
 i

XML based supply chain integration at the Los Angeles

and Long Beach ports

Final Report

METRANS Project 08-11

January 2010
Principal Investigator: Burkhard Englert

Professor

Co-Principal Investigator: Shui Lam

Professor
Carroll Chiou

Graduate Student

California State University Long Beach

Department of Computer Engineering and Computer Science

1250 Bellflower Boulevard
Long Beach, CA 90840

Tel: (562) 985-7987

Fax: (562) 985-7823
Email: benglert@csulb.edu

 ii

Disclaimer

The contents of this report reflect the views of the authors, who are responsible for the

facts and the accuracy of the information presented herein. This document is

disseminated under the sponsorship of the Department of Transportation, University

Transportation Centers Program, and California Department of Transportation in the

interest of information exchange. The U.S. Government and California Department of

Transportation assume no liability for the contents or use thereof. The contents do not

necessarily reflect the official views or policies of the State of California or the

Department of Transportation. This report does not constitute a standard, specification, or

regulation.

 iii

Abstract

In this project we perform a cost / benefits analysis of EDI and XML based

communication between shipping lines, terminal operators, government agencies,

trucking companies, rail operators and other agents at the Los Angeles and Long Beach

ports. We analyze the suitability of (1) XML/EDI, (2) EDIINT (Web EDI), (3)

Collaboration EDI, (4) The language M and (5) Web Services for use as communication

platforms at the ports.

We conclude that currently at the Los Angeles and Long Beach ports information is

mostly shared in a bilateral manner. As a result we describe and recommend an approach

where terminals share data with shipping lines / carriers, rail operators, trucking

companies, truckers and government agencies using XML based Web Services. This

approach allows agents to either make information accessible through a web browser or

through direct computer system to computer system communication. In the latter

approach the terminals computer system will function as an automated information

clearing house that can provide up-to-date, real-time information to all interested and

authorized parties. Web Services furthermore allow securing and authenticating this

information, protecting its dissemination. We believe that this approach can lead to

increased throughput at the ports and an increase in capacity.

 iv

Table of Contents

1. Introduction ... 1

2. Background and Motivation .. 2
3. Electronic Data Interchange (EDI) ... 3

3.1 Why EDI?.. 4
3.2 ASC X12 and EDIFACT ... 5

4. The Extensible Markup Language (XML) ... 7
5. XML/EDI .. 8

5.1 Internet EDI ... 10
5.2 Basic XML/EDI Systems ... 10

5.2.1 Types of XML/EDI applications ... 12
5.3 Collaboration XML/EDI .. 16

6. XML conversion ... 17
6.1 XML conversion methods .. 18

6.1.1 BOTS open source EDI Translator .. 19
6.1.2 m-e-c eagle ... 19

6.1.3 Microsoft Biztalk 2006 ... 20
6.2 Conversion methods for XML style sheets ... 20

6.2.1 XSL Conversion ... 21
6.3 XML-EDI Conversion Experiments ... 22

7. EDIINT – EDI over the Internet .. 23
7.1 EDIINT Security ... 24

7.1.1 bTrade TDAccess/TDPeer .. 25
7.1.2 Inovis BizConnect ... 25

7.1.3 Gentran Integration Suite .. 25
7.2. Problems with EDIINT (and Web-EDI) .. 26

8. The Language M ... 27
8.1 Comparing M and XML .. 28

9. Communication Model at the Los Angeles and Long Beach Ports 29
9.1 Terminal Operating Systems – Navis Sparcs N4 .. 29

9.1.1 Groovy .. 31
9.1.2 Announced features of Navis Sparcs N4.. 32

10. Navis Sparcs and Web Services ... 33
10.1 Integration through Web Services .. 35

10.1.1 Integration with trucking companies.. 35
10.1.2 Integration with rail facilities .. 36

10.1.3 Integration with container depots .. 36
10.1.4 Integration with shipping lines .. 36

10.1.5 Integration with Port Communication Systems .. 37
10.1.6 Internal Integration .. 38

10.2 Implementation of a Web Service connection .. 38
10.2.1 Consuming a Web Service .. 39

10.3 Web Service Security ... 40
11. Recommendations and Conclusions ... 41

12. Implementation.. 44
13. References ... 46

 v

List of Figures

Figure 1: An excerpt from an ASC X12 purchase order document 6

Figure 2: An excerpt from an EDIFACT orders document ... 6

Figure 3: An excerpt from a RosettaNet PIP 3A4 Purchase Order request document........ 7

Figure 4: Information flow in traditional EDI systems ... 8

Figure 5: Biz talk Mapper Example ... 10

Figure 6: Direct connection of two EDI Servers... 13

Figure 7: Direct connection scheme between client and EDI server 14

Figure 10: XSL conversion for screen display ... 21

Figure 11: XSL conversion for printing ... 21

Figure 13: Communication structure using M .. 28

Figure 14: Current use of EDI at the ports of LA and LB ... 29

Figure 15: Navis Screen shot showing vessel profile [42] .. 30

Figure 16: Navis Screen shot showing Container information [42] 31

Figure 17: Web Services as portals to PCS .. 37

Figure 18: Web Services enabled access to a Terminal Operating System (Phase 1) 45

Figure 19: Web Services enabled computer to computer communication (Phase 2) 46

List of Tables

Table 1: Comparison of EDI and XML .. 2

Table 2: Comparison of EDI transmission formats ... 11

Table 3: Comparison of costs of EDI transmissions ... 12

Table 4: Types of XML conversion ... 18

Table 5: Cost/benefits of EDI / Web Services .. 44

 vi

Disclosure

Project was funded in entirety under this contract to California Department of

Transportation.

 1

1. Introduction

In recent years internet related technologies such as XML have created new opportunities

for electronic communication between different companies. At the same time many

companies have changed their business operations in ways that could benefit greatly from

increased communication opportunities. However, for historical and other reasons the use

of this technology for communications has been limited at the Los Angeles and Long

Beach Ports. Like many other companies terminal operators at the Los Angeles and Long

Beach ports generally use EDI (Electronic Data Interchange) to communicate

electronically with other companies. While EDI is compact, it is difficult to maintain and

extend and generally only allows computer to computer communication. Moreover it

requires large financial investments in proprietary systems and software. As a result its

use is often confined to larger companies. At the ports, for example, EDI communications

usually does not include smaller customers of terminal operators or truck drivers limiting

its usefulness. For this reason EDI alone cannot be the basis of port communications.

Platforms and systems are needed that allow all agents at the ports – shipping

lines/carriers, terminals, rail operators, government agencies, trucking companies and

truckers to effectively participate in this communication and exchange.

In many other areas where effective business to business communication is essential to

support operations XML has become the underlying language that can support this

communication.

XML based communications are accessible through any web browser and are thought to

be cheaper than EDI based communications. A perceived lack of interoperability

however remains a drawback of an electronic communication system that is solely based

on XML. While it is not realistic to expect companies to switch from EDI to an

exclusively XML based communication platform in the immediate future there are tools

available or can be designed that allow to translate between EDI and XML and between

XML and EDI efficiently. As a result there are several XML based options one could

pursue: (1) XML/EDI, (2) EDIINT (Web EDI), (3) Collaboration EDI, (4) The language

M and (5) the use of Web Services.

In this project we perform a closer investigation of all these options. We determine in

which way XML can be best used so that it provides the best possible, communication

support that is needed for effective and efficient communication and exchange of

information at the ports. We will compare the cost and benefits of these options.

The use of EDI is very widespread among shipping lines and terminal operators. One

example of its use is the stowing plan of a container ship before the ship‘s arrival at the

port. Small enterprises that operate at or near the port on the other hand generally do not

use EDI due to high financial cost requirements and implementation difficulties.

Companies that have invested into EDI would be reluctant to redesign their business

communication technologies just because a new technology appears. It is important to

note that there is no reason why the investment a company made into EDI cannot be

embedded into an XML based communication. All the semantics, data sets, business

vocabularies, code lists and processes could be mapped to an XML messaging standard

as illustrated in the table below.

 2

Feature EDI XML

Origin trade internet based

multi-channel support only computer to computer Yes. Also human

 readable

modus of communication 1:1 1:1 /n : m /

 combinations

Focus on compactness interoperability

Tool support Little; mostly proprietary high and open source

Standards UN/EDIFACT; ANSI-X12 ebML, Bolero XML

Table 1: Comparison of EDI and XML

2. Background and Motivation

In 2007 the total number of containers handled at the ports of Los Angeles / Long Beach

actually declined by 0.2% [32]. In 2008 the downturn accelerated with a decline of 8.5%.

For 2009 a further decline by 13.3% has been forecast. For 2010, however a growth in

exports and imports is expected [32]. Despite the current downturn and decline to remain

viable as the center of International trade for the United States the L.A. / L.B. ports and

the Southern California region must look for alternative growth opportunities.

Consequently existing facilities and infrastructure will have to handle a significantly

increased load. The lack of space, shortage of money and an increased awareness of the

impact of the port and its supply lines on air pollution render it difficult and potentially

impossible to absorb this projected growth simply through a parallel growth in

infrastructure. New approaches that are cost effective, that increase the efficiency of

operations and that at the same time limit or possibly even lower the amount of

congestion and air pollution are needed. To be realistic and ultimately effective these

approaches must start with the current operating conditions at the ports and a systematic

plan to further optimize them. As it was shown at other large ports (e.g. Rotterdam)[58]

one such promising area of future optimizations are the electronic communications

between terminal operators and customers, shipping lines, truck drivers and US customs.

Currently port terminals in general use EDI (Electronic Data Interchange) to

communicate with carriers (for example to exchange a stow plan in advance) and their

largest customers. EDI is a compact protocol that allows for one on one computer to

computer communication but because it is built on proprietary technology comes with a

large price tag. This means in practice that most small companies including those owner

operated trucking companies cannot participate in this form of communication.

Moreover, the EDI standards are more like a library or a tool kit than the definitions of a

fixed protocol. This means that for every new communication that is set up a substantial

amount of testing and fine tuning is required resulting in substantial overhead costs, again

limiting the scope of EDI communications at the ports.

On the other hand experiences at other ports [58] show that enabling all parties to

participate in port communications has a very positive impact on the efficiency of the

port and the connected supply chains as a whole. At the Los Angeles and Long Beach

ports there are some initial steps in this direction. Some terminals for example, have

instituted appointment systems that allow truck drivers to set up a one hour pickup

window, reducing wait and idle times at the port and consequently congestion and

 3

ultimately pollution. Newer Terminal Operating Systems (TOS) enable terminals to

potentially give shipping lines / carriers, rail companies and truckers/trucking companies

partial access to their computer systems.

In this project we study in which way and to what extent this initial effort could be best

extended. We study in which way XML based communication could be best used to

enhance connectivity at the ports. Considering the sizeable past investments into EDI we

do not expect large companies to completely move away from EDI any time soon. We

however investigate how and at what cost these EDI communications could be embedded

into a larger communication system that is based on XML. To do so we investigate the

possibilities of translations between EDI and XML and XML and EDI, EDIINT, the

language M and look into turn key solutions such as XML (Web Services) enabled

terminal operating systems.

Many people believe that XML could be used to accomplish the same things as EDI with

much cheaper technologies and infrastructures. If this is correct it will allow many more

companies that operate at the ports – such as small trucking companies, smaller terminal

customers – to invest in such technologies. In the end this will lead to greatly enhanced

port communications leading to a significant reduction in congestion, pollution and hence

cost and to a marked improvement in efficiency. We believe that it is likely that both EDI

and XML communication will coexist at the ports through transformations between them.

Therefore it will be all the more important to use the right transformation tools and

mapping definitions.

The installation of Web-based appointment systems at the Evergreen and other terminals at

the ports is clear evidence of the anticipated benefits of an increased electronic

communication at the ports. Moreover since XML also – though albeit smaller – has certain

interoperability issues and requires the translation between different XML forms – we extend

our study to include other XML based protocols and platforms such as the language M and

Web Services. Finally we consider the security of the approaches that we discuss. It will be

crucial to ensure that only authorized users can access information that is disseminated by

legitimate partners. We will now first explain the relevant communication technologies, EDI

in chapter 3, XML in chapter 4, EDI/XML in chapter 5, XML conversion in chapter 6,

EDIINT in chapter 7, the language M in chapter 8. We then describe the communication

model at the LA and Long Beach ports in chapter 9 and Terminal Operating Systems and

Web Services in chapter 10. We finally conclude with some discussion and recommendations

in chapter 11.

3. Electronic Data Interchange (EDI)

EDI is a standard format for exchanging business data. EDI‘s goal is it to implement the

automated, electronic exchange of standardized, structured and normalized messages

from computer to computer between different organizations in commercial or

administrative transactions. There are many different standard EDI messages that have

been developed. To enable business communications in many different situations these

standard messages are very flexible and are usually interpreted using some sort of tool

box. This means that every time a new communication is set up the standards must be

adjusted to the given situation requiring careful negotiations between the involved parties

and thorough testing. In general this makes EDI a labor intensive technology. Depending

on the background, experience and requirements this can take several hundred human

 4

hours on both sides. Besides not being human readable the EDI input to application

programs also requires some translation or conversion.

In the shipping and transportation industries two standards are prevalent: the American

Standards Institute‘s X12 (ANSI-X12) standard [34] and the United Nations Electronic

Data Interchange for Administration, Commerce and Transport (EDIFACT) standard [3].

EDIFACT is the predominant international standard while X12 is used mainly in the

United States. Container terminals and shipping lines have been communicating via EDI

for many years. The APM and ITS terminals at the Long Beach port for example, uses

X12 to communicate with carriers.

The use of different EDI standards is also very common. Hence if two companies want to

start up EDI communications they first must negotiate an agreement to define the subset

of EDI they want to use [26]. This agreement is called an implementation guideline. As a

result, EDI messaging standards are frequently modified and hence diverge significantly

[44, 45]. This leads to an equally wide range of available software and systems to support

their use. Most commercial users buy a package which typically handles (1) mapping

between the EDI standard and internal file formats defined by the user; (2) the

management of trading partner relationships by maintaining a database of who‘s who and

what messages are enabled as part of the trading agreement; (3) the timetabling and

automatic running of online sessions to send and receive messages [7, 11, 38].

The Internet is increasingly used to send and receive EDI messages, either by FTP [28] or

by email transfer. In 1995 a simple MIME protocol for encapsulating an EDI message

was defined [15] and, under the leadership of the Internet Engineering Task Force, a

much more comprehensive standard is being finalized with the goal to enable an EDI

message to be sent over the Internet with the same levels of security and audit trail which

Value Added Networks have traditionally provided.

3.1 Why EDI?

Given these disadvantages it may seem as if there are only very few reasons to use EDI at

all. This however does not explain why EDI is still so widespread especially among large

companies in the transportation industry. Before EDI mainly manual keyboard data entry

was used to process incoming shipping documentation. Because of a lack of standard

documents that were flowing through the transportation cycle and across the globe human

actions were the only possibility for processing this information. Data entry operators

would quickly scan a document and find the information they would want to capture. The

operator would only capture the information needed at this point of the shipping cycle all

other information potentially needed at later stages of the cycle was lost. Companies

could potentially outsource this operation but this does not remove its inherent

inefficiencies. A medium or large carrier or shipper would have to employ 100 or more

data entry operators to process all documents in this manner. Because data is copied and

entered manually errors were very common. Studies showed that employees would spend

about 10% of their time correcting errors and that a skilled operator made a mistake on

average every 300 characters [48]. Errors are also the result of incorrect or illegible forms

or of transmission errors.

EDI was adopted by the transportation industry in the late 1960‘s to allow for seamless,

namely efficient and less error prone transmission of data between carriers and shippers.

Data could now be transmitted directly from the shippers to the carriers and terminals

 5

computer system. Standardized EDI documents such as EDI-856 Advance Ship

Notice/Manifest eliminate the need for paper documents. Based on the Accredited

Standards Committee (ASC) X12 format, the 856 is used to list the contents of a

shipment of goods as well as additional information related to the shipment, such as order

information, product description, physical characteristics, type of packaging, marking,

carrier information and configuration of goods within the transportation equipment. The

transaction set provides an ordered flexibility to convey information, enabling the sender

to describe the contents and configuration of a shipment in varying levels of detail. The

sender of this transaction is the organization responsible for detailing and communicating

the contents of a shipment, or shipments, to one or more receivers of the transaction set.

The receiver of this transaction set can be any organization having an interest in the

contents of a shipment or information about the contents of a shipment.

So why then is EDI currently only used by an estimated 2% of the worlds businesses? In

fact it is mainly used only by large companies. Small and medium enterprises mostly

stayed away from EDI for several reasons: First the set-up process for EDI is very

complex. To send and receive an EDI file internal data formats such as database formats

must be mapped and converted precisely to the required EDI standard. This process can

either be taken care of in house by a dedicated EDI IT department or can be handled by

an outside contractor. In both cases significant additional costs arise for the company.

Also if the company chooses to select an outside contractor to handle its EDI traffic it

usually gets locked into a vendor‘s proprietary system and Value Added Network (VAN).

Hence for medium size and small companies EDI was never really an option. This means

that while EDI is an efficient and effective means of electronic communication it always

only represented a small part of the global business to business communications.

To make EDI a viable option for comprehensive global supply chain communication the

mapping of EDI documents to other data formats must be addressed. To do this a

company could either internally develop its own parser or buy a parser from one of the

many vendors.

3.2 ASC X12 and EDIFACT

The Transportation Data Coordinating Committee (TDCC) was formed in 1968 to

standardize the electronic exchange of data for all transportation industries in the US. The

American National Standards Institute (ANSI) continued this effort in 1979 and began to

develop ASC X12 (Accredited Standards Committee) whose first version was released in

1982. EDIFACT on the other hand is based on the recommendations of the United

Nations Economic Commission for Europe (UNECE). ISO approved EDIFACT as an

international standard in 1987. In 1992 ANSI announced that the continued development

of ASC X12 would end in 1997. Many US companies subsequently, however did not see

any benefits in switching to EDIFACT. As a result X12 and EDIFACT are now both

continuing to evolve as two independent standards. This will likely remain the case for

the foreseeable future.

We will illustrate the two EDI formats with the very simple example of a purchase order.

According to this order a delivery will be shipped to ―EDICustomer‖ in the organization

―CSULB‖ at the street address of ―1250 Bellflower Blvd.‖, with the postal code ―90840‖

in ―Long Beach‖ in the ―USA‖. Figure 1 shows the representation of this information in

 6

the ASC X12 format, while Figure 2 shows the representation in the EDIFACT format.

ASC X12 specifies the segment codes ―N1‖, ―N2‖, etc, EDIFACT the segment code

―NAD‖ and both use the element values ―ST‖ and ―US‖.

N1*ST*CSULB~

N2*EDICustomer~

N3*1250 Bellflower Blvd.~

N4*Long Beach**9840*US~

Figure 1: An excerpt from an ASC X12 purchase order document

NAD+ST++CSULB+EDICustomer+1250 Bellflower Blvd.+Long

Beach++90840+US’

Figure 2: An excerpt from an EDIFACT orders document

An EDI document does not contain any information about its structure. Therefore sender

and receiver must agree in advance on which standard and which standardized document

type they are using. Also a company may decide not to use a field provided by the

standardized document format. The company must then ensure that its communication

partners are aware of this. Otherwise any information sent in this field will be lost or

misunderstood. Finally business software can generally not understand native EDI

documents therefore some sort of mapping, i.e. conversion between native data formats

and EDI must occur. For example to populate an EDI document certain database entries

must be entered into the correct fields of the document. This explains the need for

continued human supervision and intervention for any EDI system. In addition EDI

standards are based on business needs. Since business needs tend to change rapidly EDI

standards to be effective and supported by the business community must be able to

change together with the business processes. As a result EDI standards can change up to

two times a year. An investment into EDI is hence never a one time investment. An

investment into EDI is also an investment into the information system that supports its

use. Companies that use EDI for business transactions must either support an internal

EDI department that monitors and implements these changes or hire a contractor that

provides all EDI communication and conversion via a value added network.

This means that EDI is tied to large investments and maintenance costs explaining why

mostly only large companies use it [2, 18]. On the other hand EDI is very effective for

business transactions: It allows for direct business to business communication without

human intervention. The EDI file sizes are usually very compact. Since EDI files do not

contain information about their structure they are usually relatively small – most files are

less than 50 Kbytes. Finally since companies have already made large investments into

this technology they are looking for a return on their investment. This means that any

technology wanting to replace EDI must come with verifiable benefits that impact the

bottom line of a company directly.

The literature also shows that EDI based business interactions provide many advantages

over manual business interactions. EDI provides a speedup of business interactions [20] it

reduces the number of errors [54] and operating costs [41]. But companies often use EDI

with a small fraction of its business partners and for only a small subset of transactions

with these business partners [49]. A terminal operator, for example, in most cases uses

 7

EDI only for the transfer of manifests between carrier and terminal, rail operator and

terminal and customs and terminal. EDI is used for interchange in both directions.

Small and medium size companies often lack the organizational readiness, are afraid of

the EDI costs, their customers and a majority of their partners do not use EDI or the

volume of business transactions is too small to justify the investment into EDI [54].

4. The Extensible Markup Language (XML)

XML [64] is designed to improve the functionality of the Internet. It is a text based

syntax standard that acts as a foundation for the development of semantic standards. In

XML, a user can specify the structure of a document in an extensible Document Type

Definition (DTD), a file that determines how mark up tags should be interpreted by an

application that presents the document. XML strictly separates structure and content, so a

DTD can be used for several XML documents as a template. The presentation itself is

specified in a style sheet. This allows a user to present the same content in many different

ways (using different style sheets) without having to reorganize the content. XML is

supported by many programming languages, applications and inexpensive tools such as

web browsers making it a technology that is easy to access and use.

<shipTo>

<BusinessDescription>

<businessName>

<FreeFormText xml:lang="US">CSULB</FreeFormText>

</businessName>

<PartnerBusinessIdentification>

 <ProprietaryDomainIdentifier>EDICustomer</ProprietaryDomainIdentifier>

 <ProprietaryIdentifierAuthority>CSULB</ProprietaryIdentifierAuthority>

 </PartnerBusinessIdentification>

 </BusinessDescription>

 <GlobalPartnerClassificationCode>End User</GlobalPartnerClassificationCode>

 <PhysicalLocation>

 <PhysicalAddress>

 <addressLine1>

 <FreeFormText xml:lang="US">1250 Bellflower Blvd.</FreeFormText>

 </addressLine1>

 <cityName>

 <FreeFormText xml:lang="US">Long Beach</FreeFormText>

 </cityName>

 <GlobalCountryCode>US</GlobalCountryCode>

 <NationalPostalCode>90840</NationalPostalCode>

 </PhysicalAddress>

 </PhysicalLocation>

</shipTo>

Figure 3: An excerpt from a RosettaNet PIP 3A4 Purchase Order request document

The example in Figure 3 [44] shows the same purchase order form Figure 1 and Figure 2

in XML format. The Rosetta Net [46] Partner Interface Process (PIP) defines the element

names ―shipTo‖, etc. and the contents ―End User‖, ―US‖, etc., the attribute name

―xml:lang‖ and the attribute value ―US‖.

Many messaging standards are based on XML. In the messaging context the content of a

message is represented in an XML document that conforms to the definition in the XML

scheme. An XML scheme describes the structure and data typing of one specific class of

XML documents, its default values and documentation. The scheme can also be used to

validate XML messages, that is ensure that a given XML documents conforms to the

rules specified in the scheme. This naturally allows the use of many different standards

and as a result the transformation between these standards must be addressed. This is one

 8

of the weaknesses of XML. One possible solution is the use of the XSLT transformation

language. This language allows users to adjust content towards humans or devices with

different preferences or capabilities and to devices with different semantics [52].

There are also tools available that allow the transformation of EDI messages into XML

and vice versa. In an EDI/XML world a customs agent, for example, could update the

status of a container in a central database through a mobile device that uses a Wireless

Markup Language (XML for wireless devices). An authorized truck driver could then –

using a web browser on his PDA (through XML) - request an update on the container

from the central database. At the same time a data export module that is attached to the

central database could automatically notify on the basis of EDI or XML/SOAP[9] a

terminal operator of any changes to the status of the container.

There are many different XML messaging standards for e-business. In electronic

commerce we have cXML[13], BMEcat[6], ebXML[19], in supply chains RosettaNet[46]

or BizTalk[5], in the transport sector Bolero[7] and tranXML[56].

Several studies show that XML has clear advantages compared with EDI [26, 29,47,50].

On the other hand many researchers believe that XML will not replace EDI in the near

future [35, 60]. The main reason given is that the costs of XML dominate its benefits. In

2003 9% of companies in Europe that use computers used EDI-based e-business

frameworks. In 2005 that figure went up to 19%. On the other hand in 2003 8% of these

companies used XML based e-commerce frameworks, while 14% used XML in 2005

[16, 17].

Why does EDI - even though XML seems better suited to meet today‘s communication

demands - appear to have an advantage over XML in terms of business adoption? A

study by Farrell and Saloner [21] argues that standardization as in the case of EDI is

efficient when its users are certain about the other user‘s benefits and costs even though

they have different preferences. When users are unsure about others benefits and costs a

―deadlocked‖ state results where they may become locked into inferior technology. The

technology that initially is superior – EDI in our case – has an advantage even though it is

not the optimal technology. To become the main technology XML based e-business

frameworks will have to overcome this difficulty.

5. XML/EDI

In traditional EDI systems EDI documents are exchanged over a Virtual Private Network

(VPN), through FTP or using AS2 (an Http based protocol)

between two Enterprise Resource Planning (ERP) servers.

ERP Server EDI Server EDI Server ERP Server

Figure 4: Information flow in traditional EDI systems

 VPN

 AS2

 FTP

 9

Over the last two decades the Internet has become a global and cheap electronic

communication medium. Naturally this leads to the question whether one can use this

cheap and ubiquitous network to transfer EDI files. The ISIS European XML/EDI pilot

project was sponsored by CEN/ISSS to study the feasibility of XML for electronic data

interchange, and was completed in January 2000 [33].

In scope, it examined conversion from UML- and EDIFACT-based systems for

healthcare and transportation, respectively. It also studied the utility of auxiliary XML

processes and specifications (such as XSLT) to determine what components may be

missing from XML tools today. The lessons learned from both the UML- and EDIFACT-

based investigations included:

 XML is capable of electronic data interchange using currently available tools.

 Original standards need to be simplified when converted to XML, such as

normalizing data, removing codes, defining defaults and subsetting.

 General structures need to be converted to hierarchical structures, often with rules to

facilitate automatic implementation.

 Mnemonics and programming-style names need to be edited to produce meaningful,

human readable tag names.

 Chains of XSL Transformations allows application tailoring and simplifies

applications by supporting localized XML DTDs, converting between forms

(EDIFACT, WML, local format, etc.) and presenting as HTML.

 While the current set of specifications are adequate (XSLT, DOM, XML Path, and

XML Schema), several necessary improvements were proposed.

XML‘s biggest weakness is its lack of standardization. To use XML together with EDI

will only be possible if standardization succeeds. Efforts in this area include

RosettaNet[46] and ebXML[19], which we will discuss in detail later (chapter 8).

While in EDI transformation is expensive, proprietary and cumbersome, tools and

middleware in XML are generally cheaper and very powerful. Commercial systems such

as BizTalk mapper[4] can be used to transform between EDI and XML. Figure 2 shows

the configuration of such a mapper. In this example the source file is an EDI-based

document, and the destination file is a flat-file document. Here the EDI document

structure is first converted to an intermediate XML format, the structure of which is

represented by an XDR (XML Data-reduced) specification. A data-driven parser creates

an XML version of the EDI specification. The XSL engine then transforms this source

XML representation to an XML representation of the destination file format. The

destination specification is later serialized to the native format of the destination file, a

flat file in this example. Creating mapping definitions, however, is still time consuming

work.

 10

Figure 5: Biz talk Mapper Example

Value added Network based EDI has a long history. Since 1996, however, companies

have begun to use the Internet to transmit EDI messages. There are three levels of this

Internet based EDI:

 Internet EDI -- Transmission of EDI messages over HTTP, FTP, SMTP, or

specialized banking industry protocol

 Basic XML/EDI – Representation of EDI messages in XML, and transmitted over

Internet protocols (HTTP, FTP, SMTP)

 Collaboration XML/EDI – Exchange of XML messages defined by business

processes, with messaging formats based on larger framework specifications

(RosettaNet[46], ebXML[19])

5.1 Internet EDI

In recent years the area of Internet based EDI has emerged since the implementation

and operating cost are relatively cheap. There are several problems associated with

Internet EDI. The first problem is interoperability. Second it is difficult to connect

automatically to the backend systems of the users, namely these backend systems can

often not parse EDI files. Also if EDI files are sent over the public Internet, files

potentially may become compromised. It would hence be desirable to add some error

correction and authentication features such as digital signatures to the files or encrypt the

files all together. XML based Web-EDI or XML/EDI addresses these weaknesses. In

XML/EDI EDI files are described using XML syntax. The resulting file is then said to be

in XML/EDI format.

5.2 Basic XML/EDI Systems

I. In basic systems files are either transmitted over FTP, TCP/IP or http/https.

1. FTP (File Transfer Protocol)

EDI document

Data Parser (using

XDR specs)

XML document XSL engine XML document

Serializer (using XDR

specs)

Flat file document

XSLT map

 11

 The most basic file transfer protocol in TCP/IP networks.

 Protocol is widely considered to be insecure so messages (files) are often unable to

pass through firewalls.

 Not commonly used as an Internet EDI protocol.

2.TCP/IP

 Allows use of a low cost and fully duplex modem.

 Messages can pass through firewalls.

 More reliable than FTP – error checking, redundancy, acknowledgments.

 Commonly used in Internet EDI.

3.HTTP/HTTPS

HTTP (Hyper Text transfer Protocol) – Developed for the exchange of html documents

between servers and clients over the WWW.

HTTPS – HTTP equipped with an encryption function that is based on SSL (Secure

Socket Layer) technology.

 Files can generally pass through firewalls.

 Low security risks (https).

 Becoming the mainstream communication protocol in Internet EDI.

II. Files can also be transmitted using email as attachments in this case the protocols used

are SMTO or MIME. SMTP is the most basic mail transfer protocol. MIME also allows

transmitting and receiving binary data.

III. Finally it is possible to convert a business document into an HTML document and

post it as a web document to which the receiver then has access. This receiving process

can also be automated.

 Advantages Disadvantages

File

Transfer

Can automatically connect

to corporate system.
 Specialized skills necessary to build and

maintain system.

 Expensive.

Email Can automatically

connect to corporate system.

 No server necessary.

 Need email based EDI software package.

 Email is unreliable.

Web Easy to operate Requires human operation on the client side

and data entry into the backend system.

 Interface depends on each server. Client

potentially needs to perform several

conversions.

Table 2: Comparison of EDI transmission formats

The costs of the different formats also must be taken into account:

 12

 General Costs Application

File

Transfer

Internal System Setup including

EDI server estimated at up to $10,000.

Internet EDI ASP services: $100 -

$300 +

Internal EDI translator $5000.

 Chosen when automatic

connection is needed.

 Good for large number of

transactions

(100 per day or more).

Email Email based EDI software product -

$1000

Can be used with 100 or more

Transactions per day in case of

Automatic connection

otherwise

With several per day.

Web Client‘s expenses depend on server‘s

policy.

With ASP service cost about $100 per

month.

Feasible with several

transactions per day

Table 3: Comparison of costs of EDI transmissions

5.2.1 Types of XML/EDI applications

Based on the level at which XML is employed we can distinguish the following

XML/EDI types:

1. Simplified basic XML/EDI

 Selected business documents are partially converted to XML as a supplementary

function to Web-EDI. Documents that are used with low frequency (e.g. monthly

reports) are downloaded as XML documents. This requires the use of XML translation.

Documents that are used frequently are transmitted via regular Web-EDI. This

facilitates the introduction of XML/EDI and reduces performance problems.

2. Full scale basic XML/EDI with all business documents converted into XML.

 Common and frequently used business documents are also converted to XML (e.g.

purchase orders, receiving documents). In addition Web-EDI‘s file transfer, email or web

transmissions are available. System can be built in house or by employing an ASP

service. An XML style sheet can be used to customize screen displays and printing

sheets. Extensibility of XML allows a company to prepare for future developments.

Solves the conversion problems encountered in pure Web-EDI.

3. Full scale basic XML/EDI with a native XML database.

 Extends a full scale basic XML/EDI system with a backend database that is also in

XML format. This allows for seamless connection with other backend systems in the

company (e.g. accounting system). The database however must be designed with security

and performance assurance to coordinate with other functions.

We will now look at three distinct XML/EDI architectures. First we consider a system

where servers are connected as peers and exchange XML/EDI messages (Figure 6). We

then consider an architecture where a client is connected to an EDI server via XML/EDI

(Figure 7). Finally we consider the case where a client connects to an EDI server via

XML/EDI and an ASP (Application Service Provider) (Figure 8) [65].

 13

Figure 6: Direct connection of two EDI Servers

Figure 6 shows how two EDI servers can communicate using XML/EDI. The EDI server contains

the XML schema and DTD to perform the XML conversion in the XML translator. The data
exchange file contains XML data in the exchange area between the internal system and the EDI

business document.

Internal
System

Firewall

XML translator

EDI Server functions

Data Exchange File

Firewall

Router

Router

Firewall

EDI Server functions

XML translator

Data Exchange File

Firewall Internal

System

XML/EDI

EDI SERVER

EDI SERVER

 14

Figure 7: Direct connection scheme between client and EDI server

Server has some web functions that allow it to make documents visible to the client via

the web. The corresponding Web-EDI function on the client side consists of a screen and

data entry capabilities, the ability to submit a reply to the server and to download

XML/EDI data. The translator generates CSV or flat file data. The client does not need to

have any EDI capabilities in this setting.

Web-EDI

XML data

XML translator

Flat file

data

XML style

sheet

Excel

Backend System

Printed

Forms

Internet

Http / Https

Client PC

Internal
System

Firewall

XML translator

Web functions (XML, HTML)

Firewall

Router

Router

Firewall

XML/EDI

EDI SERVER

 15

Figure 8: XML/EDI using ASP

Internal
System

Firewall

XML translator

EDI communications functions

onsfunctions

Data Exchange file

 Firewall

Router

Router

Firewall

XML/EDI

EDI SERVER

Internet, IP-VPN

(FTP/ TCP/IP, HTTP)

 ASP

 Firewall

 Router

Web-EDI

XML data

XML translator

Flat file

Figure

8:

XML/E

DI using

ASPdata

XML style
sheet

Excel

Backend System

Printed

Forms

Http / Https

 Firewall

Router

Internet

XML/EDI

Client PC

 16

In the setting of Figure 8 the XML translator function in the EDI server is provided by

the ASP. The EDI communication module transmits files and keeps a history of

transmissions. The ASP then performs the conversion so that the client can access the

files through Web-EDI in the same manner as discussed before.

5.3 Collaboration XML/EDI

Collaboration EDI is based on the Internet and XML. It is targeted for real-time applications

of business-to-business transactions in corporate backend systems. It is most successful in an

environment where several business systems inside a company and many different systems

used by customers, partners and suppliers must be connected in real time. If it is only used for

business to business transactions and the companies operations force batch processing the

benefits of collaboration XML/EDI are very small.

Traditional EDI focuses on the development and definition of business document message

standards. Collaboration XML/EDI on the other hand defines and standardizes the business

process not just individual messages.

RosettaNet[46] for example, develops universal standards for the global supply chain

RosettaNet‘s origins were in the need to trade complex information in high technology and

adjacent industries, and now these efficient standards have spread to other sectors. In a dozen

industries, spanning hundreds of companies, and the entire globe, the standards enable

automation of business processes.

EbXML [19] is an attempt to internationally standardize collaborative XML/EDI. It success

has been at best mixed so far. Far more promising appear to be Web Services. A Web Service

is defined by the W3C [59] as "a software system designed to support interoperable machine-

to-machine interaction over a network‖. Web Services allow companies to connect and

coordinate business applications over the Internet.

A collaboration XML/EDI system allows for the secure and reliable, real-time exchange of

business documents on the message level on the Internet. This exchange is further coordinated

with internal systems and uses the following processes:

 Real-time business information exchange

 Transmission and reception of single business documents in single messages

 Process management capabilities in business to business collaboration

 Coordination of collaboration with internal systems

 Creation, conversion , inspection of standardized XML business documents

 Security implementations such as electronic signature, encryption and authentication

http://en.wikipedia.org/wiki/W3C
http://en.wikipedia.org/wiki/Interoperability
http://en.wikipedia.org/wiki/Machine_to_Machine
http://en.wikipedia.org/wiki/Machine_to_Machine
http://en.wikipedia.org/wiki/Computer_network

 17

Collaboration EDI/XML Systems Architecture [65]

In a collaboration EDI/XML systems architecture (Fig 9) the secure communication

module has responsibility for secure data communication. Security and authentication are

ensured using SL or TLS. The module can securely send and receive business data. The

electronic envelope module when sending receives an XML file from the B2B

coordinator and puts this XML file into an electronic envelope. An electronic envelope

here represents encryption, error correction and certification functions. Upon receiving of

an envelope the functions are reversed. The envelope module also coordinates with XML

processing and security processing.

The B2B manager is responsible for managing the currently applicable B2B

communication standards and applying them to the given message or file. B2B

communications are also called public processes while internal processes are called

private processes. The Internal system coordinator fulfills a parallel role to the B2B

manager with respect to internal communication. It coordinates internal processes with

external (public) processes. The XML processing must ensure that the XML formats used

are compliant with currently applicable standards. Finally the security processing module

is responsible for all security related aspects of the communication such as digital

signature creation, encryption/decryption and authentication.

6. XML conversion

XML documents contain only information about the structure of the given document and

its content. The easiest way to read an XML document is to first convert it to HTML or

XHTML and to then to display the resulting document in a browser. To coordinate

between different systems the structure of an XML document must often be changed. An

XML document that ―describes‖ or ―represents‖ an EDI file for example may not be

usable in an internal data system – its structure must be converted or the document itself

must be converted into another format.

Secure

Commu-

nication
function

Electronic

envelope

exchange
function

Business

to

business

process

manager

Internal

process /

system

coordinato

r

Internal

System

XML processing + security processing

Partner

Web

Figure 9: Collaboration EDI/XML Systems Architecture [65]

 18

There are four different types of XML conversion:

6.1 XML conversion methods

There are four main conversion methods for XML documents:

A. Conversion using programs that were developed internally only for this purpose.

 In this case a program is developed in a suitable programming language (C++, Java,

Perl, C#, Python) that reads the XML document (or document in another format),

analyzes its content and converts it to another format (to XML). A well written program

will be able to handle all four conversion cases. This approach is successful with well

trained and experienced developers. On the other hand programs developed in this

manner are only able to convert between known XML document structures, changes in

the document structure will require program changes and hence increase the maintenance

costs. This is a good option for companies that have in house developers.

B. Conversion using Cascading Style Sheets (CSS).

 In this case CSS that is used in html documents is applied to XML documents to allow

for conversion. All common browsers are CSS compliant. The CSS conversion however

can only designate the method of display (font, size, color, etc.) for the tag but the

method cannot convert the structure of the document. The method only works for the

second type of conversion (XML to HTML/XHTML).

C. Conversion using the eXtensible Style Sheet Language (XSL).

 The conversion is performed by using the XSLT (XSL Transformations) developed by

W3C and requires a XSLT processor. The XSLT processor is implemented on all

platforms that can process XML. This method allows for conversion of the first three

XML conversion types. It cannot be used to convert other formats to XML. The

conversion definition document in XSLT is simply another XML document.

 Conversion pattern Application

1 XML to XML XML to XML linking e.g. conversion of an internal

XML document to an XML document that describes

an EDI file (XML/EDI).

2 XML to

HTML/XHTML

Allows for easy readability of XML documents.

(E.g. makes an XML/EDI document human readable

through a web browser).

3 XML to other formats XML system linked to a non XML system (e.g. an

XML/EDI document is converted to CSV (comma

separated value) format for easy further conversion

to required internal data format).

4 Other formats to XML A non XML system is linked to an XML system

(e.g. an internal file in CSV format is converted to

XML for use by an external EDI system).

Table 4: Types of XML conversion

 19

D. Conversion using commercial software.

 There are many software products available on the market that allow for a conversion

in all four cases. Before acquiring a software product it is essential for a company to

closely examine its requirements. Once the package has been purchased no more changes

can be made.

To decide which method to use it is necessary to closely examine the context in which the

conversion should be employed. Note that for conversion from other formats to XML

only custom designed programs or commercial products can be used. If the computing

platform is fixed an in house developed program in a fixed programming language may

be the cheapest option. If a conversion between operating systems needs to be performed

(and to XML) XSL may be the cheapest option. Since EDI is used for business

transactions a common operating systems and platform are unrealistic assumptions. With

EDI the advantages of XSL appear to be tremendous. Many programmers are not yet

experienced in XSL however. This currently greatly increases the cost of a conversion

using XSL.

We next describe some examples and test results of programs that can perform XML

conversions from X12 or EDIFACT to XML.

6.1.1 BOTS open source EDI Translator

BOTS [8] is an open source solution to EDI conversion. It is free to use with no

licensing fees. It is provided by Ebbers Consult, Inc. The knowledge of python is

extremely beneficial when working with BOTS. The entire program is written in python

(open source, so source code available to modify) and additional user-defined

functionality may be added by plug-ins written in python. The program is web-based,

once installed on a server; any workstation can access it through a web browser. It

supports most popular browser (IE7/Firefox/Opera/etc.). An understanding of networking

concepts would be helpful for troubleshooting purposes. The program is still being

maintained by the developer (latest update 2008-10-25, v1.4.0). It is highly configurable

and EDIFACT and X12 grammars and plugins are available for conversion to XML

(install and use). There is a decent manual and tutorials are available on the developer

web page. Outside of that, there is a scarcity of online support. Users must pay for

commercial support from the developers (Ebbers Consult, Inc.). It appears to be a one

person enterprise, so a single point of failure. Supports Windows and Linux/Unix. The

installation is relatively straightforward if running Windows XP or Linux as there are

package installers that handle all the necessary requirements. In our experiments the

program did not run under Windows Vista/7. The program is able to automatically

receive EDI messages directly from the network that they are transmitted from. (VAN,

internet, etc.). It can also perform batch operations. Because it is a web-based application,

the GUI is very minimal.

6.1.2 m-e-c eagle

mec eagle[39] is an open source solution to EDI conversion. It is free to use with no

licensing fees. It is provided by Mendelson e-commerce GMBH. The program is entirely

written in Java, and is hence platform independent. It does not appear to be maintained by

the developer anymore (latest update 2006-05-18). The only support available is a forum

 20

on the company webpage and the forum is not active. There is no activity within the last

year. No other online resources are apparently available. Users must pay the company for

commercial support. The built in help files are extensive and easy to follow. The program

installs and runs under Windows 98 and XP. It cannot be installed on Vista, but files may

be copied over to run on Vista (running under compatibility mode) with some

compatibility issues. It apparently does not function correct only Windows 7. The GUI is

very user friendly and tasks and functions are nicely organized into visual functions. One

is able to connect to VAN, Internet, E-mail, etc to automatically receive EDI messages.

The program can perform batch operations

6.1.3 Microsoft Biztalk 2006

Biztalk 2006 R2 [5] includes support for EDI exchange (including X12, EDIFACT, and

HIPAA support) and Availability Statement (AS2) data for EDI over the Internet. A base

EDI adapter along with its components must also be installed. It is commercial software.

The Software includes many other E-commerce features (ex. RFID, Business Tracking).

It is powerful enough for use by large companies with extensive e-commerce capabilities.

It can be overwhelming for clients that are not interested in all the other features. It

includes extensive support (Official support from Microsoft via MSDN). It also includes

a detailed EDI to XML conversion tutorial. It has official support from BizTalk developer

teams through MSDN blogs, specifically, an official blog from the BizTalk 2009 – EDI

product Team that is dedicated to all EDI news on BizTalk, with posts from the

developers. There are active online community forums to ask general BizTalk questions

or specific EDI issues within Biztalk. It is a very large program relative to the other

solutions (because it covers more than just EDI and XML). Software and licensing are

expensive.

6.2 Conversion methods for XML style sheets

XSL is a framework to describe the layout of an XML document; it consists of the XSLT

(XSL Transformations), XPath and XSL FO (Formatting Objects) specifications. An

XML style sheet or XSLT style sheet describes the format conversion formula compliant

with XSLT.

1. XSLT (XSL Transformations)
 XSLT is the language of style sheet descriptions. In the style sheet the conversion of an

XML document is described. For example,
 <xsl:element name=”Element”>

 TEXT

 </xsl:element>

 is converted to
 <ELEMENT>

 TEXT

 </ELEMENT>

 in XML.

2. XPATH
 XPATH is a language used to specify parts of an XML document. E.G.
 /child::doc/child::chapter[position()=5]/child::section[position()=2]

selects the second section of the fifth chapter of the doc document element.

3. XSL-FO

 21

 XSL-FO is an XML-based markup language describing the formatting of XML data for

output to screen, paper or other media.

6.2.1 XSL Conversion

In an XSL conversion an XML document, using an XSLT processor and an XML style

sheet is converted to an XML document, HTML document or an XSL-FO document.

To display an XML document on the screen, i.e. in a browser window it is first converted

to an HTML document. This is the method used by Web-EDI systems to display a

document on the screen.

Figure 10: XSL conversion for screen display

To print a document using the XSL style sheet, an XSL style sheet is written for

conversion to an XML-FO document. The XSL-FO processor then formats this document

to print it or to output it as a PDF file.

Figure 11: XSL conversion for printing

Advantages and disadvantages of adopting an XML style sheet

(A) Advantages

(i) XML style sheets are standardized. Moreover the standard is an open standard and

not proprietary. This allows vendors to develop applications that work on many

different platforms.

(ii) Style sheets enable the separation of structure from content. Namely the content is

provided in XML while the structure is given in XSL. Assume company A is

connected via XML with company B and company C and B and C have different

order formats. So company A must be able to handle order forms from both B and C.

If structure is separated from content, company A can use the same XML document

for both company B and C – only the XSL form needs to be changed. This facilitates

management and integration with the backend system/database.

XML document

XSLT

processor

(conversion)

XML style
sheet (HTML)

HTML
document

Browser
display

XML
document

XSLT
processor

XSL-FO

XSL-FO
processor

Printable

file

PDF file

XML
Style sheet

 22

(iii)Style sheets provide for a very high level of expression. With XSL-FO we can either

display one and the same file or print it.

(B) Disadvantages

(i) The style sheet requires an investment in the training of programmers. This cost may

be reduced with new XSLT tools.

(ii) There are currently only a few products compliant with XSL-FO.

This clearly implies that the definition of style sheets is the crucial step for the

effectiveness of XML based business to business communication.

Ideally style sheets could be stored on a server that is accessible by all participants.

Companies could then simply download the style sheets they would like to use for their

business applications. This facilitates the exchange of common style sheets between

business partners. In another approach companies would exchange style sheets in a

bilateral manner. This model is closest to the current state of affairs in EDI

communication.

The efforts to standardize XML/EDI are moving in two directions. First the

standardization of the definition of basic business documents and data elements and

second the standardization of message transmission and security.

Because of the extensibility of XML it is possible to standardize any desired industry

standard business documents. There are several available methods to convert standard

business documents into XML. Most commonly the new XML standards are simply

based on some already existing business document standards.

6.3 XML-EDI Conversion Experiments

In our experiments we developed and tested simple EDI to XML conversion tools. The

goal of these tools is it to convert EDI data into XML so that it can be integrated more

easily into back office systems and be made available through the Internet to others. In

general for an experienced programmer it is not difficult to develop such a tool. In

addition there are free tools available online that can be modified to a users needs.

In particular the language Python has become popular with developers that work on EDI

to XML conversions. Python is an object-oriented, byte-compiled language with a clean

syntax, clear and consistent philosophy, and a strong user support community. Python

runs on Windows, Linux/Unix, Mac OS X, OS/2, Amiga, Palm Handhelds, and Nokia

mobile phones. Python has also been ported to the Java and .NET virtual machines.

Python is distributed under an Open Source Initiative (OSI) -approved open source

license that makes it free to use, even for commercial products. This makes it possible to

quickly write working, maintainable code, which in turn makes Python an excellent

choice for many programming tasks. Processing any type of EDI is no exception.

Our experiments showed that such a tool, however, is likely simply an equally

cumbersome extension of EDI. Namely the tool must know in advance the type of EDI it

is supposed to convert. That means that potentially for each separate EDI standard a

separate program is needed. Hence even if one can develop a sufficient number of

conversion tools that would allow a company to use these tools to convert standard EDI

documents to XML, the tools would not be able to handle all exceptions. So if an

unforeseen situation arises the company would face the same difficulties with these

conversion tools as it did with EDI. Also since Python is open source, while one can find

http://www.python.org/
http://www.python.org/doc/Humor.html
http://www.python.org/psf/license
http://www.python.org/psf/license

 23

excellent help from the Python community, no specific vendor will be available to help a

developer solve problems.

The in-house conversion approach requires technically advanced individuals, which a

company must take into account when considering appropriate staffing. Finally, the

framework we developed is not mature enough for production use and other similar

freely available frameworks may not be overly mature, either.

7. EDIINT – EDI over the Internet

EDIINT – EDI over the Internet – is a working group of the Internet Engineering Task

Force (IETF) enabling the transport of EDI and XML data over the Internet in a secure

manner. It is also the standard of an alternative data transport to value added network

(VAN) based data communications between EDI trading partners. The service provide

matches the services associated with VAN services – mail boxing, trading relationship

management, security, authentication and non-repudiation – via software[30].

EDIINT includes three major standards: AS1 (Applicability Statement 1 for SMTP

protocol, asynchronous – ―Batch Mode‖), AS2 (Applicability Statement 2 for HTTP

protocol, synchronous – ―Peer-to-Peer, Real Time‖), and AS3 (Applicability Statement 3

for FTP protocol, synchronous – ―Client/Server‖). The AS1 uses email attachments with

S/MIME (Secure/Multipurpose Internet Mail Extensions) encryption and security over

SMTP (Simple Mail Transfer Protocol); AS2 provides S/MIME encryption over HTTP

(Hyper Text Transfer Protocol); while AS3 provides S/MIME encryption over FTP (File

Transfer Protocol) in a server/client model manner.

Several major retailers and large manufacturers are in the process of implementing or

have already implemented EDIINT initiatives that will eventually require their supply

chain to make the change to eliminate VAN costs. Wal-Mart, the world‘s largest retailer

– which never used VAN‘s - has moved to EDIINT replacing their ―bisync direct dial

communications‖ and is now requesting for all their vendors to accommodate and follow.

Several other companies followed Wal-Mart‘s initiative. As a result many major software

companies provide software and services that support EDIINT/AS2.

EDI started in the 1960s as a bisynchronous communications protocols of the IBM

mainframe environments. In the 70s, EDI added store and forward networking that

became the predominant model used by Value Added Network (VAN) service providers

since then. VAN‘s provide third party, auditable features guaranteeing a reliable and

secure exchange of electronic business documents between businesses. The mail boxing

services VANs provide allows each trading partner to process data on their own schedule.

If companies use a VAN the cost depends directly on the number of documents and

characters exchanged. Even though VAN providers have lowered their per document and

per character charges the number of documents in general has gone up increasing the

VAN costs for many companies. In the last two decades internet bandwidth and ease of

access have increased steadily. Hence the Internet appeared as an obvious candidate for a

more cost effective alternative to VAN‘s. After some security, authentication and non-

repudiation issues had been resolved the Internet Engineering Task Force began to

 24

address standardization and added mail boxing and trading relationship management to

the package.

Even though traditional EDI is standardized, standards are changing at a very fast pace

since competing companies in several industries operate with specialized business

arrangements, which may only last for a few months or few transactions.

In most EDI transactions using VAN‘s, negotiated Trading Partner Agreements (TPAs)

are used to specify data interchange on a one-to-one basis. The case of Wal-Mart

mentioned earlier is not an isolated case however. Namely on the Internet and in

electronic commerce, there is a trend toward what one could call Unilateral TPAs [30]. In

a unilateral TPA one party specifies the standard to be used for a transaction and asks any

potential business partner to submit transactions of that type. Another benefit of Internet

EDI and EDIINT in particular are the real time capabilities. While traditional EDI

provides a batch driven process with a wait time between submitting and receiving a

confirmation for a submitted document, EDIINT exchange happens in real time.

The AS2 and AS3 protocols specify how to deliver a document to the recipient with no

intermediate routing or mail boxing. An AS2 and AS3 capable application at the sender

establishes a connection over the Internet to the receiver's application and sends the

document. The receiver then returns a receipt to the sending system.

7.1 EDIINT Security

AS2 provides several security options. Data can be sent over a secure connection

(HTTPS) or package encryption (using a digital certificate for authentication) can be

used. AS2 also allows for documents to be digitally signed, making it possible to later

check the validity of a document. Other aspects of AS2 may be challenging for some

smaller users namely smaller companies. First it requires a company to have at least one

computer connected to the Internet at all times. In particular, a requirement of EDIINT

AS2 is the Internet visibility of a valid IP address.

AS1 uses email attachments and is routed through existing email servers and protocols.

AS2 on the other hand requires from a company to open up a portion of its enterprise

network to the outside world to enable the receipt of files via HTTP/HTTPS. In some

cases it may be challenging to get network administrators on board.

Second, AS2 requires the management of digital certificates. These certificates can be

revoked at any time and expire periodically. Hence someone must visit all issuing

authorities and look at the revocation lists. Also expired certificates must be renewed.

Clearly the amount of work will grow with each new business or trading partner

connected via EDIINT. The AS2 application requires the manual import of Digital

Certificates and there are no commonly used standards to deal with revocation.

AS3 is a new MIME based protocol specification from the Internet Engineering Task

Force. AS3 defines how to perform secure and reliable file transfers with FTP in a

standardized way to ensure interoperability between solutions. Classical FTP has

virtually no security and reliability features so most firewalls will not allow FTP files to

pass by anymore. Hence AS3 adds security and reliability features to FTP. No

repudiation is also ensured since encryption is document based and does not interfere

 25

with individual network packets. As a result it is much more compatible with firewalls

than Secure FTP using SSL.

While AS2 is a peer-to-peer model, AS3 is a client-server model. It uses receipt

notifications like AS2 and unlike AS2 does not require a ―listener‖ to always be

connected to the Internet.

It is also suited for Dial- up Internet connections, making it an option for partners with

very limited internet connectivity.

We next provide several brief examples of EDIINT AS2 compliant software solutions.

All solutions are stand alone products. The manufacturers claim that they can be plugged

into an existing EDI infrastructure without significant changes to current operational set

ups.

7.1.1 bTrade TDAccess/TDPeer

TDAccess/TDPeer [11] is a real-time communication platform designed for smaller

trading communities. It includes support for at least 15 EDI translators, task scheduling

and integration into backend office systems. It also provides AS1, AS2, VAN/SSL and

PKI certificate security.

The TDPeer platform has three components. The client has a command line DOS or

Windows interface. An AS2 server is the http listener needed for real-time capabilities.

Trading partner relationships and certificates can be set up with the TDManager module.

7.1.2 Inovis BizConnect

BizConnect [31] is a Java-based data exchange solution designed for small-to-medium

size enterprises with up to 25 business partners. BizConnect comes

with pre-configured partners (Ace Hardware, Auto Zone, Wal-Mart, etc.

7.1.3 Gentran Integration Suite

Sterling Commerce is one of the world‘s largest providers of EAI and B2B software

solutions.

Sterling's Gentran Integration Suite [25] can handle both small transactional messages

and large bulk data and batches of messages.

The Gentran Integration Suite supports EDIINT AS1 and AS2. It also features mailbox

services, real-time and batch processing, and is suitable for large trading communities.

Sterling's mailbox functions are similar to mailboxes in a mail server:

 Each user can have one or more mailboxes

 Mailboxes can be role based instead of user based

 A user can be continually connected to the mailbox and process messages continuously

 Users can leave message in the mailbox and then process them on mass

 Rules can be applied to the messages as they come in to a mailbox to determine how

they should be handled.

 Since everything goes through a mailbox the applications do not have to be aware of the

differing partners.

 26

7.2. Problems with EDIINT (and Web-EDI)

To begin using Web-EDI a client needs little more than Internet access. This led to a fast

growth in the number of Web-EDI systems. These early systems were mostly based on

html however and so the screen display formats were not standardized. This means that

for a company with many different trading partners the system must be able to understand

the traded items on the screens of each partner. To coordinate with in house systems

conversion is again necessary.

To solve this problem EDI standard business documents and screen formats per industry

must be developed. As a result, however users lose the ability to customize screen

formats for their own needs. Also the problem for cross industry trade remains.

XML provides a convenient solution to these problems. Screen formats can be written

with XML style sheets and provided to each client. The client can then modify the style

sheet to customize the format for his own needs while at the same time being compliant

with standardized EDI documents.

In Web-EDI using XML the conversion by the XSLT engine using XML style sheets can be

done either on the client or on the server side.

In case of conversion on the server side the business document (in XML format) is

converted to HTML (XHTML) by the server and then transmitted to the client. From the

client‘s perspective this is simply HTML based Web-EDI. The conversion itself can either be

done each time a request is received (in-time-conversion) or once after the business document

is created (ahead-of-time-conversion). In the case of in-time-conversion business document

data can be exchanged dynamically with the client at the cost of additional overhead for each

conversion. Ahead-of-time-conversion incurs minimal overhead but leads to static data.

Conversion on the server side leads to a lack of flexibility for the client side. The client cannot

influence the screen format and may have difficulty adjusting the received data to the client‘s

backend system. On the other hand the server can implement all security requirements and

assure security and authenticity (using certificates). Conversion on the server side also does

not depend on the client‘s browser. It works even with browsers that lack an XSLT processor.

Conversion on the client side and XML style sheet management on the server side

The server stores business document data (XML) and the XSL style sheet. Both are sent to the

client on request. With the received data the client creates an HTML (XHTML) document

Business document

XSLT

processor

(conversion)

Screen format
definitions

Screen display
data

Browser
display

Figure 12: XSLT: XSL transformations

 27

through XSLT processing. This approach allows the server to manage multiple style sheets

for many different clients. Also the client does not need programmers to develop the XSLT

style sheet and to monitor the XSLT processor. All newer browsers have an XSLT processor

built in (e.g. MS-XML in case of Internet Explorer).

Conversion on the client side and XML style sheet management on the client side

The server stores business document data (XML) and submits it to the client on request. The

client develops his own XSL style sheet and uses it to convert the data on receipt to HTML

(XHTML). In this approach it is suggested that the server provides an XML style sheet

template to the client. The client can then modify it based on his needs. The approach gives

maximum flexibility to the client. The client has the ability to customize the display of the file

and at the same time does not compromise his ability to ensure interoperability with his

backend system. This approach however requires employees that are familiar with XSL style

sheets and XSLT processors. The XSLT processors must be implemented on the client side.

Data transfer from the client to the server

There are two options to implement data transfer from the client to the server. In the first

option data is entered manually by the client in an HTML web page. In this case the data

entered does not remain on the client side so the client will have no direct record of his

transaction. In the second option the client runs a processing program that accepts business

document data, converts it to XML and sends it to the server. In this option a copy of the data

sent remains on the client side. The development of the conversion program however incurs

additional costs.

Many companies are hesitant about transmitting their business data over the Internet with

obvious concerns about security and reliability. To address these concerns the use of VPN‘s

(Virtual Private Networks) has been suggested. In particular IP-VPN‘s (Internet Protocol) are

available from many vendors and are known for their outstanding security and excellent

performance. A VPN is a virtual private network created on public networks. It ensures

security similar to dedicated networks using tunneling and related technologies. In tunneling

to enforce security an extra header is added to each packet.

 Internet VPN – A virtual private network built on the Internet. It is commonly used in

corporate intranets and extranets between companies.

 IP-VPN – In this case the virtual private network is built on a dedicated, closed network

provided by a network service provider. The communication protocol used is based on IP.

Used as corporate intranet and extranets between trading partners.

8. The Language M

M is based on XML and aims to address the interoperability issues of XML. It was

created at the MIT Data Center [10] as an open, global language that communicates

between proprietary schemas enabling companies to combine, visualize and understand

data. Like a regular spoken language. M has a dictionary to describe the meaning of

words. The dictionary consists of a collection of definitions that can be used when

making computer transactions. The dictionary of M also includes word relations, data

format, and language translations. These all help to form and understand messages

written in M.

Just like any other human language M has rules to organize words for machine

understanding of messages. Initially, there were three simple rules namely phrases, key-

 28

value pairs, and tables. A phrase represents a sequence of machine-understandable words

that has a single meaning. Phrases are essential in M in a sense that they help to describe

data elements more precisely. Key-value pairs are lists of words that have associated data

values. They may be used to represent tax forms, medical records and financial

statements.

Key value pairs also help to make data interoperable within a source as well as from

outside sources. Interoperable data helps to combine data on the Internet with the internal

data of a company. And finally, tables are the most common way to store data.

Since M helps data and models flow freely across the network, it has many useful

applications. Namely it can be used as an intermediary between proprietary data systems.

Data from one database is translated into M before it reaches the other database. The

following table shows this transfer of data.

Source

database

Destination

Database

Internet

M Dictionary

Figure 13: Communication structure using M

1. Beginning at the source database, data is retrieved.

 2. The data is transformed into M using the M dictionary

 3. Data is sent from the source to the destination over the Internet

 4. Data is transformed back into the destination database format.

8.1 Comparing M and XML

 Like M, XML may describe data transferred between systems. But, its tags are not as

readable as words in the M language. The tags may become verbose and redundant,

making it even harder to read. For example, a tag could be defined to be

―<ContainersPerDay>‖. Also, this tag may not have the same meaning across different

systems. So in a supply chain with a lot of raw data distributed across different systems in

different locations, this lack of consistent meaning causes interoperability problems.

 As mentioned before, to help standardize communication, XML requires a schema to

define the tags used in an XML file. But, many such schemas (e.g. XHTML [63], SOAP

[9], SMIL [53], ebXML [19], RosettaNet [46]) exist, complicating communication. Thus,

unless a separate translation using say XSLT is performed, a conflict may occur when a

source database uses one XML schema to translate for transmission and a destination

 29

database uses another schema. With M, a single dictionary avoids this confusion.

Centralizing the meaning of the metadata in transmission helps M avoid the problem in

XML where a separate translation between each pair of schemes needs to be performed.

M and XML may be mixed together, with M words used as the tags in XML.

While M appears to solve many of the problems that XML has, it was just recently

released as a prototype and is not yet ready for commercial applications.

9. Communication Model at the Los Angeles and Long
Beach Ports

We distinguish the following three communication models:

a. The Bilateral Information Model (BIM). Here information is exchanged directly

between the interested parties in a bilateral manner. Most large companies at the ports

currently use this model.

b. The Centralized Information Model (CIM). Here information is stored in a central

database. Agents that have the right to do so can retrieve information from this database

c. The Decentralized Information Model (DIM). Here data is stored and controlled by

each individual agent that owns the data. A broker service can help an authorized agent to find

and retrieve data.

Figure 14: Current use of EDI at the ports of LA and LB

The bilateral model (a) is currently prevalent at the ports. There are strong indications

that this will remain the case for the foreseeable future since it unlikely that terminal

operators will be willing to store all their business data in a central database that they

share with other terminal operators. EDI is used between terminal operators and rail

companies and separately between terminal operators and shipping lines / carriers (Figure

14).

9.1 Terminal Operating Systems – Navis Sparcs N4

Currently many terminal operators worldwide are in the process of installing (or have

already installed) sophisticated and state of the art Terminal Operating Systems (TOS).

The APM terminal, for example at the Long Beach port is as of February 2009 in the

process of upgrading to a new version of the Navis Sparcs TOS. Navis Sparcs N4 is a

TOS that promises to deliver the ―most scalable, open, deployable adaptable and

maintainable TOS available‖ [42].

 EDI EDI

 30

The biggest cost factor when installing a TOS for many companies is the customization

of the off the shelf system. While the TOS may be able to solve many problems a

terminal faces it may not immediately be able to solve the problems that this particular

terminal faces. This leads to additional costs that may not be predictable at the outset.

Because of this Navis developed a TOS that is designed and promoted to be easily

customizable after it has been installed. Navis uses what it calls an extensive data driven

business logic to create this highly configurable solution. Users are for example able to

define fields and to configure hold and permission rules to tailor the system to their

business operations without having to write code. The TOS can also be extended through

software development kits and application programming interfaces (APIs) so that a user

(a terminal) can connect its TOS with other best of breed systems.

N4 is a fully integrated system from gate to yard to vessel, eliminating the need to

coordinate between several disjoint systems. N4 also allows for the integration of several

facilities so that a large company can run it not only to administer an individual terminal

but also use it to integrate all its terminals together, further reducing integration costs.

The user interface is based on a Java Rich Internet Application (RIA) and as a result

looks immediately familiar to today‘s users who grew up with Windows. For most users

of this TOS there is no need to be familiar with command line operations, greatly

lowering the learning curve.

Navis even claims that new EDI partners and messages can be quickly configured by IT

administrators without writing any code. The system provides API‘s to connect with

other critical applications. Users keep the ability to decide whether to use internal IT

development or third party consultants or outsourcing or Navis to provide these

applications.

Figure 15: Navis Screen shot showing vessel profile [42]

 31

Figure 16: Navis Screen shot showing Container information [42]

Figure 15 and 16 show two screen shots from the Navis TOS. Figure 15 shows a vessel

profile while 16 shows information about a container such as origin, destination, type and

storage location.

Navis SPARCS N4 product line is based on Canoo‘s UltraLightClient (ULC) [12], a

100% pure Java solution for Rich Internet Applications. With this pure Java technology

in place, how can Navis achieve the flexibility it claims?

When creating multi-client container terminal software it is obviously not enough to

create a solution that is stable and works for one particular client. The solution must be

prepared for the numerous requirements that differ from client to client. One solution

would be to maintain slightly different versions of the product for each client but this can

quickly lead to a maintenance nightmare. Instead, the approach Navis followed is to

include scripting capabilities (allow users to write programs that control other

applications) into their product such that the client or the technical on-site consultant can

apply the required adaptation. Since any adaptation has to express logic like special

routing rules for containers, a simple configuration file is not enough. One needs a smart

configuration, which is a typical usage pattern for Groovy [27].

9.1.1 Groovy

Groovy [27],

 is an agile and dynamic language for the Java Virtual Machine

 has the strengths of Java and in addition features inspired by languages like Python,

Ruby and Smalltalk

 makes the newest programming features available to Java developers with a very

small learning curve

 supports Domain-Specific Languages (programming languages or specification

languages dedicated to a particular problem domain, representation or solution) and

other compact syntax so code becomes easy to read and maintain

 makes writing shell and build scripts (programs that control other applications) easy

with its powerful processing primitives, Object Oriented abilities and a software tool

that automates software building processes for Domain Specific Languages (ANT

DSL).

 32

 potentially increases developer productivity by reducing scaffolding code when

developing web, graphical user interface (GUI), database or console applications

 simplifies testing by supporting unit testing and mocking out-of-the-box

 seamlessly integrates with all existing Java objects and libraries

 compiles straight to Java byte code so users can use it anywhere they can use Java

Groovy is very well suited for Java-based RIA solutions since it integrates seamlessly

with Java while providing higher flexibility and expressiveness where needed.

Groovy uses an AJAX (Asynchronous Java Script and XML) framework. But it hides the

implementation details of the AJAX framework in use. So if a user changes the AJAX

framework in the middle of his project, the Groovy application code stays the same.

RIA and Groovy can be found in technology-leading, demanding, agile contexts where

high requirements for user interaction design have to be met. While the RIA technology

helps with presentation enhancement, Groovy can keep workflows, business rules, and

domain models easy to modify on the fly. This is where Groovy shines and in the case of

Navis Sparcs N4 enables users to customize their TOS to their particular needs.

9.1.2 Announced features of Navis Sparcs N4

The following is a list of features announced for Navis Sparcs N4:

1. Optimization of equipment work assignments in real time by pooling equipment

across cranes and combining yard and equipment constraints with operating business

rules.

2. Optimization of yard management: Expert Decking assigns each container its optimal

position based on yard constraints and business rules.

3. Optimization of vessel planning: Auto Stow feature combines stowage factors (type,

weight) with operating strategy and yard constraints in real time to improve vessel

stow plans. Navis claims a reduction of up to 70% in planning time.

4. Quay commander: Real time monitoring of crane and vessel activities, vessel

container moves and vessel labor assignments to allow for dynamic adjustments to

vessel load/discharge times and crane sequences.

5. EDI: System has an interactive transformation designer that allows users to create

maps for new message types. EDI files can be received or sent via ftp, email or Web

Services. Includes multi stage conversion, processing and transmission tools.

Supports gate, yard, vessel and rail operations.

N4 has a multi-tiered architecture based on J2EE servers and industry standard databases.

It uses clusters of database and application servers to provide fault-tolerance, redundancy,

load balancing and failover support (in case of a hardware or network failure). All users

see the same data and work orders, updates are communicated throughout the entire

system in real-time. The system also tracks the real time productivity of container

handling equipment (CHE) and automatically dispatches work orders to radio data

terminals to increase truck driver productivity.

 33

10. Navis Sparcs and Web Services

In a white paper [55] Navis suggests to use Web Services to create a tighter integration

between truckers, railroads, shipping lines, shippers and terminal operators. A Web

service [59] is defined by the W3C as "a software system designed to support

interoperable machine-to-machine interaction over a network‖. While EDI once correctly

implemented is very well suited for document exchange it was not designed for process

integration. What is the difference between document exchange and process integration?

Consider, for example, an EDI COPRAR message [14]. This is a message sent by an

ocean carrier to a terminal to specify which containers should be loaded onto a specified

ship. The message is a well established standard and contains all the information needed

to specify the containers and the ship they are supposed to be loaded on. Let us assume a

terminal receives such a COPRAR message instructing it to load a container onto a ship

that was already earlier loaded onto another ship. What should the terminal do?

Discharge the container and reload it or leave it on the first ship? Who pays if they have

to discharge it? Maybe it will not be possible for the terminal to get an answer right away

from the shipping line so it will have to make a unilateral decision.

The COPRAR message will not tell the terminal what to do and there are also no other

standardized EDI messages that could provide an answer. In this sense EDI messages do

not implement processes i.e. a sequence of steps that can be followed to solve a given

problem but instead simply exchange documents. This can lead to service failures, higher

costs and frustrated terminal customers such as shippers.

What are the alternatives to the EDI message exchange? Ideally the logistics agent at the

shipping line would like to be able to access his/her computer to find containers to

reroute from one ship to another. The computer could then send a message in real time to

the terminals computer system. The terminals computer system would then indicate

whether it is possible or not to move the container and if it is possible at what price. The

agent then sees the options on his screen and selects how to proceed.

This sequence of steps is a process [55]:

1. The shipping line requests rerouting for a set of containers.

2. The terminal replies that either

 The container can be rerouted.

 The container cannot be rerouted.

 The container can be rerouted at a cost of $

 The container was not found.

3. The shipping line confirms or cancels the rerouting of the containers.

4. Terminal confirms completion of rerouting.

5. Shipping line updates computer system for containers with new route.

This requires an integration of the process between the shipping line and the terminal.

Some steps are done by each of the two computer systems. Both parties learn about the

outcome simultaneously.

To implement such a process integration real-time communication between computer

systems is needed.

http://en.wikipedia.org/wiki/Interoperability
http://en.wikipedia.org/wiki/Machine_to_Machine
http://en.wikipedia.org/wiki/Computer_network

 34

EDI was designed when wide area networks were very slow and unreliable and before the

time the Internet became today‘s ultra fast worldwide communication enabler. At the

time when EDI was developed the above process could not have been integrated since it

would have taken too long for the required messages to be forwarded and processed.

Web Services in this sense are a new messaging scheme that requires low latency (real-

time) communication to achieve integration between disparate, autonomous systems [55].

Why not instead ‗fix‘ traditional EDI to implement the same thing?

Because of the enormous amount of network bandwidth available on the Internet

traditional EDI is not able to compete with systems that have real-time capabilities.

Setting up EDI communications is still a time consuming and expensive process. A

company with multiple trading partners must go through this cumbersome process for

each partner. This explains why outside the Fortune 500 only very few companies

voluntarily decide to implement EDI. For most of the medium and smaller size

companies EDI is simple a business expense that allows them to be in business with one

of these larger companies that require the use of EDI. Otherwise these companies would

very likely not choose EDI [36].

What makes EDI so difficult to implement and expensive? Because there is no standard

process for setting up EDI, every setup requires lengthy meetings between partners to

decide which messages to use, how to handle exceptions etc. Both parties then must

implement the messages and coordinate with the other to test the messages. Commonly

the partners will find flaws or errors in each others implementation and will then have to

meet again to decide who should fix these flaws. They also need to decide which

transportation medium to use – Internet, Value Added network or leased line. In general

the setup process alone usually takes several months making it inefficient and expensive.

Web Services on the other hand decouple users. With Web Service Technologies and the

Web Service Description Language (WSDL) [61] in particular the properties of the

technical interfaces of a Web Service can be described as an XML document. A user that

wants to consume a service that is offered by another user does not need to know

anything about the implementation of this service. All the user needs to know is the

interface of the service, i.e. how to interact with it. The Web Service Technologies and

WSDL, however, do not provide support for the complete life cycle of a Web Service.

Namely they do not publish or help to discover or communicate the details of the

invocation sequence or address security and monitoring requirements.

To be useful in the context of B2B communications it is essential that Web Services that

companies offer to each other are easily discoverable. To discover a Web Service there

are three main approaches [37]:

 UDDI (Universal Description, Discovery, and Integration) [57] is a standard for

centralized repositories. The first UDDI Business Registry (UBR) nodes were run by

IBM, Microsoft, SAP and NTT Com.

 Service directories (or portals) which gather services using focused crawlers or by

manual registration and offer search functionality via a HTML interface.

 Standard Web search engines which are able to restrict the search in some way to

retrieve WSDL descriptions. This provides no guarantee to find services but at the

same time the biggest coverage.

 35

In the case of UDDI the public repositories of Web Services were shut down in the

beginning of 2006. Recent studies hence conclude ―that for publicly available Web

Services the UDDI based approach has failed and been discontinued‖ [37]. Currently

Web Services can most easily be found using regular search engines such as Google or

specialized engines such as xmethods [62] or seekda [51].

Once a service has been discovered how can a user connect to it? When querying for a

service the Web Service Description Language (WSDL) [61] description of the service is

returned. Using this description a developer can construct a Simple Object Access

Protocol (SOAP) client that connects to the service. SOAP is a platform and vendor

independent, XML-based protocol that is used to access services, objects, and servers. A

SOAP (XML) message contains an envelope identifying the message as an XML

message, header (optional) providing encryption information and a message body. The

message body contains all information the message recipient needs – usually method

calls and response information.

10.1 Integration through Web Services

10.1.1 Integration with trucking companies

Because of this built in automation, setting up a connection using Web Services is much

simpler than using traditional EDI. While EDI requires IT teams and takes months to

implement, a connection through Web Services can be set up by very few developers. It

is even possible to access a given Web Service simply through a browser window. So if

for example a trucking company gets an order to pick up a container the dispatcher could

enter the containers number into a field on a terminals website. The dispatcher then will

receive information whether the container is ready for pick up. Such a service can easily

be implemented using Web Services. For a trucking company, however, that does 1000

such collections a day this is not convenient. Checking the terminals website for the

status of each container would be very cumbersome.

With a Web Service implementation the dispatching system itself could access a Web

Service at the terminal and check the status of all required containers. So the dispatcher

will not need to sit in front of a web browser all day long and there is no chance he may

forget to check the status of a particular container – increasing productivity.

Web Services also provide the capabilities to integrate a near ports distribution centers

warehouse and yard management with a terminals computer system. The distribution

center may be able to achieve a just-in-time delivery of its containers, optimizing and

reducing required yard and warehouse space. If the center uses an outside trucking

company it also may be integrated using Web Services. The warehouse management

system / yard management system could order trucks to bring full containers and remove

empty ones. As a result of this integration the warehouse employees will only need to

work with their management system – the rest will happen automatically.

 36

10.1.2 Integration with rail facilities

A similar scenario applies to a near dock rail facility. The rail facility could use its own

management system to enable the loading and discharging of containers to and from a

train and integrate it with the terminal and one or more trucking companies.

10.1.3 Integration with container depots

Also empty containers that are kept in a depot outside the terminal must regularly be

brought back to the terminal and loaded onto ships. Integration of the depots computer

system with a terminals system and a trucking companies system would allow for

example the terminals management system to manage the empty container inventory and

help depots by pre-advising them of arriving or needed containers.

10.1.4 Integration with shipping lines

Shipping lines are the primary customers of a terminal. Terminals are essentially agents

of the shipping lines that interact with the shipping lines customers on behalf of them. As

such they must be aware of the shipping lines business rules and follow them. One

example of this would be the rules that apply when a container must be stored on terminal

grounds. Some lines allow their customers to store their containers at the terminal for a

certain number of days. This number may be different from line to line. The per-day cost

is also tiered usually growing over time. In other cases terminals may give a large

consignee a fixed number of free TEU‘s and not care about individual containers. In the

end there are many possible scenarios all expressed in business rules that the terminal

must be aware of.

The shipping lines will document all the rules and provide the terminals with all the data

needed to evaluate the rules for each possible situation. This leads to a never-ending

stream of EDI messages. The terminal then must implement these rules in their computer

system. This system is expensive to set up, operate and maintain. Also the flexibility of

the shipping lines is limited since they must take into account whether the terminals will

be able to implement a new business rule fast enough.

Web Service will provide a cheaper and more efficient alternative: A shipping line could

simply specify which data it needs to have access to so that it can apply its business rule.

When an event occurs at a terminal the terminals computer system would automatically

provide the required information to the shipping lines computer system using Web

Services. The shipping lines system then would evaluate the data using its business rules

and return a response such as for example ―Ok to receive‖ or ―denied‖. The terminal

could then apply its own business rules and continue processing the event.

Such an approach would have several immediate advantages:

 The terminal would not need to know the shipping lines business rules.

 The shipping line could change them ―on the fly‖ anytime it wants.

 The terminals costs would be reduced (no need to set up the lines rules).

 The cost of EDI communication would be reduced.

 37

 The lines could ensure that all their rules are enforced in the same way at all

terminals they use.

To collect a storage charge the terminal simply hands the shipping line the container

number plus some related data and the shipping lines system would return the amount

owed or directly take care of billing and payment. This would reduce processing times

because now storage charges will be based on the business rules of the shipping line and

not on what the terminal believes the rules to be. In the end this could allow a shipping

line to modify its storage charges on a bill of landing basis giving it utmost flexibility.

Clearly this approach would lower the costs of both terminals and shipping lines while at

the same time greatly enhancing their flexibility – a win-win situation.

10.1.5 Integration with Port Communication Systems

Currently at the Los Angeles and Long Beach ports the bilateral information model

prevails. Web Services as discussed above are ideally suited to enable communication in

this model. But also in the Centralized information Model Web Services can become the

backbone of all electronic communication and interaction at the ports. In the Centralized

Information Model agents such as terminals, trucking companies, rail companies,

government agencies communicate through a Port Communication System (PCS). The

PCS provides a central access point at allows all agents to share information such as

container availability, trucking company insurance status, truck driver credentials,

schedules, news etc. the classical approach to build a PCS is to store all information in a

central database. Since the information constantly changes it must be updated all the

time. This is usually done via manual entry or through EDI. The data entered is in almost

all cases simply a copy of something that is already stored in one of the agent‘s computer

system.

This means that because EDI is used and due to batch processing, data entry errors and

security reasons the data is almost never real-time, never exactly the same and rarely

comprehensive. Most agents will not want to copy all data they own into the central

database. If Web Services are used instead of EDI to communicate with the central

database information can be timely and new functions can be added as need be and with

little effort. In this architecture when two agents want to exchange data the PCS acts as

an intermediary. Both agents send and receive the data via Web Services. Security rules

could easily be enforced increasing the willingness for participation in the PCS.

Figure 17: Web Services as portals to PCS

Agent A PCS Agent B

Web

Services

Web
Services

 38

The actual processing happens at the endpoints while the PCS acts as a storage point and

information relay.

What are the advantages of tighter integration through efficient electronic communication

at the ports?

 Reduced costs – minimize errors, no or little EDI and data entry costs.

 Increased productivity through real-time communication capabilities with rail and

trucking companies.

 Increased customer confidence in the terminal through direct integration.

 Better relationship with customers and customers.

 In the long run terminals may be able to increase revenue.

10.1.6 Internal Integration

Finally Web Service can be used to implement communication between internal

processes within for example a terminals area of control. They can be used for example to

interact and exchange data with a terminal gate or to receive equipment updates.

10.2 Implementation of a Web Service connection

There are many options available when deciding to implement a Web Service connection.

We Service products can de divided into three groups: components, middleware and

turnkey.

 Components – Components help a developer create a web service. There are

many commercially available components (Microsoft, IBM, Sun, Borland and

others). There are also open source, free components such as Apache Axis 2[1].

The cost of these components is low ($0 to $3000) per developer but they require

a major development effort to turn the components into a functioning Web

Service. Apache Axis 2 not only supports the SOAP style of Web Services but

also the Representational State Transfer (REST) [22] style of Web Services.

REST has recently become very popular. With REST domain specific data can be

transferred through HTTP without any additional messaging layer such as SOAP

or session tracking via HTTP cookies. So an application can interact with a

resource by knowing two things: the identifier of the resource, and the action

required—it does not need to know whether there are caches, proxies, gateways,

firewalls, tunnels, or anything else between it and the server actually holding the

information. REST, however is not a new standard – it is simply a style that

promotes to implement Web Services in the same way that made the web

successful.

 Middleware – With middleware legacy systems can be adapted to Web Services.

The approach is targeted for larger companies that know how their legacy systems

work and that have the resources / IT departments to learn the middleware. The

costs is much higher than the cost of components ($20,000 - $100,000+). Since

these are all inclusive solutions buyers get locked into one particular solution. On

the other hand the risks are also much lower compared to components where in

house developers carry most of the responsibility.

 39

 Turn Key Systems - ERP vendors such as People Soft, Navis or SAP offer

turnkey web services support for their applications. These systems are targeted for

what the corresponding ERP system does. Compared to middleware or

component solutions they offer little flexibility. On the other hand adopters need

only very little technical knowledge. A turnkey solution is a practical alternative

if a customer can determine in advance that the system exactly fulfills his/her

needs. There is a little time needed between acquisition and deployment.

Navis WebAccess [43] is an example of a turn key solution. WebAccess provides

information 24-hours a day. Reports are current the moment they are requested, and data

is consistent across all parties. Each time a container is moved, a train departs, or

information flows through the system, data is instantly updated and available via

WebAccess, either on-line, in an e-mail notification or via cellular phone.

WebAccess can provide access to [43]:

 • Ship schedules and berth information

 • Load and discharge lists

 • Container details, status and history

 • Chassis inventory

 • Equipment availability

 • Delivery requirements

 • Demurrage information and payments

 • Holds (Line, Customs, Agriculture, Off-hire, Service)

 • Vessel and barge manifests

 • Booking and B/L details

 • Truck transactions

 • Routing audits

 • Appointments

 • Interchange agreements

 • Damage reports

10.2.1 Consuming a Web Service

Systems that host Web services are called provider systems. When a Web service is

created it is deployed on a provider system as a service definition. The developer

configures the service definition by creating service endpoints. The endpoints hold

policies and settings, which enable the consumer applications to communicate with it and

consume the service definitions. The service definition and the runtime configuration

(service endpoints) reside on the same provider system.

A user, a system that wants to consume Web services running on a provider system, must

have configured consumer applications on a consumer system. The consumer

applications then invoke the functionality provided by the Web services. On the

consumer side a developer creates a consumer application (also called consumer proxy),

that he deploys on a consumer system. To be able to consume Web services, a business

administrator has to configure the consumer proxies at runtime, providing specific

settings which are stored into logical ports. The logical port points to the provider system.

Moreover, it points to the service endpoint of the configured service definition.

To consume allow applications to consume Web Services directly requires some

 40

programming experience. If a Web Service is accessed infrequently it can be offered

through a Web browser and a user may enter data manually and then receive back

through the browser window the information he/she requested. This approach could be

used for example in case of a small trucking company that needs to pick up a container. If

the company however needs to pick up 100 or more containers a day the browser based

approach may become cumbersome and inefficient. As a result customers of a terminal

may be unwilling to adopt this new technology and in anticipation the terminal may not

even initially want to invest into Web Service technologies.

Setting up a direct system-to-system connection so that an application can consume a

Web Service provided by another application can be done relatively easily by an

experienced developer. In Microsoft‘s popular .Net framework [40], for example, setting

up a direct connection to consume an offered Web Service is a straightforward four step

process:

1. Discover and gather information about the service – this can be done by a

developer through a web page. The web page (by the service) will hold all the

information the developer needs to know to build the proxy class that locally will

represent the offered service.

2. Generate a proxy class of the service – this is a simple local place holder for the

remote services offered by the Web Service.

3. Use the created proxy class to invoke an available service – in this step the

developer sets up the connection between the local placeholder and the actual

service.

4. Write an interface for the service – finally the developer makes the proxy

available locally so that it can be invoked automatically whenever needed.

Other frameworks have similar approaches. In all frameworks the developer on the

consumer side does not need to know any details about the implementation of the Service

on the provider side. This decouples the consumer from the provider – allowing both to

experience the benefits of information sharing while at the same time preserving their

independence.

10.3 Web Service Security

A provider must protect its Web Services and only provide them to a client with proper

authentication credentials. To achieve this, SOAP (which is based on XML) is used to

send authentication information with Web Service commands. In the SOAP header

username and password information are passed along so that only the users a provider

chooses can access the service.

Digital signatures can also be used to sign documents. A consumer can sign a document

or request with his/her private key and send it along with the payload of the message. The

provider is then able to verify the signature with the consumer's public key to validate the

authenticity of the document or request. One key benefit of signing is the concept of non-

repudiation. In addition the provider is able to keep a copy of the signature. With it the

provider will later be able to prove that this document/request was really signed by this

consumer. The XML Signature standard provides a means for signing parts of XML

documents, providing end-to-end data integrity across multiple systems.

 41

One key benefit of signing is the concept of non-repudiation. When transactions are

performed, it is often necessary to be able to prove that a particular action took place.

Using signatures, service providers can not only provide evidence that a document is

valid but also record the message transactions into signed audit logs. Once an audit log

has been signed it cannot be modified without significantly changing the signature.

Hackers often modify audit logs in order to "cover their tracks" to avoid detection.

Signed log files can be used to detect such cases.

When third party non-repudiation is required, digital receipts provide independent

verification that specific transactions have occurred.

Since Web Services are accessed and provided over the Internet encryption is often

necessary to protect shared information and requested services. Standard SSL encryption

using HTTPS allows point-to-point data privacy between Web service consumers and

service providers. However, in many cases, the service provider may not be the ultimate

destination for a request. A service provider itself may act as a service requestor,

requesting information from other service providers. This means that even though the

request is encrypted, the provider must be able to recognize that it is not the ultimate

destination of the request without having to break secrecy by decrypting the request. This

is possible since the XML Encryption standard permits encryption of portions of the

message allowing header information to be used for routing purposes while leaving the

sensitive payload encrypted. Sensitive information can then be left encrypted to the

ultimate destination, allowing true end-to-end data privacy.

11. Recommendations and Conclusions

In this report we discussed (1) XML/EDI, (2) EDIINT (Web EDI), (3) The language M

and (4) the use of Web Services as potential options for XML based communications at

the ports. We briefly summarize the earlier discussed main costs / benefits of these

systems.

(1) XML/EDI: This is by far the cheapest solution. In XML/EDI business documents are

exchanged using email, ftp or http/https. This allows the exchange over the Internet

eliminating the need for Value Added Networks. Overall, however, besides moving away

from VAN‘s there are no other clear advantages. Namely the main problem – and reason

for EDI‘s inefficiency – EDI‘s lack of exception handling support remains with this

approach. So it is more of a patchwork solution. The same can be said about the in-house

development of EDI-XML conversion tools. Collaboration EDI: Collaboration EDI does

not simply exchange information but connects business processes with each other. It

standardizes the business process and is not just a simple message standard. EbXML [19]

is an attempt to internationally standardize collaborative XML/EDI. It success so far has

been at best mixed. While initially there has been a lot of enthusiasm about ebXML,

adoption has been slow. The main reason for this can likely be found in the fact that

ebXML does not allow the execution of Web Service Business Process Execution

language (BEPL). Processes in BEPL export and import information by using Web

Service interfaces exclusively. This is a major drawback since more and more companies

are moving towards offering some services as Web Services. So a company would have

to invest into an expensive standard (ebXML) only to discover that it does not cover the

complete spectrum of Service Oriented Architectures (SOA). It appears that since 2006

there is little movement on the ebXML front.

 42

(2) EDIINT: This approach is effective but requires the purchase of a system that can

support EDIINT. The system has real time capabilities but requires a conversion to the

appropriate XML format. So in essence the problem of many different EDI standards is

simply shifted to many different XML formats with the effect that as in the case of EDI

exceptions (errors, changes in procedure etc.) must be handled manually. So in essence it

has similar properties and problems like a classical EDI system.

(3) The language M: M is based on XML and aims to address the interoperability issues

of XML. It was created at the MIT Data Center [10] as an open, global language that

communicates between proprietary schemas enabling companies to combine, visualize

and understand data. Like a regular spoken language. M has a dictionary to describe the

meaning of words. The dictionary consists of a collection of definitions that can be used

when making computer transactions. The dictionary of M also includes word relations,

data format, and language translations. These all help to form and understand messages

written in M.

While M appears to solve many of the problems that XML has, it was just recently

released as a prototype and is not yet ready for commercial applications. Moreover M is

useful as a medium that makes different XML schemas such as XHTML[63], SOAP[9],

SMIL[53], ebXML[19] and RosettaNet[46] obsolete. If one of these schemes, however,

becomes the dominating one, M loses its significance. At this moment it appears that

SOAP and Web Services could become this dominating scheme.

(4) Web Services: This is clearly the most promising approach.

Based on personal communication, many terminals at the Los Angeles and Long Beach

ports are currently in the process of or have recently installed expensive and

comprehensive Terminal Operating Systems (TOS) such as Navis Sparcs N4. These TOS

represent large investments and hence in any realistic analysis must be considered as a

baseline from where to build further connectivity.

It appears almost certain that terminals at the Los Angels and Long Beach Ports will

continue to favor the bilateral information model. There is very little likelihood that

terminals anytime soon will want to convert to the centralized information model. This

means that any direct conversion from EDI to XML would have to occur in a bilateral

fashion, on a case by case basis. Even though – based on our experiments – conversion

tools could be developed in house by a few skilled developers, we believe that most – if

not all – terminals would view this as a very risky step and will hence not pursue it. Over

the last few decades terminals have gotten used to the continued investments into EDI

communication they need to make. In general they write it off as one of these costs that

cannot be avoided. Also in the case of terminals the use of EDI is limited. It is mostly

used in communication with shipping lines / carriers and rail companies. EDI allows

these agents to quickly transmit manifests and communicate business rules. Even though

the terminals are all aware that EDI is not an ideal solution – it requires a continued

investment in manpower – they do not seriously question these costs since all their

competitors face the same costs. As a result they do not feel at a disadvantage even

though EDI is far from efficient and cost effective.

This thinking, however, is bound to change. The continued investment in state-of-the-art

Terminal Operating Systems such as Navis Sparcs N4 is evidence of this fact. Once one

terminal operator moves to such a TOS that allows it to easily integrate all events on the

terminal grounds into its centralized computer system, its competitors will begin to view

this as a serious business advantage and will have no other choice than to move into the

 43

same direction. This process has already begun at the Los Angeles and Long Beach ports.

The APM terminal is as of February 2009 in the process of automating its operations

using Navis Sparcs. The current economic downturn may slow down this process but it

can also provide an opportunity to experiment with these techniques while business is

slower to be ready for future growth.

These new TOS provide support for both EDI and Web Services. Internally the APM

terminal, for example, already uses XML / Web Services to communicate the status of

terminal equipment to the TOS. If terminals become aware of the tremendous advantages

of Web Services in particular, their thinking may change and some terminals may begin

to move from EDI to Web Services to communicate with carriers / shipping lines and rail

operators.

Since terminals have already invested into large and powerful TOS we believe that there

is no reason to develop an in house EDI to XML conversion. Such an effort may simply

lead to a shift of the problem from EDI to XML since pure XML also has serious

interoperability issues. Instead we recommend to seriously explore the additional

connectivity that TOS‘s provide. In particular we believe that Web Services (which are

based on XML communication) are extremely promising as foundational building blocks

for port communication. They do not have XML‘s interoperability issues since any

consumer can get information about a services interface in advance and does not need to

be concerned about the services implementation. Hence they will allow the terminals to

become true brokers of information that provide all the services that carriers, rail

operators, truckers, shipping line customers and government agencies require. From the

viewpoint of a terminal there seems to be no reason not to assume this role. A Web

Service enabled terminal would be able to operate far more efficiently than a terminal

that uses only EDI. All concerned parties will be able to access and provide information

in real time. But for this conversion to really take place, the other agents such as carriers /

shipping lines and rail operators will also have to offer Web Services so that a TOS can

find and request automatically the information it requires to do its job. Once this happens

there will be no more need to use EDI. Until then EDI – besides its well-documented

deficiencies – will continue to persist at the ports.

 Cost Benefit

EDI Requires continued

human intervention

 Expensive since

cannot handle

exceptions

automatically

 Expensive since

allows only bilateral

communication

 Not real-time

 Small file size

 Well established

Web Services Must be set up either

in house (moderate),

through middleware

(more expensive) or

 Allows for

automatic system to

system

communication

 44

using turn key

system (most

expensive)

 All agents must

participate for it to

be effective

 May require

expensive state of

the art Terminal

Operating Systems.

 No or little human

intervention needed

 Same information

can be made

accessible using the

same tool to many

participants

 Participants share

only what they want

to share

 No need for a

service consumer to

know the

implementation of a

service

 Service provider can

change

implementation on

the fly and does not

need to

communicate

change to consumers

(e.g. a carrier can

change its business

rules)

 Based on XML so

can also use browser

to view and access it

 Does not have

XML‘s

interoperability

issues since

interface is easily

learnable

Table 5: Cost/benefits of EDI / Web Services

12. Implementation

We recommend implementing the research findings by making Web Services the basis of

all electronic port communications. Because of the large investments that terminal

operators, shipping lines and rail companies have made in EDI it is unrealistic to expect

that they will immediately move away from EDI. We therefore suggest two

implementation phases:

Phase 1: In this phase we recommend that the terminals provide connectivity to truckers,

trucking companies, government agencies, shipping line customers (shippers), carriers and

rail companies through Web Services using web browsers. All parties will then be able to

retrieve information about a container, a pickup, a shipment through a Web Browser, that is

 45

be able to receive real-time status information directly from the terminal. Using a state of the

art TOS such as Navis Sparcs N4 this can be set up relatively easily since N4 is Web Services

enabled. Other comparable state of the art TOS have similar properties or allow users to

purchase a module that enables Web Services. We believe that this will provide a great initial

improvement of port connectivity.

All interested and authorized parties will be able to retrieve real-time information enabling

them to base decision on current conditions.

Today many cell phones or PDA‘s are internet enabled so a truck driver, for example, will be

able to retrieve updated information about a container he is supposed to pick up even on his

way to a terminal or at the terminal while waiting. Confidentiality of data transmission can be

ensured by making the data only accessible through https.

The implementation of this phase can commence immediately.

 WEB SERVICES

Figure 18: Web Services enabled access to a Terminal Operating System (Phase 1)

Phase 2: In phase two we recommend that trucking companies, government agencies,

shipping lines/carriers and large shippers modify their internal Operating Systems or Business

Management Systems so that they can also become Web Service providers. This will require

some investments but each company will have a choice how much it wants to invest. A

company can either use in house developers to make the modifications, buy a middleware tool

that when plugged in provides the Web Service connectivity or buy a turnkey solution. Which

solution a company chooses depends on its business model and the advantages it sees in

allowing direct access (computer to computer) to its own computer system.

 46

For a small trucking company this may be a low priority but if it needs to keep track of

several hundred container pick ups and drop offs a day the benefits may quickly outweigh the

costs. For a shipping line on the other hand the benefits are much clearer. Allowing a

terminals OS to connect to the shipping lines computer system directly through Web Services

would allow the shipping line to change its business rules without having to inform the

terminal directly. The shipping line would simply change the implementation of its Web

Services and the terminal would get the updated information whenever it consumes the

service. We believe that such an approach could greatly simplify the interactions between

shipping lines and terminals. Since now terminals are always aware of the latest business rules

they can act as true information brokers that provide information on a shipping lines behalf to

the shipping lines customers. With Web Services information can flow unobstructed between

computer systems virtually eliminating transmission errors, allowing for real-time information

flow, and significantly reducing human involvement. With thousands of containers being

moved every year we expect a significant return on investment. Namely containers will be

able to flow faster and more efficiently through the supply chain cutting down costs and

increasing capacity.

We anticipate that the implementation of this phase will begin once the benefits of the

implementations of phase one have become evident to all participants.

 Web Services

Figure 19: Web Services enabled computer to computer communication (Phase 2)

13. References

[1] Apache Axis 2 available at: http://ws.apache.org/axis2/

[2] S. Banerjee, D. Golhar, Electronic Data Interchange: Characteristics of users and non

users, Information and Management 26(1) 65-74 (1994).

[3] J. Berje. The EDIFACT Standards. NCC Blackwell, 1991.

 47

[4] BizTalk Mapper:

http://msdn2.microsoft.com/enus/library/ms865624.aspx#bts:serializer

[5] BizTalk Server. Available at http:// www.microsoft.com/biztalk/default.mspx

[6] BMEcat. E-Business Standard, available at http://www.bmecat.org

[7] Bolero trade communication platform. Available at http://www.bolero.net

[8] BOTS Open Source EDI translator, available at

http://bots.sourceforge.net/en/index.shtml

[9] A. Bosworth, D. Box, M. Gudgin, M. Nottingham, D. Orchard and J. Schlimmer.

XML, SOAP and binary data. Available at:

http://www.xml.com/pub/a/2003/02/26/binaryxml.html

[10] D.L. Brock, E.W. Schuster and T.J. Kutz Sr., An Overview of the M language, MIT-

DATACENTER-WH-009, January 2006, (http://datacenter.mit.edu/MIT-

DATACENTER-WH-009.pdf)

[11] bTrade TDAccess/TDPeer available at http://www.btrade.com

[12] Canoo Ultralight Client, available at www.canoo.com

[13] Commerce XML. Avalable at http://www.cxml.org

[14] COPRAR message, available at http://www.smdg.org

[15] D. Crocker. Mime Encapsulation of EDI Objects, TC RFC1767.

http://www.rfceditor.org (1995).

[16] e-Business W@tch, The European E-business Report 2004 Edition: A Portrait of

Ebusiness in 10 Sectors of the EU Economy (http://www.ebusiness-watch.org).

[17] e-Business W@tch, The European E-business Report 2005 Edition: A Portrait of

Ebusiness in 10 Sectors of the EU Economy (http://www.ebusiness-watch.org).

[18] EDIINT White paper. Available at http://www.effective-

data.com/edi_white_papers.htm

[19] Electronic Business XML (ebXML) available at http://www.ebxml.org

[20] M. Emmelhainz, Electronic Data Interchange: does it change the purchasing

process? Journal of Purchasing and Materials Management 23(4) 2-8 (1987).

[21] J. Farrell, G. Saloner, Standardization, compatibility, and innovation, RAND Journal

of Economics 16 (1) (1985) 70-83.

http://msdn2.microsoft.com/en-us/library/ms865624.aspx#bts:serializer
http://www.microsoft.com/biztalk/default.mspx
http://www.bmecat.org/
http://www.bolero.net/
http://www.xml.com/pub/a/2003/02/26/binaryxml.html
http://datacenter.mit.edu/MIT-DATACENTER-WH-009.pdf
http://datacenter.mit.edu/MIT-DATACENTER-WH-009.pdf
http://www.cxml.org/
http://www.ebxml.org/

 48

[22] R. Fielding, Architectural Styles and the Design of Network-based Software

Architectures, Doctoral Dissertation, University of California Irvine, 2000.

[23] D. Foxvog and C. Bussler. Ontologizing EDI: First Steps and Initial Experience.

Proceedings International Workshop on Data Engineering Issues in E-Commerce (DEEC

2005), 2005.

[24] D. Foxvog and C. Bussler. Ontologizing EDI Semantics: First Steps and Initial

Experience. Proceedings International Workshop on Ontologizing Industrial Standards

(OIS 2006), 2006.

[25] GEntran Integration Suite available at

http://www.sterlingcommerce.com/Products/Integration/Gentran+Integration+Suite/

[26] S. Gosain, A. Malhotra, O.A. El Sawy and F. Chehade, The impact of common e-

business interfaces, Communications of the ACM 46 (12) (2003), pp. 186–195.

[27] Groovy, available at: http://groovy.codehaus.org/

[28] T. Harding and R. Scott. FTP Transport for Secure Peer-to-Peer Business Data

Interchange over the Internet. http://www.ietf.org, 2006.

[29] C.T. Hsieh and B. Lin, Impact of standardization on EDI in B2B development,

Industrial Management & Data Systems 104 (1) (2004), pp. 68–77.

[30] C. Iacovou, I. Benbasat, A. Dexter, Electronic Data Interchange and small

organizations: Adoption and impact of technology, MIS Quarterly 19(4), 465-485 (1995).

[31] Inovis BizConnect available at

http://www.inovis.com/solutions/software/bizmanager/bizconnect/

[32] International Trade Trends and Impacts: Los Angeles County Economic

Development Corporation: The Southern California Region:
http://www.laedc.org/reports/Forecast-2009-02.pdf

[33] ISIS European European XML/EDI pilot project available at

http://www.tieke.fi/isis-xmledi/

[34] ISO. Open-EDI Reference Manual. ISO/IED JTD 1/SC30 ISO Standard 14662,

1997.

[35] K. Kanakamedala, J. King, G. Ramsdell, The truth about XML, McKinsey

Quarterly (3) (2003) 9-12.

[36] A. Kotok, D. Webber, ebXML the new global standard for doing business over the

Internet‖, New Riders, September 2001.

[37] Holger Lausen and Thomas Haselwanter. Finding Web Services. 1st European

Semantic Technology Conference, 2007.

http://www.ietf.org/
http://www.laedc.org/reports/Forecast-2009-02.pdf

 49

[38] F. Lehmann. Machine-negotiated Ontology-based EDI. Electronic Commerce:

Current Research Issues and Applications, 1996.

[39] m-e-c eagle EDI converter, available at: http://mec-eagle.sourceforge.net/

[40] Microsoft .Net framework, available at: http://www.microsoft.com/NET/

[41] T. Mukhopadhyay, S. Kekre, s. Kalathur, Business value of information technology:

a study of electronic data interchange, MIS Quarterly 19(2), 137-156 (1995).

[42] Navis Sparcs TOS, available at www.navis.com

[43] Navis WebAccess, available at http://www.navis.com/webaccess.jsp

[44] J-M. Nurmilaakso, EDI, XML and e-business frameworks: A survey, Computers in

Industry 59, 370-379 (2008).

[45] J-M. Nurmilaakso, J. Kettunen, I. Seilonen, XML-based supply chain integration.

Integrated Manufacturing Systems 13/8, pp. 586-595, 2002.

[46] Partner Interface Processes (RosettaNet) available at http://rosettanet.org

[47] D. Power, Supply chain management integration and implementation: a literature

review, Supply Chain Management: An International Journal 10 (4) (2005), pp. 252–263.

[48] B. Prasad, Role of XML in transportation:

http://www.wipro.com/datadocs/whitepaper/XML_in_Transportation.pdf

[49] G. Premkumar, K. Ramamurthy, S. Nilakanta, Implementation of electronic data

interchange: an innovation diffusion perspective, Journal of Mangment information

Systems 11(2) 157-186 (1994).

[50] K. Reimers, Standardizing the new e-business platform: learning from EDI

experience, Electronic Markets 11 (4) (2001), pp. 231–237.

[51] http://seekda.com/browse

[52] S. Shim, V. Pendyala, M. Sundaram and J. Gao. Business-to-business e-commerce

frameworks. IEEE Computer, Vol. 33 No. 10.

[53] SMIL, Synchronized Multimedia Integration Language, available at

http://www.w3.org/TR/REC-smil/

[54] K. Srinivasan, S. Kekre, T. Mukhopadhyay, Impact of electronic data interchange

technology on JIT shipments, Management Science 40(10) 1291-1304 (1994).

[55] Erik Tiemroth, Building a competitive advantage with Web Services, available at

http://www.navis.com

http://www.navis.com/
http://rosettanet.org/
http://www.w3.org/TR/REC-smil/

 50

[56] TranXML XML standard for shippers. Available at http://www.transxml.org

[57] UDDI version 3.0, available at http://uddi.org

[58] Virtuele Haven – A blueprint for a virtual port (Port of Rotterdam)

http://www.virtuelehaven.nl

[59] Web Service, available at: http://www.w3.org/2002/ws/

[60] T. Wilson, EDI is alive and kicking, study says, InternetWeek (February 21)

(2000).

[61] WSDL, available at: http://www.w3.org/TR/wsdl, March 2001.

[62] http://www.xmethods.net

[63] XHTML 1.0: The Extensible HyperText Markup Language. Available at:

www.w3.org/TR/xhtml1/

[64] XML, Extensible Markup Language, available at www.w3.org/XML

[65] XML/EDI Introduction Guidebook, Electronic Commerce Promotion Council of

Japan, 2003.

http://www.transxml.org/
http://www.virtuelehaven.nl/
http://www.w3.org/TR/xhtml1/
http://www.w3.org/XML

