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Abstract 
 
In the U.S., freight railways are one of the major means to transport goods from ports 
to inland destinations. According to the Association of American Railroad’s study, 
rail companies move more than 40% of the nation’s total freight. Given the fact that 
the freight railway industry is already running without much excess capacity, better 
planning and scheduling tools are needed to effectively manage the scarce resources, 
in order to cope with the rapidly increasing demand for railway transportation. Freight 
train scheduling and dispatching is one important aspect of freight railroad 
management. This research tries to develop algorithms for static and dynamic 
scheduling of freight trains. Two optimization based algorithms are first proposed to 
solve the static train scheduling problem for small rail networks. The proposed 
LtdFlePath and GA+FixedPath algorithms are able to outperform two existing 
heuristics, PureGA and Greedy algorithm, in terms of railway total train delay. And 
the CPU solution times of the proposed heuristics are within a reasonable time 
constraint. Then two decomposition based heuristics, the Decomp and Parallel 
algorithm, are developed to solve the train scheduling problems for larger networks. 
Both algorithms significantly outperform existing algorithms. Finally, we move to 
dynamic scheduling of trains. We present one heuristic which solves the dynamic 
scheduling problem for both small and large networks. This Dynamic algorithm is 
able to reduce delay by at least 40% of existing algorithms on representative rail 
scenarios. 
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1 Introduction 

    The demand for various methods of transportation has increased due to the 

emerging global economy. Imported goods from other countries usually enter the 

United States through ports and then transported inland. Every year there are more 

than 100 million tons of goods transferred through the Ports of Los Angeles and Long 

Beach and this number will double by 2020 (Leachman, 2002). Train transportation is 

a cost effective way to move cargo from the ports to distant inland destinations. 

According to the Association of American Railroad’s study, rail companies move 

more than 40 percent of the nation’s total freight. As the total quantity of freight 

increases, by year 2020, the railroad industry expects to see demand increases as 

much as double the amount the industry is experiencing today. 

     Given the fact that the US freight railroad industry is already running without 

much excess capacity, the freight railroad industry has to either expand its 

infrastructure or manage its current operations more efficiently to meet the anticipated 

increase in demand. It is extremely expensive to build more rail tracks and in some 

places like Los Angeles County, due to the limited space, it is almost impossible to 

expand the current track. Better planning and scheduling methodologies become an 

effective solution to the problems caused by increasing transportation demand under 

tight capacity constraint. 

     Freight railroad management is a complicated problem as a whole. Thus, the 

overall management problem is usually decomposed into several subproblems. They 

are: 

 Crew scheduling

 

. The crew assignments to each district, line and train need to be 

optimized such that the crew costs and the delays due to the unavailability of 

crews are minimal. 

Blocking problem. The shipments are classified into different blocks according to 

their origins and destinations. The blocking plans for the shipments are optimized 
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to reduce the total transportation and handling cost. 

 Yard location

 

. This problem is closely related to the blocking problem. The yards 

are the places where the old cargo blocks are re-distributed into new blocks and 

transferred to different trains. 

Train routing

 

. Given the assignment of the cargo blocks, the routes and departure 

times of the trains are determined to minimize transportation cost and delays. 

Locomotive scheduling

 

. Once the train routes are determined the locomotives are 

assigned to the trains. The locomotive assignments have to satisfy the 

pulling-power requirement and constraints like fueling and maintenance 

constraints. 

Train scheduling and dispatching

The most studied subproblem in the literature is the blocking problem. This 

report focuses on the problem of freight train scheduling and dispatching. Recently, 

the train scheduling problem has received increased attention by academic researchers 

and industry alike due to two reasons. First, the emergence of affordable computers 

with very fast processing speed makes it possible to solve relatively large scale train 

scheduling problems using a computer-based optimization model. Second, due to the 

increased usage of rail as a mode of transportation, more and more trains are traveling 

on limited track resources. Thus a good schedule for the trains becomes vital in order 

to prevent the melt-downs of the rail network. In the case where trains are not so 

dense on the network, a not-so-well-designed schedule might not perform much worse 

than the optimal schedule. However when the networks are close to saturation, a well 

designed schedule can make a significant difference in minimizing the delay. 

. Operational scheduling of the trains determines 

in detail the sequence of the tracks the train travels and the specific locations on 

the track where the trains need to stop to wait for the tracks ahead to be cleared. 

The objective of the scheduling and dispatching problem is to safely guide the 

trains through the network to their destinations so that the delays and deviations 

from the planned timetable of the trains are minimized. 

     In urban areas like Los Angeles County, the trackage configurations are usually 

very complex, compared to rural areas where most trackage configurations are single 
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tracks with sidings or double tracks. A typical complex network contains triple tracks 

and complex junction intersections. The problem of finding the optimal deadlock-free 

dispatch times that minimizes the delay for trains in such a general network is known 

to be NP-hard (Garey & Johnson, 1979).  

      As opposed to passenger train scheduling, freight train scheduling might need 

a different approach. The passenger train schedules are relatively static and cyclic. 

Passenger train operators normally spend months before their operations to develop a 

robust schedule. And this schedule is executed cyclically on a day-to-day basis. In 

passenger train scheduling the quality of the schedule is the most important factor, 

since the time to develop the schedule is not constrained. Whereas in freight train 

scheduling, the scheduling procedure is initiated very close to the time of the 

departure of train. The short scheduling time is due to the fact that the departure time 

of the train is mainly initiated by the completion of loading the containers onto the 

train. And the ready time of the containers to be loaded is very difficult to predict. 

This ready time depends on the operations of the ports and the arrival time of the 

cargo ships. In most cases, the departure times of trains are known just one day before 

its departure. And it is not unusual that freight trains depart without schedules 

beforehand. Hence, freight train scheduling focuses on both the solving time and the 

solution quality.  

     This project focuses on developing optimization-based heuristics for both static 

and dynamic freight train scheduling on a complex train network. In order to measure 

the performance of the algorithms compared to the optimal solution, a small network 

was constructed and the optimal or close to optimal solutions were obtained to 

construct a benchmarking tool for any proposed algorithms.    

     The rest of the report is organized as follows. In Section 2, a literature review of 

the train scheduling problem is presented. Section 3 summarizes our main research 

accomplishments. Section 4 formally introduces the problem formulation of static 

scheduling. Section 5 compares various existing and proposed algorithms for solving 

a static scheduling problem for a relatively small to medium size but not necessarily 

simple network. A heuristic is proposed to solve the static scheduling problem for 
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relatively large scale networks in Section 6. In Section 7, we move to dynamic 

scheduling of trains and present a heuristic which is based on sequential optimization. 

The conclusion of this project and future research plan are described in Section 8. 

 

2 Literature Review 

The train scheduling problem can be categorized into static and dynamic 

scheduling. For static scheduling, we have information of all the trains before solving 

the problem. This information includes train arrival times, train lengths, train speeds 

and so on. For dynamic scheduling, we may only know the information of the trains 

when they enter the network. The schedule of the newly entered train is based on the 

information of the trains currently in the network. All the information of later arriving 

trains is unknown.   

The static train scheduling problem can be divided into two sub-categories 

according to two different time perspectives: off-line timetabling and real time 

dispatching. Off-line timetabling aims to develop detailed timetables for the trains 

before the departure of the train. The trains travel on the rail network according to the 

timetables. The off-line timetabling problems can be further categorized according to 

the type of the trains. Passenger train scheduling belongs to the domain of tactical 

scheduling and freight train scheduling is often referred as operational scheduling in 

the literature. The trains may not always follow the off-line timetables. There are 

many possible incidents that can cause the extra delay of trains at some point in the 

network. When a single train deviates from its original timetable, other trains in the 

network will be influenced. The delay propagates through the network. The purpose 

of real time dispatching is to minimize the unplanned delays in the network and to 

restore the railway traffic to the planned timetables.  

Cordeau et al. (1998) published a comprehensive survey paper on both train 

routing and off-line scheduling. More recently, Caprara et al. (2006) presented a 
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review on passenger railway optimization which focused more on the European 

environment. On the other hand, Ahuja et al. (2005) reviewed network models for 

railroad planning and scheduling. Their review focused on the freight railroad in 

North America. Next we review the relevant literature by classifying them into three 

categories: tactical scheduling, operational scheduling and real time dispatching. 

 

2.1 Tactical Scheduling 

    Tactical scheduling is usually carried out several months before the actual 

operations. The objective of tactical scheduling is to design the optimal schedules that 

satisfy the demand of the various stakeholders for the trains (in most cases, passenger 

trains). Models and algorithms for tactical scheduling usually perform optimal slot 

allocations for each route or even block section without a strict time limit of 

computation (D’Ariano 2008). Scheduling is usually done on a large traffic network 

and once the optimal schedules are obtained, it can be used for several years. 

    Szpigel (1973) describes one of the earliest scheduling models. The model solves 

the scheduling problem on a single track with meet/pass points. Szpigel formulates 

the problem similar to the job shop problem with a branch and bound approach used 

to solve the model. A single track railroad in Brazil is used as the test case. 

    Jovanovic and Harker (1991) propose a system called SCAN for tactical freight 

train scheduling. The system is able to design robust train schedules under stochastic 

operational conditions. The system works with single and double tracks and develops 

daily schedules. An initial schedule is needed and the feasibility of this initial 

schedule is verified by solving a linear MIP problem, using a branch and bound 

procedure. The train movements and interactions are modeled using a simulation 

approach. The infeasible schedules are modified into feasible schedules by a series of 

automatic updates. The authors claim that the implementation of the SCAN system at 

a major U.S. railroad has helped the company rethink the role of careful scheduling in 

light of increasing competitive pressures. 
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     Brannlund et al. (1998) introduce an optimization model which maximizes the 

profit associated with running different types of services at specific times. The 

problem is approached by formulating a large integer programming problem which is 

solved by Lagrangian relaxation where the track capacity constraints are dualized. For 

each single train, the problem is decomposed into a shortest path problem on a 

time-space network. Trains are dispatched through the network sequentially and a 

priority list is used to resolve the conflicts. Computational experiments show that 

feasible solutions can be obtained in a reasonable amount of time and feasible 

solutions are within a few percent of the lower bound. 

    Capra, Fischetti, Toth (2002) solve the train scheduling problem of a single, 

one-direction track connecting two major stations with several intermediate stations in 

between. They formulate a linear integer programming model based on a graph 

theoretic formulation and apply Lagrangian relaxation to find a good solution. The 

relaxation is embedded in a heuristic algorithm which consists of three parts: 

constructive, refining and fixing. The algorithm is implemented and tested using 

actual data and highly congested instances. 

    Ghoseiri et al. (2004) develop a multi-objective optimization model for the 

passenger train-scheduling problem on a complex railroad network. The objective 

includes minimization of both the fuel consumption and the total passenger-time. The 

solution procedure consists of two steps. The Pareto frontier is computed and then the 

multi-objective optimization is performed using a distance-based method. 

    Zhou and Zhong (2005) formulate an integer programming problem to solve the 

multi-objective train scheduling problem. The objectives the authors consider are: (1) 

minimizing expected waiting time for high speed trains and (2) minimizing total 

traveling time for high-speed and medium-speed trains. A branch-and-bound 

algorithm with dominance rules is developed to compute Pareto-optimal schedules. A 

beam search algorithm with utility evaluation rules is proposed to generate a 

representative set of non-dominated solutions. The proposed algorithm is tested on a 

double-track intercity passenger corridor between Beijing and Shanghai. 

    Zhou and Zhong (2007) optimally solve a single-track train timetabling problem. 
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The scheduling problem is formulated as a generalized resource-constrained project 

scheduling problem. The track segments and stations are modeled as resources. A 

branch and bound procedure is used to find the optimal solution. Three procedures are 

proposed to reduce the search space: a Lagrangian relaxation based lower bound rule 

is used to relax segment and station headway capacity constraints, an exact lower 

bound rule to estimate the least train delay, and an upper bound constructed by a beam 

search heuristic method. Numerical experiments are conducted to compare the 

performance of the proposed three search space reduction procedures.  

      

2.2 Operational Scheduling 

    The biggest distinction between operational scheduling and tactical scheduling is 

the duration of the scheduling phase. As opposed to tactical scheduling, which is done 

without a strict time constraint, operational scheduling has a much shorter duration. A 

typical operational schedule is created in a few hours. It is common that the train 

leaves the station without a schedule. Operational scheduling is mostly used in the 

North American and Australian freight rail industry. Due to the time constraint of the 

scheduling phase, exact optimal solution procedures are not applicable. Thus 

heuristics are the most common approaches for operational scheduling. 

    Kraay et al. (1991) consider a scheduling and pacing problem which minimizes 

both the fuel consumption and travel delays. Instead of assuming trains run at a fixed 

speed, the model considers variable speeds of the trains. A nonlinear mixed integer 

program is formulated with a convex objective function. Branch-and-bound and a 

rounding heuristic are proposed to solve the scheduling and pacing problem. 

Numerical experiments show that the fuel consumption can be reduced in the order of 

5% and the standard deviation in train arrival times can decrease by 19% using this 

approach. 

    Kraay and Harker (1995) propose a model to provide a link between tactical and 

operational scheduling. They propose a non-linear mixed integer programming model 
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to optimize the freight train schedules in real-time. The current positions and relative 

importance of each train are part of the input to the model. The solution of the model 

includes the target time of each train at every important location along the path. The 

solution process first determines the integer variables of the model. Then the 

sub-problem which only has continuous variables is solved. The efficiency and 

efficacy of this algorithm is justified by testing it on a North American railroad 

example. 

    Carey and Lockwood (1995) describe a mathematical model to dispatch trains on 

a one-way single line with sidings and stations. A heuristic is proposed to solve the 

problem by dispatching trains one by one. The number of integer variables is 

significantly reduced. Thus the sub-MIP problem can be solved using commercially 

available optimization software. Several procedures that are based on experienced 

human dispatchers are also proposed to reduce the solving time. Carey (1994a) 

extends the previous model by embedding a route selection mechanism in the 

mathematical model. Carey (1994b) then further expands the model to take two-way 

tracks into consideration. The same heuristic algorithm proposed in Carey and 

Lockwood (1995) still applies in such networks. 

    Huntley et al. (1995) develop a system called computer-aided routing and 

scheduling system (CARS) for CSX transportation. The system optimizes the routing 

and scheduling problem interactively. The CARS system uses simulated annealing to 

perform a global search on the minimum cost solution.  

    Higgins et al. (1996) formulate a non-linear mixed integer program to solve the 

scheduling problem on a long single-track line. The lower and upper limit of the train 

velocity on each track segment is considered. The objective is to minimize both the 

fuel consumption and overall tardiness. The train priorities, current train delays and 

expected remaining delays of the trains are criterions for conflict resolution. In a 

following paper, Higgins and Kozan (1997) extend their work to simultaneously 

decide the number and locations of the sidings and the optimal schedule for a 

single-track line.  

     Ping et al. (2001) use genetic algorithms to adjust the departure order of the 
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trains on a double track corridor. Simulation results of a case study on 

Guangzhou-Shenzhen high-speed railway are presented. 

     Lu et al. (2004) introduce train acceleration and deceleration rates into the 

scheduling model. The model also considers a very complex trackage configuration 

with multi-tracks and complicated crossings. A simulation model is developed and a 

greedy construction heuristic is used to dispatch the trains in the simulation model. 

The simulation model is tested on a real network from Downtown Los Angeles to the 

Eastern Inland Empire area. The results obtained from the simulation model are 

validated against actual train running times, and are found to be within a few 

percentage of the actual times. 

     Dorfman and Medanic (2004) propose a discrete-event model to schedule 

traffic on a railway network. This approach is fundamentally different from the 

mathematical programming methods. The discrete-event model is computationally 

efficient and generates near optimal schedules with respect to a number of 

time-of-travel-related criteria. 

     Wegele and Schneider (2004) propose an algorithm for fast construction of 

timetables. Branch and bound is used to obtain the initial solution and a genetic 

algorithm is used to iteratively improve the solution. The objective of the problem is 

to minimize the annoyance to passengers.  

     Sahin et al. (2004) propose to model the train dispatching problem as a 

multi-commodity flow problem on a space-time network. Time is discretized with 

respect to equal-length time periods. Most of the practical constraints can be 

considered in the model without changing the model structure. An integer 

programming based heuristic is proposed to solve the problem. The proposed solution 

procedure is tested on extensive numerical experiments. The results of the IP-based 

heuristic are compared to two other heuristics proposed by the authors: a 

simulation-based construction heuristic and a greedy enumeration heuristic. The 

solution quality of the IP-based heuristic is very good and the solving time is also 

competitive compared to the other heuristics. 

     Dessouky et al. (2006) propose a branch and bound procedure to solve the 
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dispatching problem for a complex rail network. Adjacent propagation and feasibility 

propagation is used to reduce the search space of the branch and bound procedure. 

The branch and bound procedure is guaranteed to find the optimal solution. The 

proposed solution procedure is tested on a portion of the rail network in Los Angeles 

County. The proposed solution is able to significantly reduce the number of nodes to 

be explored compared to the number of nodes explored by the CPLEX solver on the 

same problem. 

 

2.3 Real Time Dispatching 

    Off-line timetables produce a robust schedule to execute. However, in real 

railway operations, perturbations can happen. Significant perturbations would create 

serious delay propagation. Technical failures might be one cause of the perturbation. 

Unavailability of the crew and severe weather conditions are also common causes of 

the unscheduled delay. When deviations from the timetable occur, the dispatcher in 

the traffic control center needs to quickly solve the unplanned conflicts between the 

trains. Common resolutions include changing the train order at busy junctions, 

changing the dwell time at the stations and changing the train speeds. Sometimes 

rerouting of the trains is also considered. The problem is usually solved regionally, 

due to the time constraint. The output of the real time dispatching is a locally optimal 

solution and in many cases, just a feasible solution. 

     Sahin (1999) solves the dispatching problem by proposing an algorithm that is 

constructed on immediate inter-train conflict resolution. The immediate conflict is 

solved by choosing the solution that causes less total consequential delay on the 

network. The algorithm considers the effects of potential conflicts by using a 

look-ahead method. Numerical examples show the heuristic proposed is able to 

produce solutions that are as good as the exact solutions. And the heuristic takes less 

than one percent of the time of the exact solution method. 

     Adenso-Diaz et al. (1999) use a heuristic to solve the MIP formulation of the 
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real time dispatching problem. The heuristic is based on backtracking and reduces the 

search space by elimination of certain branches which are determined to not generate 

good solutions. The quality of the solution is determined by the priority of each 

service, the passengers transported and the delays of the trains. A tool based on a 

proposed heuristic has been implemented for the Spanish National Railway Company.  

Mascis et al. (2002) propose to solve the real time scheduling problem using an 

alternative graph formulation which is generalized from the job shop scheduling 

problem with blocking and no-wait. They show several key properties, from the 

literature on the job shop with unlimited buffers, do not hold in the blocking and 

no-wait cases. And some ideas used to develop the branch and bound algorithm can 

be easily extended from the literature. 

D’Ariano et al. (2007) also formulate the dispatching problem as a huge job shop 

scheduling problem with no-store constraints. They use the branch and bound 

approach to solve the problem. They develop both the dynamic implication and static 

implication rules to reduce the search space. To assess the performance of the 

proposed procedure, they implement two local simple dispatching rules which 

simulate the typical behavior of a human dispatcher, and a greedy heuristic based on 

global information. The computational experiments, which are based on a bottleneck 

area of the Dutch railway network, show very promising performance of the proposed 

algorithm in finding a near optimal solution within short computation times. 

Tornquist (2007) formulates and solves a re-scheduling problem on a  

geographically large and fine-grained railway network. The author formulates the 

problem as a MILP and proposes four strategies for solving the problem. Strategy 1 

allows swapping of the track but not for orders, whereas strategy 2 allows swapping 

tracks and also implicit order changes. Strategy 3 allows for a certain number of order 

swaps. Finally strategy 4 allows all possible changes. Experiments on the network of 

the South traffic district in Sweden show that strategy 3 appears to perform well with 

respect to computation time and solution quality. 

Rodriguez (2007) uses constraint programming to solve the routing and 

scheduling of trains travelling through a junction. Three propagation mechanisms are 
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used to prune many non-feasible decisions. Numerical results based on a real junction 

North of Paris show that the proposed method can significantly improve the decisions 

applied by the operator, and the computation time is less than the time required to 

apply the solution in real conditions. 

Real time dispatching is different from operational scheduling in the sense that 

real time dispatching has even tighter constraints on the computation time, normally 

less than three minutes. The scale of the problem is smaller in real time dispatching, 

and in most cases, local near optimal solutions are satisfactory. 

 

2.4 Gap 

    Most of the literature in the domain of operational scheduling focus on small 

scale rail networks. Optimal procedures have been developed for small networks with 

various restrictions. Typical simplification of the network includes one way travelling 

and single line railway configuration. This project explores optimal procedures for 

solving scheduling problems on small networks without simplifying the network. The 

algorithms developed for small networks also serve as benchmarking tools for 

algorithms developed for larger networks. Existing procedures in the literature for 

solving scheduling problems on large networks use either simulation or a heuristic 

approach. This project proposes a decomposition approach for large scale static 

scheduling problems. The large problem is decomposed into smaller sub-problems 

and then the sub-problems are solved by the procedures proposed for smaller 

networks. For dynamic train scheduling, the literature provides very limited 

references. This project tries to solve the dynamic scheduling problem using a 

sequential optimization approach. 
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3 Research Accomplishments  

As mentioned previously, for static scheduling, most exact methods for small 

networks in the literature are done by assuming a simple structure of the network. For 

large scale networks, most of the research in the literature is based on pure 

simulations or simple heuristics. And there is very limited existing work on dynamic 

scheduling of trains in complex rail networks. During the one year of this research 

project, our efforts were mainly concentrated in addressing these gaps. The tasks 

accomplished can be broadly classified as follows. 

 

1. Develop two optimization based static scheduling algorithms for small 

complex rail networks. Use these two algorithms to benchmark 

developed heuristics for larger networks. 

2. Develop two decomposition based static scheduling algorithms for 

large complex rail networks. The large scheduling problem is 

decomposed into smaller sub-problems. Each sub-problem is a 

standard train scheduling problem that can be solved by algorithms 

proposed for small networks. 

3. Propose an algorithm for dynamic scheduling on both small and large 

networks. This dynamic scheduling algorithm uses the idea of 

sequential optimization. The performance of this algorithm is 

benchmarked with the performance of one simulation based heuristic. 

4 Problem Formulation 

4.1 Network Construction 

    The objective of operational scheduling for freight trains is to move each train 

from its origin to its destination as fast as possible so that the total delay of all the 
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trains are minimized. The delay of a train is defined to be the difference between its 

actual traveling time on the track and the shortest traveling time possible assuming 

there are no other trains in the network. In order to formulate the problem 

mathematically, the actual rail network needs to be translated into nodes and arcs. The 

network construction method in Lu et al. (2004) is adopted. A node denotes a train 

track segment, a station or a junction. Different nodes could have different speed 

limits imposed on it. An arc denotes the linkage between nodes. Normally, the length 

of a junction node is zero, so is the arc element. Each track node has a capacity of one, 

which means there can only be one train occupying the track node at any time. And 

because of this capacity rule, the length of a track node should not be too long; 

otherwise the track resource can not be fully utilized. A network construction of a 

portion of a typical complex railway is shown in Figure 1. (Dessouky et al. 2006) 

 

Figure 1 Network Construction 

     The length of the train can be longer than the length of a node. Thus a train can 

occupy several nodes simultaneously. In reality, a train can travel at various speeds. 

The acceleration and deceleration rates depend on a number of factors like locomotive 

power, train weight and track slope. Lu et al. (2004) and Suteewong (2006) explicitly 

model the acceleration and deceleration rates of the train. However, in order to make 

the mathematical model plausible, we assume trains travel at their maximum speed. In 

all the following models, no speed limits are imposed on the nodes. Trains pass each 

node at its maximum speed. Also the train tracks are divided into nodes with length 

greater than the maximum length of all the trains. This ensures a single train can 
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occupy at most two nodes at a time, while maintaining minimum headway clearance. 

     The schedule specifies the path each train takes and the arrival and departure 

times of each train on every node of the specified path. A path is the sequence of 

nodes to be traversed by the train, from its origin to its destination. Next we are going 

to introduce two mathematical formulations of the scheduling problem. The first 

formulation assumes the path for each train is given and the second formulation treats 

the path of each train as variables of the model. 

4.2 Fixed Path Formulation 

    The first model in the literature that we use for benchmarking purpose is the 

mixed integer programming model introduced by Dessouky et al. (2006). Carey 

(1994b) develops a similar model which focuses on passenger railways. We refer the 

model formulated by Dessouky et al. (2006) as FixedPath, since the exact path of each 

train needs to be specified before solving the model. We now formally introduce the 

FixedPath model.  

     Notations: 

Q :  Set of all the trains to be scheduled  

N :     Set of all rail track nodes 

qS :     Length of train q, ,q Q∈ 1,2,...,q Q=  

qP :     Path train q takes. Starts with train q’s origin node, 0
qn , to train q’s                 

destination node, d
qn . All the nodes train q will be traversing are:     

,1 ,2 ,
{ , ,..., }

q
q q q p

n n n , where 0
1, qq nn =  and d

qPq nn
q
=,  

1
,iqB :    The minimal travel time between train q’s head entering into node 

iqn ,  and train q’s head leaving from node iqn ,  to node 1, +iqn   

:2
,iqB     The minimal travel time between train q’s head entering into node 

iqn ,  and train q’s tail leaving node iqn ,   



 25 

:,
a

iqt     The time train q’s head arrives at node iqn ,   

:,
d

iqt     The time train q’s tail leaves from node iqn ,           

µ :     Minimal safety headway between two consecutive trains 

:,, 21 kqqx   Binary variable indicates which train gets to pass node k first. 1: train       

1q  passes node k before train 2q . 0: train 2q  passes node k before  

train 1q .  

M:       An arbitrarily large number 

    The 0-1 mixed integer programming formulation of FixedPath is described as 

follows: 

,
min                                                                                                           (1)

. .                                                                          

q

a
q P

q Q
t

s t
∈
∑
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, 1 , ,

2 1
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(1 )     for all ,  and node           (6)

0,1                              for all ,  and 1     

q i q j

a d
q q k q j q i q i q j

q q k

q q Q k n n

x M t t q q Q k n n

x q q Q k N

µ

∈ = =

− + ≥ + ∈ = =

= ∈ ≤ ≤                      (7)  
  
     The objective function (1) minimizes the sum of the arrival times of all trains at 

their destinations which is equal to the total delay of all the trains. Constraint (2) 

ensures the minimum traveling time of the train on each track. The equal or greater 

sign makes it possible for a train to wait for its next required resource to be cleared. 

Constraint (3) ensures the minimum time a train needs to completely clear its previous 

occupied resource, after its head enters the next node. The deadlock avoidance 
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mechanism is realized by constraints (4) and (5). These constraints together make sure 

that no more than one train can occupy the same node simultaneously. If train 1q  

gets to pass node k before train 2q , the arrival time of 2q  at node k has to be equal to 

or greater than the departure time of 1q  from node k plus the safety headway of µ , 

and vice versa. 

     The FixedPath model can be used to solve the scheduling problem for any 

general network, as long as the length of each node is not shorter than the maximum 

length of each train. The formulation of FixedPath can be solved using a 

commercially available optimization solver like CPLEX. The major drawback of the 

FixedPath algorithm is, as its name suggests, the exact path of each train needs to be 

fixed and serves as the input to the model. However, the sequence of nodes a train 

travels is an important factor that can affect the delay of the trains. Thus the results 

obtained from this model are sub-optimal. To make this point clearer, suppose we 

have a single track network with one siding as shown in Figure 2.  

 

Figure 2 Simple network 

      Suppose trains travel in both directions, from ST1 to ST2 and from ST2 to ST1. 

In order to use FixedPath, for each train, we need to specify if this trains uses siding 

C’ or not. There might be extra delays to switch from the main track to siding C’. 

Thus if there are no trains traveling in the opposite direction in the network, it is not 

optimal to dispatch the train to siding C’. On the other hand, if two trains are traveling 

on the network in opposite directions, one of them has to travel to the siding C’ to let 

the other train pass. Thus the optimal path a train should take depends on the 

travelling direction and location of the other trains. Fixing the path before solving the 

scheduling problem can lead to a solution far from the global optimal solution. And if 

there are both slow and fast trains on the network, fixing the path might prevent the 

A 

C 

B D E 
C’ 

ST1 ST2 
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fast train, if it follows a slower train, from overtaking the slower train. 

 

4.3 Flexible Path Formulation 

     A natural extension of the FixedPath formulation is to include the path selection 

mechanism into the model. Here we formulate an MIP model which is extended from 

FixedPath, called FlexiblePath. Carey (1994b) proposes a similar model.  

Let V denote the set of all junctions, where a junction is merging points of 

multi-tracks on the railway network. New variable I is introduced in FlexiblePath, and 

the meaning of variables ,
a
q it  and ,

d
q it  slightly change. Suppose there are n nodes in 

the network, numbered from 1 to n, respectively. ,
a
q it ( ,

d
q it ) formerly indicate the 

arrival (departure) time of train q at (from) the ith node on its path P. In FlexiblePath, 

,
a
q it ( ,

d
q it ) simply mean the arrival (departure) time of train q at (from) node i. Variable 

,q iI  is a binary indicator variable with the following meaning: 

      ,

1  if train  travels on node 
                 

0 otherwise                         q i

q i
I 

= 


 

Let qO  and qD  denote the origin and destination nodes of train q, respectively. Let 

( )e v  and ( )w v , v V∈ , denote the set of nodes connected to junction v from the East 

and West direction, respectively (alternatively, it can refer to the North and South 

directions). Let ( , )suc i q  denote the set of nodes that are immediate successors of 

node i in the direction in which train q travels. 

     FlexiblePath formulation is as follows: 
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     Constraint (2) ensures that each train starts at its planned origin and travels to 

its destination. Constraint (3) is the train flow conservation equation which is also the 

core of the path selection mechanism. The conservation equation states that a train 

entering a junction can travel to any track that emits out of the junction (e.g. in Figure 

2, a train can travel on either track C or C’ after track B). Constraint (4) states that if a 

train does not utilize track node i, then the arrival time and departure time of that train 

on node i should be zero. Constraint (5) calculates the arrival time and departure time 

on track nodes along the path that the train travels. Constraint (7) is the deadlock 

avoidance constraint. In the formulation of FixedPath, variable 
1 2, ,q q ix  only exists 

when both trains 1q  and 2q  have track node i on their paths. Here in FlexiblePath, 

we have the variable 
1 2, ,q q ix  for any 1q  and 2q  pair on every track node. If 

1 2, ,q q ix  
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equals to 1, this means 1q  and 2q  both travel on node i and 1q  gets to pass node i 

before 2q . If 
1 2, ,q q ix  equals to 0, either one of the two situations happen: at least one 

of the two trains does not travel on node i or both 1q  and 2q  travel on node i and 

2q  gets to pass node i before 1q . Constraint (8) forces 
1 2, ,q q ix  to be 0 when either or 

both trains do not travel on node i. 

     For the same scheduling problem, the formulation of FlexiblePath contains far 

more binary variables than that for FixedPath. The solution computing time of 

FlexiblePath would be far greater than the time required for FixedPath. However a 

significant reduction of total delay might be achieved by incorporating the path 

selection mechanism of FlexiblePath. We now show the performance of both 

formulations by a computational experiment on a small network. 

4.4 Experimental Results 

     The experiment is based on a portion of the real network in Los Angeles County 

(see Figure 3). The numbers in Figure 3 denote the lengths of the track components 

(in miles). The trains travelling from west to east arrive at point A and are routed to 

point D. For the other direction, the trains enter the network from point C and are 

routed to point B. From the preliminary computational experiments, we found that for 

this network, the maximum number of trains that FlexiblePath can solve optimally is 

four, given a solving time constraint of one hour of CPU time. Both formulations are 

tested under four scenarios. In each scenario, two trains travel in the eastbound 

direction and the other two trains travel in the westbound direction. The details of the 

four scenarios are listed in Table 1. 
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Figure 3 Small network for numerical example 

 

 

 

     The parameters of the four scenarios ensure the computational experiments 

mimic the real situation as close as possible. The ready times of each train is 

uniformly distributed. Scenarios 1 and 2 have tighter schedules than scenarios 3 and 4. 

The uniform distribution U(0, 10) and U(0, 20) are chosen so that there is significant 

difference between scenarios 1,2 and scenarios 3,4, and trains in all four scenarios are 

not too dense nor too sparse. In reality, the maximum speed of a passenger train can 

be as high as 1.35 mile/minute, whereas the maximum speed of a freight train can be 

as low as 0.7 mile/minute. The four possible speeds (0.75, 1, 1.25 and 1.5) ensure 

trains travel at different speeds as they do in reality. The average speed difference in 

scenarios 2 and 4 is larger than the difference in scenarios 1 and 3. Also, in reality the 

trains have different lengths. Typical passenger and freight trains have lengths of 

0.189 and 1.136 mile. These stochastic elements lead to different meet and pass 

situation between trains, thus the performances of FixedPath and FlexiblePath are 

fully assessed. A penalty time (denoted by p) of 0.5 minute is added for each time a 

train switches lines (e.g. a train switches to siding from the main line). This penalty 

Table 1 Description of the scenarios (4 trains) 

4 trains Train ready time (minute) Train speed (miles/min) Train length (mile) 

Scenario 1 Uniform(0,10) 0.75, 1, 1.25 and 1.5 (equally likely) 0.189 and 1.136 (equally likely) 

Scenario 2 Uniform(0,10) 0.75 and 1.5 (equally likely) 0.189 and 1.136 (equally likely) 

Scenario 3 Uniform(0,20) 0.75, 1, 1.25 and 1.5 (equally likely) 0.189 and 1.136 (equally likely) 

Scenario 4 Uniform(0,20) 0.75 and 1.5 (equally likely) 0.189 and 1.136 (equally likely) 
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1.68 2.68 
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time can be implemented by modifying constraint (5) of FlexiblePath and constraint 

(2) of FixedPath: if travelling from node i to node j involves switching of line, then 

1
, , ,

a a
q j q i q it t B p− ≥ + .  

In order to solve the scheduling problem using the FixedPath formulation, the 

path of each train needs to be specified as input to the model. The path selection for 

each train for this numerical example is shown in Figure 4. The logic behind this 

assignment is to keep the trains traveling as much as possible on the right hand side 

whereby minimizing the number of crossings. However the disadvantage with this 

approach is that faster trains may possibly follow a slower train.  

 

Figure 4 Path assignment for FixedPath model 

     

    20 random samples are drawn for each scenario. For each sample, both the 

FixedPath and FlexiblePath formulations are used to solve the scheduling problem. 

The experiments are conducted on a Linux server with two 3.06 GHz Intel Xeon 

CPUs. The software used to solve the MIP problem is CPLEX 9.0. Table 2 

summarizes the computation results. The results for each scenario are obtained by 

averaging the 20 samples.  

The schedules from FlexiblePath are optimal schedules. According to Table 2, 

the FlexiblePath model generates schedules with significantly fewer train delay than 

for FixedPath. It is observed that the reduction in scenario 2 is greater than in scenario 

1, and the reduction in scenario 4 is greater than in scenario 3. One intuitive 

explanation is that in scenarios 2 and 4, the differences between train speeds are 

greater than those in scenarios 1 and 3. Since FlexiblePath is able to schedule a faster 

train to pass a slower train, the reduction in the delay of the faster train is greater 

A 

B 

C 

D 

Path for trains traveling eastbound 

Path for trains traveling westbound 
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when there is greater difference between the speeds of the two trains. Also, if the 

network is less congested, there are more opportunities for a faster train to pass a 

slower train. Thus intuitively, the reduction in scenario 3 should be greater than the 

reduction in scenario 1, and the reduction in scenario 4 should be greater than 

scenario 2. In terms of computing time, FlexiblePath takes significantly more time 

than FixedPath. 

Table 2 FlexiblePath V.S. FixedPath 

 Total train delay 

under FixedPath 

(minute) 

Total train delay 

under FlexiblePath 

(minute) 

FixedPath delay 

/FlexiblePath delay    

FixedPath  

CPU time (sec) 

FlexiblePath 

CPU time (sec) 

Scenario 1 12.00 7.53 1.594 0.02 256.68 

Scenario 2 12.91 7.64 1.690 0.02 214.82 

Scenario 3 10.50 6.48 1.620 0.02 351.94 

Scenario 4 12.25 6.47 1.893 0.02 280.49 

  

5 Algorithms for Small Networks 

5.1 LtdFlePath Algorithm  

     Since the number of integer variables increase exponentially as the number of 

trains increase. Using the flexible path formulation, an optimal solution cannot be 

obtained within one hour of CPU time when the number of trains increases to 6 (3 in 

each direction). The FlexiblePath formulation tends to explore every possible path for 

each train. However not all paths are reasonable. For example, the path shown in 

Figure 5 is oddly formed, and in reality, it would never be reasonable to schedule a 

train on such a path. If only a subset of all possible paths is allowed to be explored, 

then the computing time can be reduced significantly. Still, which paths to use 

remains a question. We next propose a procedure to select a subset of the candidate 

paths. A model, similar to FlexiblePath, which only allows trains to take the candidate 
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paths is constructed next. The new model is called LtdFlePath.  

 

  Figure 5 An example of a poorly constructed path 

  There are a total of 32 possible paths (16 in each direction) in the example problem. 

The criteria that we use to select the candidate paths is as follows: 

 The sidings are placed in the network for the purpose of meet and pass. 

Thus it is important to leave the siding and the main line track besides the 

siding as options for every train to take.  

 Trains should have freedom to traverse along any track lines of the double 

tracks or triple tracks without switching. This minimizes delay due to 

crossovers. In the sample network, for the double tracks between points P 

and Q, trains at point P (Q) could choose the upper or lower tracks and 

traverse all the way towards point Q (P) without switching. 

 If switching between the double or triple tracks are allowed, the first 

possible track to switch along the train’s travel direction should be 

considered. By doing so, trains traveling in the same direction but at 

different speeds, can make use of this switch to complete the pass as early 

as possible. In the example, the switch denoted by SW1 can be used by the 

trains traveling eastbound. Thus a faster train can take over a slower train 

and both trains can continue traveling on the lower line after SW1, leaving 

the upper line for the trains traveling westbound. Under the same logic, 

trains traveling westbound should be allowed to make use of SW2. 

Preliminary experiments show that limiting the number of paths to under six 

makes it possible to solve the problem using the LtdFlePath model in a reasonable 

amount of time. Following the three proposed criterions for selecting candidate paths, 

for the example network, six paths (see Figure 6) for each direction are chosen to be 

possible paths for model LtdFlePath. This is a reduction of the 16 possible paths that a 

train can take in each direction. 
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    Figure 6 Candidate paths for LtdFlePath 

 LtdFlePath is very similar to FlexiblePath. The only difference in the formulation 

is in constraint (2) in FlexiblePath. LtdFlePath modifies constraint (2) so that only the 

candidate paths are allowed.  

 

Table 3 FlexiblePath V.S. LtdFlePath 

 

Though the schedules produced by LtdFlePath are not guaranteed to be globally 

optimal, they are expected to be very close to the results from FlexiblePath. Using the 

same scenarios as before, the performance of both LtdFlePath and FlexiblePath are 

presented in Table 3. From Table 3, it is observed that in the case of four trains, the 

LtdFlePath is able to produce results that are within 5% of the global optimal 

 Total train delay 

under LtdFlePath 

(minute) 

Total train delay 

under FlexiblePath 

(minute) 

LtdFlePath/FlexiblePath LtdFlePath  

CPU time (sec) 

FlexiblePath 

CPU time (sec) 

Scenario 1 7.89 7.53 1.048 3.05 256.68 

Scenario 2 7.82 7.64 1.024 2.53 214.82 

Scenario 3 6.63 6.48 1.023 2.7 351.94 

Scenario 4 6.76 6.47 1.045 2.27 280.49 

Possible paths for trains traveling eastbound 

Possible paths for trains traveling westbound 
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solutions. Most importantly, the LtdFlePath model significantly reduces the CPU time, 

as compared to FlexiblePath. 

     With this improved efficiency, LtdFlePath is able to solve the problem of six 

trains on the example network. A similar set of scenarios (see Table 4) are created to 

compare the performance of LtdFlePath and FixedPath. Train ready times are 

generated according to a uniform distribution over a larger interval than the previous 

scenarios. One point to note, though the total number of trains may not seem large, six 

trains will be running on the 18.73 miles long network simultaneously. This network 

scenario is actually relatively congested compared to real freight train networks. 

 

Table 4 Description of scenarios (6 trains) 

 
 

Table 5 LtdFlePath V.S. FixedPath 

6 trains Total train delay 

under LtdFlePath 

(minute) 

Total train delay 

under FixedPath 

(minute) 

FixedPath/LtdFlePath LtdFlePath  

CPU time (sec) 

FixedPath 

CPU time (sec) 

Scenario 1 14.10 19.93 1.413 1067.98 0.11 

Scenario 2 16.27 25.06 1.541 1662.18 0.09 

Scenario 3 9.58 15.64 1.632 934.95 0.06 

Scenario 4 10.43 19.18 1.840 266.72 0.05 

 

The numerical results are shown in Table 5. By giving the model the freedom to 

optimize both the sequence of trains passing certain track segments and the sequence 

of tracks trains take, a much better schedule can be obtained. The LtdFlePath 

6 trains Train ready time (minute) Train speed (miles/min) Train length (mile) 

Scenario 1 Uniform(0,20) 0.75, 1, 1.25 and 1.5 (equally likely) 0.189 and 1.136 (equally likely) 

Scenario 2 Uniform(0,20) 0.75 and 1.5 (equally likely) 0.189 and 1.136 (equally likely) 

Scenario 3 Uniform(0,40) 0.75, 1, 1.25 and 1.5 (equally likely) 0.189 and 1.136 (equally likely) 

Scenario 4 Uniform(0,40) 0.75 and 1.5 (equally likely) 0.189 and 1.136 (equally likely) 
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formulation does not necessarily return the global optimal solution, but it is shown to 

perform very closely to the FlexiblePath formulation. As the results show, solutions 

from FixedPath can be far from optimal. However the LtdFlePath model takes much 

more CPU time than the FixedPath to generate a solution. Next we propose a heuristic 

procedure, which is improved on the FixedPath formulation. This heuristic finds a 

solution much faster than LtdFlePath and yet is able to significantly reduce the delay 

of FixedPath.   

5.2 Genetic Algorithm and Fixed Path Formulation 

The previous analysis showed that once the paths of the trains are specified, the 

scheduling problem can be solved fairly quickly (normally in the order of 0.1 CPU 

seconds) for the case of six trains. The heuristic, called GA+FixedPath, uses genetic 

algorithm to evolve the population of the candidate paths. The FixedPath model is 

used to calculate the fitness values for each set of paths.  

     The first step in solving any problem by genetic algorithm is to define the 

genetic representation of the population, the chromosomes. In GA+FixedPath, the 

chromosome represents the set of paths used by the trains. All the possible paths are 

first numbered accordingly. For the example problem, there are a total of 16 possible 

paths in each direction. They are numbered from 1 to 16 (see Figure 8 for the 

numbering of the paths). Instead of using 0s and 1s to represent the chromosome, the 

chromosome of the GA+FixedPath model are formed by the numbers that represent 

the selected path for each train. For the case of six trains, a chromosome might look 

like: (2, 3, 2, 1, 10, 1). The meaning of this chromosome is that: train 1 takes path 

number 2; train 2 takes path number 3; train 3 takes path number 2 and so on. Given a 

chromosome, the FixedPath formulation can be used to solve the scheduling problem. 

The returned delay is treated as the fitness value of this chromosome. Let P denote a 

single chromosome. The GA+FixedPath algorithm is described in the flowchart in 

Figure 8.  

The initial population is randomly generated. However the paths do not have 
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equal probability of being selected by a train. The probabilities are adjusted so that a 

common and reasonable path has a higher probability than an odd path (e.g., path 2 in 

the example network should be selected with a higher probability than path 7). The 

probabilities of each path being selected in the initial population are shown in Figure 

7. Once the initial generation is created, the FixedPath formulation is used to obtain 

the fitness value of each population in the initial generation. After associating each 

population with a fitness value, the roulette wheel selection algorithm is used to select 

the parent chromosomes which will be used to produce the next generation. The 

roulette wheel selection algorithm assures the higher the fitness a chromosome has, 

the higher the chance it is selected.  

 

                     

 

 

 

 

 

 

 

 

 

Figure 7 Numbering of the paths and their probabilities of being selected in the 
initial population 

The crossover operation is then applied to the parent chromosomes. Since the 

first half of the chromosome denote the trains traveling in one direction and the 

second half of the chromosome denote the trains traveling in the opposite direction, it 

is reasonable to use the single cut point crossover policy. The single cut point is made 

at the middle of the chromosome. Figure 9 shows an example of the crossover 

operation. The crossover operation is only carried out with a certain probability which 

is decided by the crossover ratio. 
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Figure 8 GA+FixedPath Algorithm 

 

                                                                                                                                                                                                                                                                                            

  Figure 9 Example of crossover operator 

After the crossover operation, the mutation operation is carried out. The mutation 

Randomly generate the initial population of Ps 

Start 

Use the FixedPath formulation to calculate the fitness 
value of each population P 

Use the roulette wheel selection rule to select 
candidates for the next generation’s population 

Apply the crossover and mutation operator on the 
candidate population to obtain the next generation 

Use the FixedPath formulation to calculate the fitness 
value of each population P 

Has the termination criteria 
been reached? 

Terminate 

No 

Yes 

(2, 3, 2, 1, 10, 1) 

(10, 1, 2, 11, 1, 2) 

Parent 1 

Parent 2 

Offspring 1 

Offspring 2 

(2, 3, 2, 11, 1, 2) 

(10, 1, 2, 1, 10, 1) 

Before crossover After crossover 
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operation mimics the process of human gene mutation. There is a chance (decided by 

a mutation ratio) that each path in a chromosome will mutate. The mutation ratio is 

normally set to a very low value (e.g. 0.1). A neighborhood set of paths is defined for 

each path. A specific path is only allowed to mutate into one of the paths in its 

neighborhood set. The neighborhood set of each path is composed of the paths that 

only slightly deviate from that path. To be more specific, the neighborhood set of path 

f contains paths that differ from path f by at most two switches (e.g., a neighborhood 

set of path 1 is path {2, 10, 11, 12, 15, 16}). In most cases, the chromosome is 

represented by 0s and 1s and the mutation operator normally changes 0 to 1 or vice 

versa. The mutations are supposed to only slightly change the current chromosome. 

By defining the neighborhood set for each path, this property is preserved in our 

algorithm. Figure 10 shows the effects of the mutation operation. The crossover 

operation and mutation operation are used to direct the search towards the area 

beyond the local optimum. The GA+FixedPath algorithm is terminated when the 

iteration number of the genetic algorithm reaches a pre-set value. 

 

 

Figure 10 Example of mutation operator 

 

     The GA+FixedPath algorithm is then tested to solve the same sets of problems 

where six trains travel in the network. Various settings of the crossover and mutation 

rate are tested, the algorithm performs the best when crossover rate is 0.7 and the 

mutation rate is 0.1 The maximum number of iterations before termination is set to be 

40. And the population size is 30. The results of GA+FixedPath are shown in Table 6. 

The solution quality of GA+FixedPath is much better than the one from FixedPath. 

The genetic algorithm is able to find a fairly good path assignment for the trains in a 

much shorter time compared to the computing time of LtdFlePath. The 

(2, 3, 2, 1, 10, 1) (2, 3, 3, 1, 10, 1) 

Before mutation After mutation 
Mutation 
Position 
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GA+FixedPath would be able to solve the scheduling problem when the size of the 

problem further increases. 

Table 6 LtdFlePath V.S. FixedPath V.S GA+FixedPath 

     

    Before we increase the size of the problem and embark our analysis on a large 

scale rail network, we introduce two more heuristics that schedule trains on complex 

rail networks. The PureGA algorithm, proposed by Suteewong (2006), schedules 

trains using genetic algorithm to identify a satisfactory path and priority assignment of 

the trains. Another heuristic is the construction heuristic proposed by Lu et al. (2004) 

to solve large scale scheduling problem on a complex rail network.  

 

5.3 Pure Genetic Algorithm 

     Suteewong (2006) introduces a genetic algorithm to solve the train scheduling 

problem (referred as PureGA algorithm). While the GA+FixedPath uses genetic 

algorithm to evolve the paths of trains, the PureGA algorithm not only evolves the 

paths of each train but also the precedence rules among the trains. 

     In PureGA algorithm, there are two types of chromosomes. One represents the 

1 2, ,q q ix  variable and the other represents the ,q iI  variable. 
1 2, ,q q ix  controls the order of 

trains passing through a certain track node. ,q iI  equals 1 if train q passes on track i 

and 0 otherwise. The chromosome of 
1 2, ,q q ix  is a three-dimensional matrix whose size 

 Total Delay (minutes) Comparison CPU time (seconds) 

6 trains LtdFlePath  GA+FixedPat

h 

FixedPath GA+FixedPath/ 

LtdFlePath 

FixedPath/

LtdFlePath 

LtdFlePath  

 

GA+FixedPath FixedPath 

 

Scenario 1 14.10 16.40 19.93 1.163 1.414 1067.98 93.09 0.11 

Scenario 2 16.27 19.79 25.06 1.216 1.541 1662.18 78.11 0.09 

Scenario 3 9.58 11.71 15.64 1.222 1.632 934.95 58.84 0.06 

Scenario 4 10.43 12.99 19.18 1.246 1.840 266.72 57.02 0.05 
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is n n m× × , where n is the total number of trains and m is the total number track 

nodes. ,q iI  has a representation that is a two-dimensional matrix whose dimension is 

n m× . The procedure of the PureGA algorithm is as below: 

1. Randomly generate an initial population for the 
1 2, ,q q ix  and ,q iI . 

2. Calculate the objective function for each population. 

3. Use the roulette wheel selection rule to select the parent chromosomes and 

then use the crossover and mutation operators. 

4. Obtain a new population for the 
1 2, ,q q ix  and ,q iI  binary variables. Replace 

the previous 
1 2, ,q q ix  and ,q iI  with the new ones. Evaluate the new 

objective function. 

5. Check the termination criteria. If it is met, terminate with the solution. 

Otherwise, repeat step (3) through (5). 

     The x and I variables are correlated. As we stated in FlexiblePath, 
1 2, ,q q ix  is 

only meaningful if 
1 ,q iI  and 

2 ,q iI  are both 1 (e.g. both trains q1 and q2 pass node i). 

This correlation complicates the process of evolution of the chromosomes. Before the 

fitness value of each population is assessed, a Repairing Algorithm needs to be 

applied to assure the consistency between X and I variables. The Travel Time for Node 

Algorithm (TTN) is developed to determine the travel time for each individual node of 

a particular train. Another algorithm called Deadlock Prevention Algorithm, which has 

TTN embedded in it as a subroutine, is also developed. Given the new population of 

the x and I variables, the Repairing Algorithm is first applied, and then the Deadlock 

Prevention Algorithm is applied to return a deadlock-free schedule based on the x and 

I variables. The PureGA algorithm, not like the GA+FixedPath algorithm, is not based 

on a mixed integer programming model. As we will later see, in general, the PureGA 

algorithm runs faster than GA+FixedPath. But in terms of solution quality, the 

GA+FixedPath outperforms the PureGA algorithm.   
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5.4 Greedy Algorithm 

    Lu et al. (2004) proposes a construction heuristic to schedule the trains. We call 

this algorithm, Greedy, since the construction heuristic is a one-step look-ahead 

algorithm. The Greedy algorithm is developed from a simple deadlock-free routing 

algorithm (call it FreePath) which allows a train to move to a successor node if all the 

nodes and arcs between the current position of the train and its destination are 

available. However, the Greedy algorithm differs from the FreePath algorithm in the 

way that it dispatches the train through a successor node j as long as there is an 

available buffer that passes through node j. A buffer between node i and node j is 

defined to be a set of nodes connected as a chain between node i and node j. In the 

simple network in Figure 11, the FreePath algorithm would hold train A until train B 

reaches station ST1. But the Greedy algorithm would not stop train A since there is a 

siding, which is considered as a buffer, between train A and B.  

 

 

    Figure 11 Greedy algorithm 

When there are multiple available successor nodes for train q, the best available 

successor node is chosen according to the following factors: 

1. The maximum priority difference between the current train and the immediate 

successor train running in the same direction if one exists. 

2. The maximal number of trains running in the same direction along the path from 

the successor node to the train’s destination node. 

3. The minimum travel time for the current train from the successor node to the 

current train’s destination node assuming there is no downstream conflicting 

traffic ahead of the current train. 

ST1 

Train A Train B 
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The computing time of the Greedy algorithm is negligible even for relatively 

large scale problems. It is the fastest among all the algorithms introduced. And it is 

not surprising to see that it produces a schedule with the largest train delays.  

 

5.5 Experimental Results 

    As previously pointed out, the train density of the last numerical example (six 

trains on an 18.73-mile long network) is considered to be rather high. Now we would 

like to further increase the number of the trains from six to eight. The ready times are 

sampled from uniform distributions from larger intervals ((0,25), (0,50)) than 

previous scenarios. As the train number increases, the integer variables in LtdFlePath 

increases exponentially. Thus makes it unable to solve the problem in a reasonable 

amount of time. The performances of the four algorithms are compared and the results 

are shown in Table 8. For the PureGA algorithm, the crossover and mutation rates are 

0.6 and 0.1, respectively. The population size is set to be 50 and the maximum 

iteration number is set to be 100. 

 

Table 7 Description of scenarios (8 trains)  

      

     The GA+FixedPath algorithm requires a significant amount of computing time, 

compared to the other three approaches. The long computing time is justified by its 

solution quality. The PureGA algorithm is outperformed by the GA+FixedPath 

algorithm in terms of solution quality. This is because that given a specific path 

8 trains Train ready time (minute) Train speed (miles/min) Train length (mile) 

Scenario 1 Uniform(0,25) 0.75, 1, 1.25 and 1.5 (equally likely) 0.189 and 1.136 (equally likely) 

Scenario 2 Uniform(0,25) 0.75 and 1.5 (equally likely) 0.189 and 1.136 (equally likely) 

Scenario 3 Uniform(0,50) 0.75, 1, 1.25 and 1.5 (equally likely) 0.189 and 1.136 (equally likely) 

Scenario 4 Uniform(0,50) 0.75 and 1.5 (equally likely) 0.189 and 1.136 (equally likely) 
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assignment, the GA+FixedPath returns the optimal schedule for this path assignment. 

The Greedy algorithm performs the worst in terms of solution quality. The solution of 

the Greedy algorithm closely matches current industry practice, thus serves as a 

benchmarking tool which tells us how much improvement can be achieved. 

 

Table 8 Computational results (8 trains)  

 Total Delay (minutes) 

(CPU time (seconds) ) 

Solution Quality Comparisons 

8 trains FixedPath GA+FixedPath PureGA Greedy FixedPath/ 

GA+FixedPath 

PureGA/ 

GA+FixedPath 
Greedy/ 

GA+FixedPath 
Scenario 1 33.97 

(0.55) 

30.53 

(418.62) 

35.22 

(16.84) 

78.21 

(negligible) 

111.25% 115.35% 256.15% 

Scenario 2 56.97 

(0.69) 

48.64 

(410.26) 

56.87 

(18.75) 

83.25 

(negligible) 

117.12% 116.92% 171.14% 

Scenario 3 35.19 

(0.16) 

26.29 

(215.25) 

30.66 

(11.06) 

72.32 

(negligible) 

133.85% 116.59% 275.04% 

Scenario 4 42.61 

(0.23) 

34.79 

(293.67) 

40.38 

(12.98) 

65.79 

(negligible) 

122.46% 116.05% 189.09% 

 

    The PureGA and Greedy algorithm are also tested for the scenarios of four and 

six trains. The complete tables which have all the results are shown in Appendix A. 

The PureGA tends to work well when the number of trains is small. As the number of 

trains increases, the solution quality of PureGA gradually approaches to that of the 

FixedPath algorithm. Even when the number of trains is small, there is a significant 

gap in terms of solution quality between the Greedy Algorithm and the optimal 

algorithms. This suggests that the freight rail industry can benefit a lot if better and 

practical operational scheduling methods are implemented.  
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6 Algorithms for Large Networks    

In Section 4, we developed and tested a few algorithms on actual small rail 

networks. The optimal schedule (obtained from FlexiblePath) is benchmarked with 

the schedule practiced in industry (obtained from Greedy) and some other sub-optimal 

schedules. The solution gap is clearly identified. Now we embark on solving large 

scale problems. For these large scale problems, the global optimal solution is not 

computationally practical to obtain. Any heuristic proposed to solve the large scale 

problem can be tested using the small network so that its relative performance 

compared to the optimal solution can be inferred.  

Among all the algorithms introduced in Section 4, only the Greedy algorithm 

can solve a large scale problem in a reasonable amount of time. In this section, we 

propose a more efficient heuristic than the Greedy Algorithm to solve the scheduling 

problem for a large scale real network.  

6.1 Decomp Algorithm 

    The divide-and-conquer approach is an effective way of solving large complex 

problems. For a static large scale operational scheduling problem, there can be two 

ways to decompose the problem.  

 Horizontal decomposition

 

. The rail network can be decomposed into several 

smaller sections. Local optimal schedules could be developed and then schedules 

on each smaller section are then integrated. The major challenge of horizontal 

decomposition is the integration step (e.g., the leaving time of a train in one 

section should match the arrival time of this train to the next adjacent section). 

Vertical decomposition. Instead of decomposing the large network into smaller 

sections, the trains to schedule can be grouped into clusters, according to the time 

the trains enter the network. Then a schedule can be developed for each cluster, 

assuming the network is occupied by the trains only from the current cluster. And 

the schedules of each cluster are then integrated. 
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     Carey and Lockwood (1995) solve the train scheduling problem by dispatching 

the trains one by one, similar to the procedure carried out by a human dispatcher. This 

approach can be categorized as vertical decomposition. Next, we are going to 

introduce an algorithm, called Decomp algorithm, which is also based on the idea of 

vertical decomposition. 

     The train scheduling problem is basically a problem of determining the paths of 

each train on their routes (the I variables in the FlexiblePath formulation) and the 

sequence of the trains passing every track segment (the x variables in the FlexiblePath 

formulation). Before introducing the Decomp algorithm, some additional notation 

needs to be defined: 

     ktr : The kth train entering the network, 1 k Q≤ ≤  

     c: The total number of clusters 

lC : The lth cluster of trains, 1 l c≤ ≤  

     lC : The total number of trains in lC  

     ls : The total number of trains up to cluster l. 
1

l

l m
m

s C
=

=∑   

Step 1: Decompose all the trains into clusters according to the entering time of the 

trains. 

Decomp Algorithm 

lC  will contain trains 
1 1lstr
− + , 

1 2lstr
− +  up to 

lstr . 

Step 2:  

Let l = 1; 

While (l < c+1) { 

     Solve the scheduling problem (referred as sub-problem l) that only involves 

trains in clusters 1 2, ,..., hC C C ; 

     Save and fix the values of variables ,q iI and
1 2, ,q q ix , where 

1 2 1 2, , ( , ,..., )hq q q C C C∈∪  and i N∈ , for the next iteration; 

     l= l +1; 

} 
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The description of the Decomp algorithm only serves as a general approach, 

there are two details that need to be decided. 

1. The cluster size

2. 

. The trade off between a large and small cluster size is very 

clear. The larger the cluster size is, the better the solution quality is. But the 

larger the cluster size is, the longer it takes to solve the sub-problem. 

Algorithm used to solve sub-problems

After solving sub-problem l, the path of each train in clusters 

. Since the sub-problem itself is a 

smaller version of the train scheduling problem, there are many options in 

solving the problem. As the cluster size varies, the most suitable algorithm 

will change. 

1 2, ... hC C C  will be 

fixed, so will the sequence for those trains passing each track node. Solving 

sub-problem l involves determining the paths for the trains in cluster hC , the sequence 

of the trains in hC  passing every node, and the precedence relationship between 

trains in hC  and trains in 1 2 1, ,..., hC C C − . Thus if every cluster has the same size, the 

problem size of the sub-problems continuously increases (e.g., it takes more time to 

solve sub-problem l+1 than sub-problem l).   

6.2 Experimental Results    

Next we demonstrate the performance of the Decomp algorithm by testing it on a 

real network, to be more specific, a 49.3-mile long network from Indio, CA to Colton, 

CA. The trackage configuration of this network is shown in Appendix B. Similar to 

before, we gradually increase the number of trains and explore the performance of the 

various algorithms. The time interval between two consecutive trains in the same 

direction is assumed to be uniformly distributed between 14 and 16 minutes. The train 

speed is equally likely to be 0.75, 1, 1.25 and 1.5 miles/minute and the length of each 

train is equally likely to be 0.189 and 1.136 miles.  

For this particular numerical example, the cluster size is chosen to be fixed at six 

(except for the last cluster). To solve the sub-problem, the GA+FixedPath algorithm 
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(population size: 40; crossover rate: 0.7; mutation rate: 0.1; maximum number of 

iterations: 15) is found to be most suitable. The PureGA and Greedy algorithms are 

the only two algorithms introduced that could, in a reasonable time duration, solve 

this particular example without modifications. Thus the results from the Decomp 

algorithm are benchmarked against PureGA and Greedy algorithm. The results based 

on 20 random samples for each scenario are shown in Table 9. 

Table 9 Computational results (large network) 

 

 

The relative performances between PureGA and Greedy are consistent with their 

performances in the sample network. The Decomp algorithm achieves a much smaller 

delay than the PureGA and Greedy algorithms. For the Decomp algorithm, though the 

problem is decomposed into smaller problems, the sizes of the sub-problems are not 

constant. For the case of 18 trains, the average CPU times to solve sub-problems 1, 2 

and 3 are 43.38, 368.69 and 743.25 seconds, respectively. When the number of trains 

increases, it might require too much time to solve the last few sub-problems. The 

       Total Delay (minutes) Comparison CPU time (seconds) 

 Decomp PureGA Greedy PureGA/Decomp Greedy/Decomp Decomp PureGA Greedy 

8 trains 33.31 44.60 51.35 1.339 1.543 60.7 248.5 negligible 

10 trains 48.44 52.12 80.27 1.282 1.662 217.9 587.7 negligible 

12 trains 52.41 83.36 101.29 1.590 1.933 298.0 1351.9 negligible 

14 trains 66.92 101.14 117.45 1.511 1.755 497.6 1540.0 negligible 

16 trains 74.96 110.55 134.88 1.475 1.799 716.6 2057.0 negligible 

18 trains 94.23 140.77 154.54 1.494 1.640 1155.5 2544.5 negligible 

20 trains 87.40 137.64 153.71 1.575 1.759 1518.5 2634.0 negligible 

22 trains 100.55 170.33 182.13 1.694 1.811 1992.0 2818.0 negligible 

24 trains 112.28 173.84 191.18 1.548 1.703 4658.9 3271.0 negligible 
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Decomp algorithm might need to be modified to be less sensitive to the size of the 

problem.  

We then show the sensitivity analysis of the cluster size. Table 10 shows the 

effects of different cluster sizes in terms of solution quality and CPU times. For the 

case of 16 trains, we can decompose trains in three ways: (1) cluster size of 4: (4, 4, 4, 

4); (2) cluster size of 6: (6, 6, 4); (3) cluster size of 8: (8, 8). The result shows that the 

larger the cluster size is, the better the solution quality and the longer the solution time 

are. For a balance between solution quality and solution time, for the previous 

numerical examples, the cluster size is chosen to be fixed at six (e.g., for the case of 

22 trains, the decomposition will be 6, 6, 6 and 4).  

 

Table 10 Effects of different cluster size (16 trains) 

Total Delay (minutes) CPU time (seconds) 

Cluster size of 4 Cluster size of 6 Cluster size of 8 Cluster size of 4 Cluster size of 6 Cluster size of 8 

77.06 74.96 73.3 368.23 716.65 5640.57 

 

6.3 Parallel Algorithm 

  Now we present another algorithm, called Parallel, which is also based on the 

decomposition idea. The Parallel algorithm is designed to be less sensitive to the size 

of the problem. 

 

Step 1: Decompose all the trains into clusters according to the entering time of the 

trains. 

Parallel algorithm 

lC  will contain trains 
1 1lstr
− + , 

1 2lstr
− +  up to 

lstr . 

Step 2:  

Let l = 1; 

While ( h c≤ ) { 
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Solve the scheduling problem (referred as sub-problem l) that only involves 

trains in clusters hC ; 

     Save and fix the values of variables ,q iI and
1 2, ,q q ix , where 1 2, , hq q q C∈  and 

i N∈ ; 

     l= l +1; 

} 

Step 3:  

Use FixedPath formulation to solve the problem with all Q trains. The path of each 

train are fixed as in the solution of Step 2. Some of the x variables are also fixed as 

follows:  

1. For trains q1 and q2 belonging in the same cluster, 
1 2, ,q q ix  is fixed as in the 

solution in Step 2, i N∈  

2. If 
1 2, , 1q i q iI I= = , set 

1 2, , 1q q ix =  and 
2 1, , 0q q ix = , where 1 lq C∈  and 

2 sq C∈ , 2s l≥ + , for 1.. 2l c= −  and 3..s c= . 

    The main distinction between Step 2 of the Parallel algorithm and the Decomp 

algorithm is that the Parallel algorithm involves sub-problems that are independent of 

each other (i.e., when determining the paths of trains in cluster C2, the Parallel 

algorithm does not consider the paths of trains in C1, whereas the Decomp algorithm 

considers them). The major drawback in terms of the computation time for the 

Decomp algorithm is that the sizes of the sub-problems continuously increase. The 

Parallel algorithm does not have this drawback; every sub-problem is of the same size, 

if the cluster sizes are the same.  

    The algorithm is called Parallel, because in Step 2, a total number of c 

sub-problems are solved independently, thus all the sub-problems can be solved in 

parallel. Nowadays, most CPUs in personal computers have multiple processing cores. 

By solving the problem in parallel, the computation time of Step 2 can be reduced by 

a factor of the number of CPU cores.  

    Step 2 determines the paths of each train. Step 3 involves solving a scheduling 
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problem where the path of each train is given. However, given a relatively large 

network and large number of trains, the FixedPath formulation can not solve Step 3 

efficiently without pre-fixing some of the x variables. The precedence rules for trains 

in the same cluster are pre-fixed as the solution in Step 2. Also, to further reduce the 

solution space, the trains in cluster l have precedence on every track node over all the 

trains in clusters l+2, l+3, …, c. So, in Step 3, the FixedPath formulation is used to 

only determine the precedence rule between trains in adjacent clusters. 

     

6.4  Experimental Results 

For the example large network, the cluster size is set to be 10 for the Parallel 

algorithm. This cluster size is bigger than the one used in Decomp algorithm. The 

reason being that the size of the sub-problem is constant for the Parallel algorithm, 

using a bigger cluster will not result in intractable sub-problems. We want the cluster 

size to be as big as possible while keeping the sub-problems solvable in reasonable 

time duration, thus a cluster size of 10 is used. For the sub-problems in Step 2, the 

GA+FixedPath algorithm is found to be most suitable. The server we used to conduct 

our experiments has two CPU cores. Thus the sub-problems can be solved in parallel, 

two problems at a time. 

We first show the comparison between the Decomp algorithm and Parallel 

algorithm, in terms of both solution quality and solution time. Table 11 summarizes 

the results for the scenarios of 20 trains. Other experiment parameters are the same as 

in Section 5.2. As expected, the solution quality of the Parallel algorithm is worse 

than the one for the Decomp algorithm, since the sub-problems are solved 

independently. However, the solution time of Parallel algorithm is less. And when the 

number of trains increases, the gap between the solution times becomes significant. 
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Table 11 Comparison between Decomp and Parallel algorithm (20 trains) 

Total Delay (minutes) CPU Time (seconds) 

Decomp Parallel Decomp Parallel 

87.40 101.09 1518.50 596.6 

 

     Table 12 shows the experimental results of the Parallel algorithm for scenarios 

of 20, 30 and 40 trains. For 30 and 40 trains, neither the Decomp nor PureGA 

algorithm could solve the problem in a reasonable amount of time. While being able 

to return a better solution than the Greedy algorithm, the solution times of the Parallel 

algorithm do not increase as rapidly as for the Decomp algorithm.  

Table 12 Computational results (large network) 

 Total Delay (minutes) Comparison CPU Time (seconds) 

 Parallel Greedy Greedy/Parallel Parallel Greedy 

20 trains 101.09 153.71 1.52 596.6 Negligible 

30 trains 182.29 251.79 1.38 1782.41 negligible 

40 trains 279.60 333.81 1.19 2411.77 negligible 

 

 

7 Dynamic Scheduling 

7.1 Dynamic Algorithm 

So far, all the problems discussed are for the static scheduling problem. For the 

static scheduling problem, the arrival time information for all trains is known before 

solving the problem. However, in reality, at the time the first few trains enter the 

network, the information about the arrival time of the later trains may not be known in 

advance. In dynamic scheduling, the information of only arrived trains is considered 

known. Then the schedule of the new train and the trains currently in the network 
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should be generated, given no information of later trains. 

In the environment of dynamic scheduling, the time constraint to generate each 

schedule is very tight. From the moment the information of the new arriving train is 

known, to the moment the schedule of the new train needs to be executed, the time 

constraint can be rather tight. Given this tight time constraint, it is normally not 

possible to re-optimize the whole schedule of all the trains in the network. Next, we 

present an algorithm, called Dynamic, which uses the idea of vertical decomposition 

and sequential optimization. 

When the new train enters the network, the paths of the existing trains and 

precedence rules among those trains are all determined by the previous schedules. The 

fastest way to generate a schedule is to fix the paths and precedence rules for all the 

existing trains and only generate the path for the new train and the precedence rule 

between this new train and the existing trains. Given no information about later trains, 

when a new train enters the network, the best schedule is obtained by optimizing the 

paths and precedence rules for all trains, given the current location of the existing 

trains in the network. Re-optimizing the paths and precedence rules for all the trains 

in the network gives the best schedule with regard to all the current trains but doing so 

takes too much computational time. On the other hand, optimizing the path and 

precedence rule for only the new train requires the least time, but the solution quality 

is worse. If we fix the paths and precedence rules for some of the existing trains, and 

optimize the paths and precedence rules for the rest of the existing trains, altogether 

with the new train, we may achieve a better balance between the solution quality and 

solution time.  

Step 1: Record the locations of the existing trains in the network as the new train 

enters the network. 

Dynamic Algorithm 

Step 2: Determine which trains of the existing trains are free to be re-scheduled. 

Step 3: Fix the paths and precedence rules of the existing trains, which are not to be 

re-scheduled, as previously determined.  

Step 4: Optimize the paths and the precedence rules of the existing trains which are to 
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be re-scheduled, together with the newly entered train. 

There are two details of the algorithm that need further consideration. In Step 2 

of the algorithm, we need to determine how many and which of the existing trains are 

to be re-scheduled. The more trains to be re-scheduled, the better the solution quality 

and the longer the solution time is. And in Step 4, we have a standard train scheduling 

problem. We need to determine which algorithm to use to solve the train scheduling 

problem. 

7.2 Experimental Results – Small Networks 

We first demonstrate the performance of the Dynamic algorithm by testing it on a 

small network. The small network illustrated in Figure 3 is used. The train speed is 

equally likely to be 0.75, 1, 1.25 and 1.5 miles/minute and the length of each train is 

equally likely to be 0.189 and 1.136 miles. The arrivals of the trains in each direction 

follow a Poisson Process with an inter-arrival time of 9 minutes.   

For Step 2 of the algorithm, we are going to test two scenarios. In scenarios 1, we 

fix the paths and precedence rules of all existing trains. Thus the train scheduling 

problem in Step 4 only determines the path of the newly entered train and the 

precedence rule between the newly entered train and all existing trains. In scenarios 2, 

we let one of the existing trains be re-scheduled. The existing train which is closest to 

the entering point of the new train is chosen to be re-scheduled. Intuitively, the train 

closest to the new train might have great impact on the path of the new train, thus by 

making the path of the closest train flexible, a better overall schedule might be 

generated. For Step 4 of the algorithm, the FlexiblePath formulation is used to solve 

the train scheduling problem. 
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Table 13 Computational results of Dynamic algorithm (small network) 

 Average Delay Per Train (minutes) Average CPU Time Per Iteration (seconds) 

Total trains Dynamic-1 Dynamic-2 Greedy Dynamic-1 Dynamic-2 Greedy 

20 5.64 4.35 11.31 0.08 0.81 negligible 

40 7.27 4.85 16.51 0.11 0.87 negligible 

60 6.78 4.53 18.02 0.11 0.83 negligible 

80 8.37 6.36 21.71 0.13 0.86 negligible 

100 8.46 6.30 19.30 0.15 2.01 negligible 

 

Table 13 shows the computational results of the Dynamic algorithm. We compare 

the Dynamic algorithm with the Greedy algorithm. The Greedy algorithm is a 

one-step look-ahead heuristic, thus the Greedy algorithm can solve the dynamic 

scheduling problem. In Table 13, Dynamic-1 refers to the scenario where paths and 

precedence rules of all existing trains are fixed, whereas, Dynamic-2 refers to the 

scenario where the path and precedence rule of one of the existing trains can be 

optimized, together with the newly entered train. Both Dynamic-1 and Dynamic-2 

generate schedules with much smaller train delays than the schedules generated by the 

Greedy algorithm. The schedules from the Dynamic-2 algorithm achieve lower delays 

than the schedules from the Dynamic-1 algorithm, as expected. Every time a new 

train enters the network, we need to solve a scheduling problem which schedules the 

new train and the existing trains. The CPU times in Table 13 denote the average time 

taken to solve the scheduling problem every time a new train enters. Since in 

Dynamic-2, we have a bigger scheduling problem to solve in Step 4 of the algorithm, 

the increase in the CPU time of Dynamic-2, as compared to Dynamic-1, is expected. 

And the CPU time exponentially increases, as we make more existing trains flexible 

to be re-scheduled. We can conclude that the Dynamic algorithm works very well on 

small networks; it takes very little time to dynamically generate good schedules. 
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7.3 Experimental Results – Large Networks 

Now we test the performance of the Dynamic Algorithm on a relatively large 

network. The same network as in Section 5 is used. The network is about 49.3 miles 

long. Trains are traveling both eastbound and westbound. The arrival pattern of new 

trains in each direction follows a Poisson Process with an inter-arrival time of 15 

minutes. As before, the train speed is equally likely to be 0.75, 1, 1.25 and 1.5 

miles/minute and the length of each train is equally likely to be 0.189 and 1.136 miles.  

The large network has significantly more nodes than the small networks, thus we 

expect the solution time of the Dynamic algorithm to increase exponentially, as 

compared to the case of small networks. To the reduce problem size of the train 

scheduling problem in Step 4 of the algorithm, instead of using the FlexiblePath 

formulation to solve the train scheduling problem, the LtdFlePath algorithm is used to 

solve the train scheduling problem. Preliminary results show that, for this relatively 

large network, the Dynamic-2 algorithm, which frees one of the existing trains to be 

re-scheduled, cannot generate a schedule in a short time constraint that is required by 

the dynamic environment. Thus we only compare the performance of the Dynamic-1 

algorithm with the Greedy algorithm. The results are shown in Table 14. 

Table 14 Computational results of Dynamic algorithm (large network) 

 Average Delay Per Train (minutes) Average CPU Time Per Iteration (seconds) 

Total trains Dynamic-1 Greedy Dynamic-1 Greedy 

20 4.82 8.86 4.1 negligible  

40 5.58 10.89 6.87 negligible 

60 5.39 8.85 4.99 negligible 

80 5.45 10.57 5.89 negligible 

100 6.06 9.87 8.83 negligible 
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Like for small networks, the Dynamic algorithm outperforms the Greedy 

algorithm for large networks. The average solution time when a new train enters the 

network is well under 10 seconds. Thus the Dynamic algorithm can be applied in real 

time. 

8 Implementation 

This project addresses the area of Commercial Goods Movement and 

International Trade. Freight train transportation is a cost effective way to move goods 

from ports to inland destinations. According to the Association of American Railroads, 

more than 40% of all freight is transported by trains in the US. Given the fact that the 

freight railroad industry is already running without much excess capacity, better 

planning and scheduling tools are needed for railroad management. In particular, this 

research focuses on solving the freight train scheduling and dispatching problems. 

The optimization based scheduling heuristics developed in this research are tested 

on real-world rail networks in the Los Angeles area. The performance of the proposed 

heuristics is compared with the performance of existing heuristics in the literature. 

The heuristics developed outperforms the existing heuristics. The implementation of 

our heuristics will require suitable optimization software tools such as CPLEX, and 

access to railway data such as train lengths, train speeds, headway regulations and 

ready times of trains. 

9 Conclusion 

According to a study conducted by the Association of American Railroads, trains 

move about 40% of all freight in the US. And the demand for rail transportation will 

increase rapidly in the near future. Given the fact that the freight railway industry is 

already running without much excess capacity, better planning and scheduling tools 

are needed to effectively manage the scarce resources, in order to cope with the 
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rapidly increasing demand for railway transportation. Train scheduling and 

dispatching is one important sub-problem of the freight railroad management problem. 

In this report, we propose heuristics for both the static and dynamic scheduling of 

freight trains. In the literature of static scheduling, most of the research simplifies the 

rail network; our heuristics can work on any complex rail network. We first introduce 

exact methods for solving the static train scheduling problem. Then we present few 

heuristics which can significantly reduce the solution time, yet produce a satisfactory 

solution quality. We also compare our heuristics with three existing procedures. Our 

heuristics are able to produce better solutions in terms of minimizing delay, in a 

reasonable amount of time. For static scheduling in large networks, two heuristics 

based on the idea of decomposition are proposed. Both algorithms significantly 

outperform existing algorithms. Then we move to dynamic scheduling of freight 

trains. While the literature on dynamic scheduling is very limited, a heuristic based on 

sequential optimization is proposed. Experimental results show that the Dynamic 

algorithm is able to reduce delay by at least 40% of existing algorithm on 

representative rail scenarios. For future work, we plan to use techniques like queuing 

theory to analyze the delay structure of some typical simple track configurations. The 

results of the theoretic analysis might serve as the guidance for smarter greedy 

heuristics.  
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Appendix A: Complete set of results for sample network 
Four trains case: 

 
 
Six trains case: 

 

4 trains Total Delay (minutes) 

( CPU time (seconds) ) 

 FlexiblePath LtdFlePath GA+FixedPath PureGA FixedPath Greedy 

Scenario 1 7.53 

(256.68) 

7.89 

(3.05) 

9.11 

(17.08) 

9.84 

(0.86) 

12.00 

(0.02) 

22.09 

(negligible) 

Scenario 2 7.64 

(214.82) 

7.82 

(2.53) 

8.78 

(13.21) 

10.20 

(0.95) 

12.91 

(0.02) 

28.75 

(negligible) 

Scenario 3 6.18 

(351.94) 

6.63 

(2.70) 

7.73 

(13.79) 

8.19 

(0.95) 

10.30 

(0.02) 

19.57 

(negligible) 

Scenario 4 6.47 

(280.49) 

6.76 

(2.27) 

8.15 

(13.10) 

8.53 

(0.73) 

12.25 

(0.02) 

24.31 

(negligible) 

6 trains Total Delay (minutes) 

( CPU time (seconds) ) 

 LtdFlePath GA+FixedPath PureGA FixedPath 
 

Greedy 

Scenario 1 14.10 

(1067.98) 

16.40 

(93.09) 

19.20 

(5.52) 

19.93 

(0.11) 

47.51 

(negligible) 

Scenario 2 16.27 

(1662.18) 

19.79 

(78.11) 

23.06 

(5.58) 

25.06 

(0.09) 

53.51 

(negligible) 

Scenario 3 9.58 

(934.95) 

11.71 

(58.84) 

13.96 

(3.50) 

15.64 

(0.06) 

37.51 

(negligible) 

Scenario 4 10.43 

(266.72) 

12.99 

(57.02) 

15.84 

(3.24) 

19.18 

(0.05) 

39.08 

(negligible) 
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Appendix B: Trackage configuration of rail network from Indio, 

CA to Colton, CA 

 

Colton station 

0 1.6 8.2 

13.95

 

18.55

 

21.25

 

22.45

 

24.75

 

28.05

 

28.75

 

30.45

 

31.95

 

34.55

 

35.85

 

38.55

 

40.95

 

42.45

 

44.95

 

47.45

 

Indio station 

49.3 


	1 Introduction
	2 Literature Review
	2.1 Tactical Scheduling
	2.2 Operational Scheduling
	2.3 Real Time Dispatching
	2.4 Gap

	3 Research Accomplishments 
	4 Problem Formulation
	4.1 Network Construction
	4.2 Fixed Path Formulation
	4.3 Flexible Path Formulation
	4.4 Experimental Results

	5 Algorithms for Small Networks
	5.1 LtdFlePath Algorithm 
	5.2 Genetic Algorithm and Fixed Path Formulation
	5.3 Pure Genetic Algorithm
	5.4 Greedy Algorithm
	5.5 Experimental Results

	6 Algorithms for Large Networks   
	6.1 Decomp Algorithm
	6.2 Experimental Results   
	6.3 Parallel Algorithm
	6.4  Experimental Results

	7 Dynamic Scheduling
	7.1 Dynamic Algorithm
	7.2 Experimental Results – Small Networks
	7.3 Experimental Results – Large Networks

	8 Implementation
	9 Conclusion

