way of solving large complex

problems. For a static large scale operational scheduling problem, there can be two

ways to decompose the problem.

 Horizontal decomposition



. The rail network can be decomposed into several

smaller sections. Local optimal schedules could be developed and then schedules

on each smaller section are then integrated. The major challenge of horizontal

decomposition is the integration step (e.g., the leaving time of a train in one

section should match the arrival time of this train to the next adjacent section).

Vertical decomposition. Instead of decomposing the large network into smaller

sections, the trains to schedule can be grouped into clusters, according to the time

the trains enter the network. Then a schedule can be developed for each cluster,

assuming the network is occupied by the trains only from the current cluster. And

the schedules of each cluster are then integrated.

 46

 Carey and Lockwood (1995) solve the train scheduling problem by dispatching

the trains one by one, similar to the procedure carried out by a human dispatcher. This

approach can be categorized as vertical decomposition. Next, we are going to

introduce an algorithm, called Decomp algorithm, which is also based on the idea of

vertical decomposition.

 The train scheduling problem is basically a problem of determining the paths of

each train on their routes (the I variables in the FlexiblePath formulation) and the

sequence of the trains passing every track segment (the x variables in the FlexiblePath

formulation). Before introducing the Decomp algorithm, some additional notation

needs to be defined:

 ktr : The kth train entering the network, 1 k Q≤ ≤

 c: The total number of clusters

lC : The lth cluster of trains, 1 l c≤ ≤

 lC : The total number of trains in lC

 ls : The total number of trains up to cluster l.
1

l

l m
m

s C
=

=∑

Step 1: Decompose all the trains into clusters according to the entering time of the

trains.

Decomp Algorithm

lC will contain trains
1 1lstr
− + ,

1 2lstr
− + up to

lstr .

Step 2:

Let l = 1;

While (l < c+1) {

 Solve the scheduling problem (referred as sub-problem l) that only involves

trains in clusters 1 2, ,..., hC C C ;

 Save and fix the values of variables ,q iI and
1 2, ,q q ix , where

1 2 1 2, , (, ,...,)hq q q C C C∈∪ and i N∈ , for the next iteration;

 l= l +1;

}

 47

The description of the Decomp algorithm only serves as a general approach,

there are two details that need to be decided.

1. The cluster size

2.

. The trade off between a large and small cluster size is very

clear. The larger the cluster size is, the better the solution quality is. But the

larger the cluster size is, the longer it takes to solve the sub-problem.

Algorithm used to solve sub-problems

After solving sub-problem l, the path of each train in clusters

. Since the sub-problem itself is a

smaller version of the train scheduling problem, there are many options in

solving the problem. As the cluster size varies, the most suitable algorithm

will change.

1 2, ... hC C C will be

fixed, so will the sequence for those trains passing each track node. Solving

sub-problem l involves determining the paths for the trains in cluster hC , the sequence

of the trains in hC passing every node, and the precedence relationship between

trains in hC and trains in 1 2 1, ,..., hC C C − . Thus if every cluster has the same size, the

problem size of the sub-problems continuously increases (e.g., it takes more time to

solve sub-problem l+1 than sub-problem l).

6.2 Experimental Results

Next we demonstrate the performance of the Decomp algorithm by testing it on a

real network, to be more specific, a 49.3-mile long network from Indio, CA to Colton,

CA. The trackage configuration of this network is shown in Appendix B. Similar to

before, we gradually increase the number of trains and explore the performance of the

various algorithms. The time interval between two consecutive trains in the same

direction is assumed to be uniformly distributed between 14 and 16 minutes. The train

speed is equally likely to be 0.75, 1, 1.25 and 1.5 miles/minute and the length of each

train is equally likely to be 0.189 and 1.136 miles.

For this particular numerical example, the cluster size is chosen to be fixed at six

(except for the last cluster). To solve the sub-problem, the GA+FixedPath algorithm

 48

(population size: 40; crossover rate: 0.7; mutation rate: 0.1; maximum number of

iterations: 15) is found to be most suitable. The PureGA and Greedy algorithms are

the only two algorithms introduced that could, in a reasonable time duration, solve

this particular example without modifications. Thus the results from the Decomp

algorithm are benchmarked against PureGA and Greedy algorithm. The results based

on 20 random samples for each scenario are shown in Table 9.

Table 9 Computational results (large network)

The relative performances between PureGA and Greedy are consistent with their

performances in the sample network. The Decomp algorithm achieves a much smaller

delay than the PureGA and Greedy algorithms. For the Decomp algorithm, though the

problem is decomposed into smaller problems, the sizes of the sub-problems are not

constant. For the case of 18 trains, the average CPU times to solve sub-problems 1, 2

and 3 are 43.38, 368.69 and 743.25 seconds, respectively. When the number of trains

increases, it might require too much time to solve the last few sub-problems. The

 Total Delay (minutes) Comparison CPU time (seconds)

 Decomp PureGA Greedy PureGA/Decomp Greedy/Decomp Decomp PureGA Greedy

8 trains 33.31 44.60 51.35 1.339 1.543 60.7 248.5 negligible

10 trains 48.44 52.12 80.27 1.282 1.662 217.9 587.7 negligible

12 trains 52.41 83.36 101.29 1.590 1.933 298.0 1351.9 negligible

14 trains 66.92 101.14 117.45 1.511 1.755 497.6 1540.0 negligible

16 trains 74.96 110.55 134.88 1.475 1.799 716.6 2057.0 negligible

18 trains 94.23 140.77 154.54 1.494 1.640 1155.5 2544.5 negligible

20 trains 87.40 137.64 153.71 1.575 1.759 1518.5 2634.0 negligible

22 trains 100.55 170.33 182.13 1.694 1.811 1992.0 2818.0 negligible

24 trains 112.28 173.84 191.18 1.548 1.703 4658.9 3271.0 negligible

 49

Decomp algorithm might need to be modified to be less sensitive to the size of the

problem.

We then show the sensitivity analysis of the cluster size. Table 10 shows the

effects of different cluster sizes in terms of solution quality and CPU times. For the

case of 16 trains, we can decompose trains in three ways: (1) cluster size of 4: (4, 4, 4,

4); (2) cluster size of 6: (6, 6, 4); (3) cluster size of 8: (8, 8). The result shows that the

larger the cluster size is, the better the solution quality and the longer the solution time

are. For a balance between solution quality and solution time, for the previous

numerical examples, the cluster size is chosen to be fixed at six (e.g., for the case of

22 trains, the decomposition will be 6, 6, 6 and 4).

Table 10 Effects of different cluster size (16 trains)

Total Delay (minutes) CPU time (seconds)

Cluster size of 4 Cluster size of 6 Cluster size of 8 Cluster size of 4 Cluster size of 6 Cluster size of 8

77.06 74.96 73.3 368.23 716.65 5640.57

6.3 Parallel Algorithm

 Now we present another algorithm, called Parallel, which is also based on the

decomposition idea. The Parallel algorithm is designed to be less sensitive to the size

of the problem.

Step 1: Decompose all the trains into clusters according to the entering time of the

trains.

Parallel algorithm

lC will contain trains
1 1lstr
− + ,

1 2lstr
− + up to

lstr .

Step 2:

Let l = 1;

While (h c≤) {

 50

Solve the scheduling problem (referred as sub-problem l) that only involves

trains in clusters hC ;

 Save and fix the values of variables ,q iI and
1 2, ,q q ix , where 1 2, , hq q q C∈ and

i N∈ ;

 l= l +1;

}

Step 3:

Use FixedPath formulation to solve the problem with all Q trains. The path of each

train are fixed as in the solution of Step 2. Some of the x variables are also fixed as

follows:

1. For trains q1 and q2 belonging in the same cluster,
1 2, ,q q ix is fixed as in the

solution in Step 2, i N∈

2. If
1 2, , 1q i q iI I= = , set

1 2, , 1q q ix = and
2 1, , 0q q ix = , where 1 lq C∈ and

2 sq C∈ , 2s l≥ + , for 1.. 2l c= − and 3..s c= .

 The main distinction between Step 2 of the Parallel algorithm and the Decomp

algorithm is that the Parallel algorithm involves sub-problems that are independent of

each other (i.e., when determining the paths of trains in cluster C2, the Parallel

algorithm does not consider the paths of trains in C1, whereas the Decomp algorithm

considers them). The major drawback in terms of the computation time for the

Decomp algorithm is that the sizes of the sub-problems continuously increase. The

Parallel algorithm does not have this drawback; every sub-problem is of the same size,

if the cluster sizes are the same.

 The algorithm is called Parallel, because in Step 2, a total number of c

sub-problems are solved independently, thus all the sub-problems can be solved in

parallel. Nowadays, most CPUs in personal computers have multiple processing cores.

By solving the problem in parallel, the computation time of Step 2 can be reduced by

a factor of the number of CPU cores.

 Step 2 determines the paths of each train. Step 3 involves solving a scheduling

 51

problem where the path of each train is given. However, given a relatively large

network and large number of trains, the FixedPath formulation can not solve Step 3

efficiently without pre-fixing some of the x variables. The precedence rules for trains

in the same cluster are pre-fixed as the solution in Step 2. Also, to further reduce the

solution space, the trains in cluster l have precedence on every track node over all the

trains in clusters l+2, l+3, …, c. So, in Step 3, the FixedPath formulation is used to

only determine the precedence rule between trains in adjacent clusters.

6.4 Experimental Results

For the example large network, the cluster size is set to be 10 for the Parallel

algorithm. This cluster size is bigger than the one used in Decomp algorithm. The

reason being that the size of the sub-problem is constant for the Parallel algorithm,

using a bigger cluster will not result in intractable sub-problems. We want the cluster

size to be as big as possible while keeping the sub-problems solvable in reasonable

time duration, thus a cluster size of 10 is used. For the sub-problems in Step 2, the

GA+FixedPath algorithm is found to be most suitable. The server we used to conduct

our experiments has two CPU cores. Thus the sub-problems can be solved in parallel,

two problems at a time.

We first show the comparison between the Decomp algorithm and Parallel

algorithm, in terms of both solution quality and solution time. Table 11 summarizes

the results for the scenarios of 20 trains. Other experiment parameters are the same as

in Section 5.2. As expected, the solution quality of the Parallel algorithm is worse

than the one for the Decomp algorithm, since the sub-problems are solved

independently. However, the solution time of Parallel algorithm is less. And when the

number of trains increases, the gap between the solution times becomes significant.

 52

Table 11 Comparison between Decomp and Parallel algorithm (20 trains)

Total Delay (minutes) CPU Time (seconds)

Decomp Parallel Decomp Parallel

87.40 101.09 1518.50 596.6

 Table 12 shows the experimental results of the Parallel algorithm for scenarios

of 20, 30 and 40 trains. For 30 and 40 trains, neither the Decomp nor PureGA

algorithm could solve the problem in a reasonable amount of time. While being able

to return a better solution than the Greedy algorithm, the solution times of the Parallel

algorithm do not increase as rapidly as for the Decomp algorithm.

Table 12 Computational results (large network)

 Total Delay (minutes) Comparison CPU Time (seconds)

 Parallel Greedy Greedy/Parallel Parallel Greedy

20 trains 101.09 153.71 1.52 596.6 Negligible

30 trains 182.29 251.79 1.38 1782.41 negligible

40 trains 279.60 333.81 1.19 2411.77 negligible

7 Dynamic Scheduling

7.1 Dynamic Algorithm

So far, all the problems discussed are for the static scheduling problem. For the

static scheduling problem, the arrival time information for all trains is known before

solving the problem. However, in reality, at the time the first few trains enter the

network, the information about the arrival time of the later trains may not be known in

advance. In dynamic scheduling, the information of only arrived trains is considered

known. Then the schedule of the new train and the trains currently in the network

 53

should be generated, given no information of later trains.

In the environment of dynamic scheduling, the time constraint to generate each

schedule is very tight. From the moment the information of the new arriving train is

known, to the moment the schedule of the new train needs to be executed, the time

constraint can be rather tight. Given this tight time constraint, it is normally not

possible to re-optimize the whole schedule of all the trains in the network. Next, we

present an algorithm, called Dynamic, which uses the idea of vertical decomposition

and sequential optimization.

When the new train enters the network, the paths of the existing trains and

precedence rules among those trains are all determined by the previous schedules. The

fastest way to generate a schedule is to fix the paths and precedence rules for all the

existing trains and only generate the path for the new train and the precedence rule

between this new train and the existing trains. Given no information about later trains,

when a new train enters the network, the best schedule is obtained by optimizing the

paths and precedence rules for all trains, given the current location of the existing

trains in the network. Re-optimizing the paths and precedence rules for all the trains

in the network gives the best schedule with regard to all the current trains but doing so

takes too much computational time. On the other hand, optimizing the path and

precedence rule for only the new train requires the least time, but the solution quality

is worse. If we fix the paths and precedence rules for some of the existing trains, and

optimize the paths and precedence rules for the rest of the existing trains, altogether

with the new train, we may achieve a better balance between the solution quality and

solution time.

Step 1: Record the locations of the existing trains in the network as the new train

enters the network.

Dynamic Algorithm

Step 2: Determine which trains of the existing trains are free to be re-scheduled.

Step 3: Fix the paths and precedence rules of the existing trains, which are not to be

re-scheduled, as previously determined.

Step 4: Optimize the paths and the precedence rules of the existing trains which are to

 54

be re-scheduled, together with the newly entered train.

There are two details of the algorithm that need further consideration. In Step 2

of the algorithm, we need to determine how many and which of the existing trains are

to be re-scheduled. The more trains to be re-scheduled, the better the solution quality

and the longer the solution time is. And in Step 4, we have a standard train scheduling

problem. We need to determine which algorithm to use to solve the train scheduling

problem.

7.2 Experimental Results – Small Networks

We first demonstrate the performance of the Dynamic algorithm by testing it on a

small network. The small network illustrated in Figure 3 is used. The train speed is

equally likely to be 0.75, 1, 1.25 and 1.5 miles/minute and the length of each train is

equally likely to be 0.189 and 1.136 miles. The arrivals of the trains in each direction

follow a Poisson Process with an inter-arrival time of 9 minutes.

For Step 2 of the algorithm, we are going to test two scenarios. In scenarios 1, we

fix the paths and precedence rules of all existing trains. Thus the train scheduling

problem in Step 4 only determines the path of the newly entered train and the

precedence rule between the newly entered train and all existing trains. In scenarios 2,

we let one of the existing trains be re-scheduled. The existing train which is closest to

the entering point of the new train is chosen to be re-scheduled. Intuitively, the train

closest to the new train might have great impact on the path of the new train, thus by

making the path of the closest train flexible, a better overall schedule might be

generated. For Step 4 of the algorithm, the FlexiblePath formulation is used to solve

the train scheduling problem.

 55

Table 13 Computational results of Dynamic algorithm (small network)

 Average Delay Per Train (minutes) Average CPU Time Per Iteration (seconds)

Total trains Dynamic-1 Dynamic-2 Greedy Dynamic-1 Dynamic-2 Greedy

20 5.64 4.35 11.31 0.08 0.81 negligible

40 7.27 4.85 16.51 0.11 0.87 negligible

60 6.78 4.53 18.02 0.11 0.83 negligible

80 8.37 6.36 21.71 0.13 0.86 negligible

100 8.46 6.30 19.30 0.15 2.01 negligible

Table 13 shows the computational results of the Dynamic algorithm. We compare

the Dynamic algorithm with the Greedy algorithm. The Greedy algorithm is a

one-step look-ahead heuristic, thus the Greedy algorithm can solve the dynamic

scheduling problem. In Table 13, Dynamic-1 refers to the scenario where paths and

precedence rules of all existing trains are fixed, whereas, Dynamic-2 refers to the

scenario where the path and precedence rule of one of the existing trains can be

optimized, together with the newly entered train. Both Dynamic-1 and Dynamic-2

generate schedules with much smaller train delays than the schedules generated by the

Greedy algorithm. The schedules from the Dynamic-2 algorithm achieve lower delays

than the schedules from the Dynamic-1 algorithm, as expected. Every time a new

train enters the network, we need to solve a scheduling problem which schedules the

new train and the existing trains. The CPU times in Table 13 denote the average time

taken to solve the scheduling problem every time a new train enters. Since in

Dynamic-2, we have a bigger scheduling problem to solve in Step 4 of the algorithm,

the increase in the CPU time of Dynamic-2, as compared to Dynamic-1, is expected.

And the CPU time exponentially increases, as we make more existing trains flexible

to be re-scheduled. We can conclude that the Dynamic algorithm works very well on

small networks; it takes very little time to dynamically generate good schedules.

 56

7.3 Experimental Results – Large Networks

Now we test the performance of the Dynamic Algorithm on a relatively large

network. The same network as in Section 5 is used. The network is about 49.3 miles

long. Trains are traveling both eastbound and westbound. The arrival pattern of new

trains in each direction follows a Poisson Process with an inter-arrival time of 15

minutes. As before, the train speed is equally likely to be 0.75, 1, 1.25 and 1.5

miles/minute and the length of each train is equally likely to be 0.189 and 1.136 miles.

The large network has significantly more nodes than the small networks, thus we

expect the solution time of the Dynamic algorithm to increase exponentially, as

compared to the case of small networks. To the reduce problem size of the train

scheduling problem in Step 4 of the algorithm, instead of using the FlexiblePath

formulation to solve the train scheduling problem, the LtdFlePath algorithm is used to

solve the train scheduling problem. Preliminary results show that, for this relatively

large network, the Dynamic-2 algorithm, which frees one of the existing trains to be

re-scheduled, cannot generate a schedule in a short time constraint that is required by

the dynamic environment. Thus we only compare the performance of the Dynamic-1

algorithm with the Greedy algorithm. The results are shown in Table 14.

Table 14 Computational results of Dynamic algorithm (large network)

 Average Delay Per Train (minutes) Average CPU Time Per Iteration (seconds)

Total trains Dynamic-1 Greedy Dynamic-1 Greedy

20 4.82 8.86 4.1 negligible

40 5.58 10.89 6.87 negligible

60 5.39 8.85 4.99 negligible

80 5.45 10.57 5.89 negligible

100 6.06 9.87 8.83 negligible

 57

Like for small networks, the Dynamic algorithm outperforms the Greedy

algorithm for large networks. The average solution time when a new train enters the

network is well under 10 seconds. Thus the Dynamic algorithm can be applied in real

time.

8 Implementation

This project addresses the area of Commercial Goods Movement and

International Trade. Freight train transportation is a cost effective way to move goods

from ports to inland destinations. According to the Association of American Railroads,

more than 40% of all freight is transported by trains in the US. Given the fact that the

freight railroad industry is already running without much excess capacity, better

planning and scheduling tools are needed for railroad management. In particular, this

research focuses on solving the freight train scheduling and dispatching problems.

The optimization based scheduling heuristics developed in this research are tested

on real-world rail networks in the Los Angeles area. The performance of the proposed

heuristics is compared with the performance of existing heuristics in the literature.

The heuristics developed outperforms the existing heuristics. The implementation of

our heuristics will require suitable optimization software tools such as CPLEX, and

access to railway data such as train lengths, train speeds, headway regulations and

ready times of trains.

9 Conclusion

According to a study conducted by the Association of American Railroads, trains

move about 40% of all freight in the US. And the demand for rail transportation will

increase rapidly in the near future. Given the fact that the freight railway industry is

already running without much excess capacity, better planning and scheduling tools

are needed to effectively manage the scarce resources, in order to cope with the

 58

rapidly increasing demand for railway transportation. Train scheduling and

dispatching is one important sub-problem of the freight railroad management problem.

In this report, we propose heuristics for both the static and dynamic scheduling of

freight trains. In the literature of static scheduling, most of the research simplifies the

rail network; our heuristics can work on any complex rail network. We first introduce

exact methods for solving the static train scheduling problem. Then we present few

heuristics which can significantly reduce the solution time, yet produce a satisfactory

solution quality. We also compare our heuristics with three existing procedures. Our

heuristics are able to produce better solutions in terms of minimizing delay, in a

reasonable amount of time. For static scheduling in large networks, two heuristics

based on the idea of decomposition are proposed. Both algorithms significantly

outperform existing algorithms. Then we move to dynamic scheduling of freight

trains. While the literature on dynamic scheduling is very limited, a heuristic based on

sequential optimization is proposed. Experimental results show that the Dynamic

algorithm is able to reduce delay by at least 40% of existing algorithm on

representative rail scenarios. For future work, we plan to use techniques like queuing

theory to analyze the delay structure of some typical simple track configurations. The

results of the theoretic analysis might serve as the guidance for smarter greedy

heuristics.

 59

References

Adenso-Diaz, B., Oliva Gonzalez, M., & Gonzalez-Torre, P. (1999). On-line timetable
rescheduling in regional train services, Transportation Research Part B, 33, 378–398.

Ahuja, R. K., Cunha, C. B., & Sahin, G. (2005). Network models in railroad planning and
scheduling. In H. J. Greenberg & J. C. Smith (Eds.), TutORials in Operations Research, 54–101

Brown, D.E., Huntley C.L., Markowicz, B.P., & Sappington D.E. (1992). Rail network routing
and scheduling using simulated annealing, in Proceedings of the 1992 IEEE International
Conferenceon Systems, Man, and Cybernetics, 1, 589–592.

Brannlund, U., Lindberg, P. O., Nou, A., & Nilsson, J. E. (1998). Railway timetabling using
lagrangian relaxation, Transportation Science, 32, 358–369.

Caprara, A., Kroon, L. G., Monaci, M., Peeters, M., & Toth, P. (2006). Passenger railway
optimization. In C. Barnhart & G. Laporte (Eds.), Handbooks in Operations Research and
Management Science, 14, 129–187.

Caprara, A., Fischetti, M., & Toth, P. (2002). Modeling and solving the train timetabling problem,
Operations Research, 50, 851–861.

Carey, M. (1994a). A model and strategy for train pathing with choice of lines, platforms, and
routes, Transportation Research Part B, 28 (5), 333-353.

Carey, M. (1994b). Extending a train pathing model from one-way to two-way track,
Transportation Research Part B, 28 (5), 395-400.

Carey M. & Lockwood, D. (1995). A model, algorithms and strategy for train pathing, Journal of
Operation Research Society, 46, 988-1005.

Cordeau, J., Toth, P. & Vigo, D. (1998). A survey of optimization models for train routing and
scheduling, Transporation Science, 32 (4), 380-404.

Crainic, T. G. (2003). Long-haul freight transportation. In R. W. Hall (Ed.), Handbooks in
Transportation Science, 56, 451–516.

D’Ariano, A., Pacciarelli, D., & Pranzo, M. (2007). A branch and bound algorithm for scheduling
trains in a railway network, European Journal of Operational Research, 183 (2), 643–657.

D’Ariano, A., (2008). Improving real-time train dispatching: models, algorithms and applications,
Ph.D. Thesis, Technische Universiteit Delft.

Dessouky, M.M. & Leachman, R.C. (1995). A simulation modeling methodology for analyzing

 60

large complex rail networks, Simulation, 65, 131-142

Dessouky M.M., Lu, Q. & Leachman, R.C. (2002). Using simulation modeling to assess rail track
infrastructure in densely trafficked metropolitan areas, in Proceedings of the 2002 Winter
Simulation Cconference, 725-231.

Dessouky M., Lu, Q., Zhao, J. & Leachman, R.C. (2006). An exact solution procedure for
determining the optimal dispatching times for complex rail networks, IIE Transaction, 28,
141-152.

Dorfman, M.J. & Medanic, J. (2004). Scheduling trains on a railway network using a discrete
event model of railway traffic, Transportation Research Part B, 38, 81-98.

Garey, M. R., & Johnson, D. S. (1979). Computers and Intractability: A Guide to Theory of
NP-Completeness, New York: Freeman.

Ghoseiri, K., Szidarovszky, F. & Asgharpour, M. J. (2004). A multi-objective train scheduling
model and solution, Transportation Research Part B, 38, 927–952.

Higgins, A., & Kozen, E. (1997). Heuristic techniques for single line train scheduling, Journal of
Heuristics, 3, 43-62.

Higgins, A., Kozan, E., & Ferreira, L. (1996). Optimal scheduling of trains on a single line track,
Transportation Research Part B, 30, 147–161.

Huntley C.L., Brown, D.E., Sappington D.E., & Markowicz, B.P. (1995). Freight routing and
scheduling at CSX transportation, Interfaces, 25 (3), 58-71.

Jovanovic, D., & Harker, P. T. (1990). A decision support system for train dispatching: an
optimization-based methodology, Journal of the Transportation Research Forum, 31, 25–37.

Jovanovic, D., & Harker, P. T. (1991). Tactical scheduling of train operations: The SCANI system,
Transportation Science, 25, 46–64.

Jacobs, J. (2004). Reducing delays by means of computer-aided ‘on-the-spot’ rescheduling. In J.
Allan, C. A. Brebbia, R. J. Hill, G. Sciutto, & S. Sone (Eds.), Computers in Railways IX, 603–612.
Southampton, UK: WIT Press.

Kraay, D. R., & Harker, P. T. (1995). Real-time scheduling of freight railroads, Transportation
Research Part B, 29, 213–229.

Kraay, D. R., Harker, P. T., & Chen, B. (1991). Optimal pacing of trains in freight railroads: model
formulation and solution, Operations Research, 39, 82–99.

 61

Leachman, R. C. (2002) Los Angeles – inland empire railroad main line advanced planning study,
prepared for the Southern California Association of Governments, contract number 01-077, work
element number 014302, October 1, 2002.

Lu, Q., Dessouky M. & Leachman, R.C. (2004). Modeling train movements through complex rail
networks, ACM Transactions on Modeling and Computer Simulation, 14 (1), 48-75.

Mascis, A., Pacciarelli, D., & Pranzo, M. (2001, June). Train scheduling in a regional railway
network, in Preprints of the 4th Triennial Symposium on Transportation Analysis, 487–492. Sao
Miguel, Portugal.

Nachtigall, K. & Voget, S. (1996). A genetic algorithm approach to periodic railway
synchromization, Computer and Operation Research, 23 (5), 453-463.

Nachtigall, K. & Voget, S. (1997). Minimizing waiting times in integrated fixed interval
timetables by upgrading railway tracks, European Journal of Operational Research, 103, 610-627.

Ping, L., Axin, N., Limin, J. & Fuzhang, W. (2001). Study on intelligent train dispatching, in
Proceedings of 2001 Intelligent Transportation Systems Conference, 949-953.

Rodriguez, J. (2007a). A constraint programming model for real-time train scheduling at junctions,
Transportation Research Part B, 41 (2), 231–245.

Ruan, W., Giras, T.C., Lin, Z. & Ou, Y. (2003). ASCAP parameter determination by an intelligent
genetic algorithm, in Proceedings of the 2003 IEEE/ASME Joint Rail Conference, 133-141.

Sahin, I. (1999). Railway traffic control and train scheduling based on inter-train conflict
management, Transportation Research Part B, 33, 511–534.

Salim, V. & Cai, X. (1995). Scheduling cargo trains using genetic algorithms, in ICEC’95,
224-227.

Szpigel, B. (1973). Optimal train scheduling on a single track railway. In M. Ross (Ed.),
Operational Research ’72, 343–352. Amsterdam, the Netherlands.

Tornquist, J., & Persson, J. A. (2007). N-tracked railway traffic re-scheduling during disturbances,
Transportation Research Part B, 41 (3), 342–362.

Wegele, S. & Schnieder, E. (2004). Dispatching of train operations using genetic algorithms,
CASPT conference paper.

Zhou, X., & Zhong, M. (2005). Bicriteria train scheduling for high-speed passenger railroad
planning applications, European Journal of Operational Research, 167, 752–771.

 62

Zhou, X., & Zhong, M. (2007). Single-track train timetabling with guaranteed optimality:
branch-and-bound algorithms with enhanced lower bounds, Transportation Research Part B, 41,
320–341.

 63

Appendix A: Complete set of results for sample network
Four trains case:

Six trains case:

4 trains Total Delay (minutes)

(CPU time (seconds))

 FlexiblePath LtdFlePath GA+FixedPath PureGA FixedPath Greedy

Scenario 1 7.53

(256.68)

7.89

(3.05)

9.11

(17.08)

9.84

(0.86)

12.00

(0.02)

22.09

(negligible)

Scenario 2 7.64

(214.82)

7.82

(2.53)

8.78

(13.21)

10.20

(0.95)

12.91

(0.02)

28.75

(negligible)

Scenario 3 6.18

(351.94)

6.63

(2.70)

7.73

(13.79)

8.19

(0.95)

10.30

(0.02)

19.57

(negligible)

Scenario 4 6.47

(280.49)

6.76

(2.27)

8.15

(13.10)

8.53

(0.73)

12.25

(0.02)

24.31

(negligible)

6 trains Total Delay (minutes)

(CPU time (seconds))

 LtdFlePath GA+FixedPath PureGA FixedPath

Greedy

Scenario 1 14.10

(1067.98)

16.40

(93.09)

19.20

(5.52)

19.93

(0.11)

47.51

(negligible)

Scenario 2 16.27

(1662.18)

19.79

(78.11)

23.06

(5.58)

25.06

(0.09)

53.51

(negligible)

Scenario 3 9.58

(934.95)

11.71

(58.84)

13.96

(3.50)

15.64

(0.06)

37.51

(negligible)

Scenario 4 10.43

(266.72)

12.99

(57.02)

15.84

(3.24)

19.18

(0.05)

39.08

(negligible)

 64

Appendix B: Trackage configuration of rail network from Indio,

CA to Colton, CA

Colton station

0 1.6 8.2

13.95

18.55

21.25

22.45

24.75

28.05

28.75

30.45

31.95

34.55

35.85

38.55

40.95

42.45

44.95

47.45

Indio station

49.3

	1 Introduction
	2 Literature Review
	2.1 Tactical Scheduling
	2.2 Operational Scheduling
	2.3 Real Time Dispatching
	2.4 Gap

	3 Research Accomplishments
	4 Problem Formulation
	4.1 Network Construction
	4.2 Fixed Path Formulation
	4.3 Flexible Path Formulation
	4.4 Experimental Results

	5 Algorithms for Small Networks
	5.1 LtdFlePath Algorithm
	5.2 Genetic Algorithm and Fixed Path Formulation
	5.3 Pure Genetic Algorithm
	5.4 Greedy Algorithm
	5.5 Experimental Results

	6 Algorithms for Large Networks
	6.1 Decomp Algorithm
	6.2 Experimental Results
	6.3 Parallel Algorithm
	6.4 Experimental Results

	7 Dynamic Scheduling
	7.1 Dynamic Algorithm
	7.2 Experimental Results – Small Networks
	7.3 Experimental Results – Large Networks

	8 Implementation
	9 Conclusion

