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Abstract 

Marine terminals and ports are designed to meet expected demands during normal operations in 

order to facilitate the smooth and efficient movement of goods. Disruptive events may affect thes

e normal operations, and terminals, ports and regions must be prepared to mitigate such disruptio

ns in an effort to maintain the movement of goods. 

In this project, we investigate methods of modeling and evaluating the port disruptions and 

develop mitigation strategies for reducing the impacts of disruptions. The types of disruptions we 

study in this work are assumed to occur at the local and regional levels. We show that disruptions 

at the local level can be modeled as terminal allocation problems (TAP). The multi berth 

allocation problem is viewed as a set partitioning problem, in which each partitioned problem 

consists of a single berth allocation problem (BAP). Berth allocation is an essential logistics 

operation, since, the deployment of other resources at a terminal have to be coordinated with the 

berth allocation plan. The BAP is an NP-hard problem, and consequently heuristic methods 

based on sub gradient and simulated annealing algorithms are developed to find a near-optimal 

solution within a reasonable amount of time. Numerous experimental scenarios are developed to 

evaluate the proposed BAP methodologies in the presence disruptions. 

The problem at the regional level is to develop mitigation strategies so that the regional throughp

ut in moving goods is affected by the disruption at a minimal level. We look into the U.S. west co

ast region, consisting of multiple ports and the associated traffic network used for moving the go

ods within and out of the region. The regional service network is defined at a high level of aggre

gation, which includes the major ports and aggregated zones representing broad geographical des

tinations and intermediate zones. The network under disruption is modeled as the minimum cost 

flow problem with binary constraints. 

We demonstrated via examples that our methodology that relies on the use of optimization can m

inimize the effect of disruption at all levels.  
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1 Introduction 

In today’s global economy, the oceans are becoming increasingly important for international 

trade. Currently, more than 80% of the world’s trade travels by water. A very important 

component of this global economic chain is container transport, since about half of the world’s 

trade by value, and 90% of the general cargo, are transported in containers. 

Shipping is the heart of the global economy, but it is vulnerable to attacks. Trade passes primarily 

through a small number of hubs spread around the globe. Close to 75% of the world’s maritime 

trade and half of its daily oil consumption pass through a handful of international straits and 

canals. Hence, the international commerce is at great risk from attacks at one of the major trading 

hubs or at one of a handful of strategic chokepoints [1],[2]. The adoption of a just-in-time 

delivery approach to shipping by most industries, rather than stockpiling or maintaining 

operating reserves, means that a disruption or slowing of the flow of almost any item can have 

widespread implications for the overall market, as well as upon the national economy.  

Disruptions to the maritime transportation system could be due to natural causes, (such as 

hurricanes or earthquakes), or to man-caused activities (such as military surge or terrorism acts). 

Moreover, the disruptions can be classified as predictable/anticipated (such as the longshoremen 

strike), or unpredictable/unanticipated (such as a potential terrorist attack).  

The location where the disruption occurs is a very critical parameter in determining the 

disruption’s impact. For example, disruptions of operations in the ports on the west coast can 

have a national impact, since the combined port of Long Beach/Los Angeles handles 33% of the 

total container traffic in the US [3]. This huge volume moving through the local ports has very 

serious effects not only at the local and regional levels, but on a national scale as well. As a 

consequence the national economy has become heavily dependent on the smooth and reliable 

operation of the west coast ports. This fact became quite evident during the 2002 longshoremen 

strike at the Port of Los Angeles, which for 11 days crippled the nation at an estimated cost of 

$1‐$2 billion per day [4]. 

In this study, we investigate methods of modeling and evaluating the effect of disruptions and 

develop mitigation strategies for reducing their impact on port operations. The types of 
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disruptions we investigate are such that they can render a terminal partially or totally 

non‐functional. These disruptions can be caused by equipment failure; physical damage to the 

terminal berths due to natural or manmade disasters; delays caused by increased demands as in 

the case of military surge, etc. Disruptions, caused by failure of one or more berths at terminals 

within a single port, are related to the berth allocation problem (BAP), as it is referred to in the 

literature. Berth allocation is an essential logistics operation for the management of container 

terminals. According to the berth allocation plans, terminal operators are required to coordinate 

the deployments of various resources within the ports so that containers are moved as smoothly 

and as quickly as possible. 

When a disruption takes place, the terminals might be unable to meet the expected demand, due 

to partial or total loss of operational capabilities, or to a sharp rise in the demand (e.g. military 

surge). Furthermore, such a disruption could affect several terminals within a particular port. It is 

therefore critical to allocate berths to ships in such a way as to meet all demand, minimize the 

vessel berthing time and maximize berth utilization. In order to mitigate the impacts of 

disruptions, methods will be developed to re-route goods to different berths within the terminal, 

or to different terminals within the ports so that the overall port throughput is affected as little as 

possible. The question we will answer in this study is: how can we reassign ships to 

berths/terminals within the same port, such that the overall port throughput is maintained. 

In this study, we first address disruptions that can be handled on the local level i.e. by the termina

l itself via reallocation of resources or port level via reallocation of resources among terminals. D

isruptions that cannot be handled on the local level are studied on the regional level alone or in c

ombination with local level.  

On the local level we consider the continuous BAP (as opposed to the discrete BAP), because it 

is more diverse and more practical as a way of allocating resources on the berth level in order to 

serve ships. Since the continuous BAP cannot be calculated in polynomially-bounded time [7], 

we develop and implement some heuristic procedures based on sub gradient and simulated 

annealing optimization methods, a set of systemic and efficient heuristics is implemented, in 

order to find an initial feasible solution and to update a current solution by exploring a 

sufficiently large solution space. 
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In addition to the BAP, we address the allocation of ships to multiple berths. This problem is 

referred to as the terminal allocation problem (TAP). We will see that the TAP can be viewed as a 

set partitioning problem, and hence it is an NP-hard problem. We develop a methodology based 

on simulated annealing algorithm to solve the TAP. 

The objective at the regional level is to develop mitigation strategies so that the effect of 

disruption on the regional throughput is minimized. We consider the US west coast region, 

consisting of multiple ports and the associated traffic network used for moving the goods within 

and out of the region. The regional service network is defined at a high level of aggregation, 

which includes the major ports and aggregated zones representing broad geographical 

destinations and intermediary zones. 

The flow of freight in the regional service network under normal operating conditions is modeled 

as a minimum cost flow problem in which the disruption level is low enough to be handled by 

ground transportation modes. When disruption occurs, the regional service network is 

reconfigured to deal with the situation. For example, if the LA port zone is rendered non-

functional for a period of time, all services associated with the zone will either be discontinued 

or operate at a lower capacity, which will affect its throughput capacity. The re-configuration of 

the service network will involve opening sea transportation links between port zones. The 

regional service network under disruption is modeled as a minimum cost flow problem with 

binary (or, integer) constraints. It is solved by branch-and-bound method and a LP relaxation is 

performed on every leaf of the branch-and-bound tree. 

This report is organized as follows: In Section 2, the berth allocation problem (BAP) is described 

and various formulations of the problem are presented. In Section 3, the BAP is modeled 

analytically and two solution methods are developed. In Section 4, an extension to the BAP, the 

terminal allocation problem (TAP), is studied. The TAP is modeled as asset partitioning problem, 

and solution methods are proposed. The service network optimization is explained in Section 5. 

In Section 6, the overall modeling and mitigation is demonstrated by an example. Finally, 

Section 7 presents the conclusions. 
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2 Container Terminals and the BAP 

A container terminal is a facility where containerized cargo is trans-shipped between ships and 

land vehicles (trucks and trains). A terminal may have several wharfs (quays). Each quay consists 

of several berths, which in turn are divided into sections. Each quay corresponds to a linear 

stretch of space in the terminal. Container ships are moored at a berth of a terminal where they 

are unloaded and loaded by gantry or quay cranes. Quay cranes traverse along the quay to 

position containers at any point along the length of the ship. Quay cranes at berths load imported 

containers on in-yard trucks, straddle carriers, or automated guided vehicles (AGVs). Quay 

cranes also unload export containers from these vehicles into the ships. To maximize berth 

utilization and minimize ship-turn-around time, ships should be optimally assigned and allocated 

to berths. Hence, optimal allocation of berths to incoming ships will have a substantial impact on 

logistics cost and level of service.  

Usually, carriers inform the terminal operator of their estimated-time-of-arrival (ETA), latest 

possible service completion (departure) time, and request a berthing time (called berth-time-

requested or BTR) several days in advance [5]. A vessel is said to be berthed-on-arrival (BOA) 

if the mooring operation commences within 2 hours of arrival. The BOA statistics is often used 

as an indicator to gauge the quality of service provided by the port operator [6].  

Based on the information received, a terminal operator tries to satisfy the requested departure 

times of every vessel by allocating one or more sections on a berth to calling vessels according to 

their ETAs, estimated departure times, and BTRs. However, in cases when the arrival rate of 

vessels is high, or unexpected arrivals occur, or any type of disruption happens at a terminal, it 

may not be possible to serve all the vessels before their requested service completion time. Thus, 

departures of some vessels may be delayed past the requested due time [5].  



 13 

3000 1200600 900

12
1st

12
2nd

12
3rd

12
4th

0
0

0
0

0

Tim
e [h]

Berth [m]  

Figure 1: Space-time diagram for the berth allocation problem 

Figure 1 illustrates the space-time diagram of a berth schedule. The horizontal axis represents the 

berth length, while the time is represented by the vertical axis. Note that, in Figure 1, a vessel is 

represented by a rectangle. The length of the vertical side of each rectangle represents the 

duration of stay of a vessel at the berth, while the length of the horizontal side represents the 

vessel length [5], [7]. Each calling vessel is characterized by its own space-time rectangle. These 

rectangles cannot overlap either in the space or in the time dimension. The Berth Allocation 

Problem (BAP) is to determine the optimal locations of those rectangles without overlaps [5]. In 

other words, the BAP consists of optimally allocating and scheduling the berth space to calling 

carriers such that the carriers are served within their time limits. 

2.1 Classifications of the BAP 

The BAP can be classified into the following two general categories: 

1- Discrete vs. Continuous BAP: 

In the continuous BAP, the berthing can be done in a continuum of locations along the berth 

[8], [9]. In contrast, in the discrete BAP, the entire quay is divided into a countable number of 

berths. In the discrete problem, it is assumed that, at each instant of time, at most one vessel 

can be served at each berth.  

It should be noted that a discrete BAP can be modeled as an unrelated parallel machine 
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scheduling problem, and the continuous BAP can be mapped into a two-dimensional cutting-

stock problem, which is an NP-Hard problem [7]. The focus of this study is on the continuous 

BAP. The continuous BAP is more diverse and general. It can address the growing trends in 

ship sizes, as there is a need for more flexible berth allocation planning. For instance, mega-

ships may sometimes moor across neighboring berths in order to enhance berth usage. 

2.  Static vs. Dynamic BAP 

In Imai et al. [10], the static BAP refers to the problem in which all the ships are assumed to 

have arrived at the port prior to the beginning of the berths’ scheduling. In contrast, the 

dynamic BAP takes into account not only the ships that have already arrived at the time of 

planning, but also those which will arrive later during the planning horizon. Furthermore, it is 

assumed that the arrival times of all the ships are known a priori, hence re-planning is not an 

issue.  

In a general planning problem, however, the dynamic environment refers to the events whose 

occurrences may change in time. For example, in the work by Moorthy and Teo [6], the 

authors deliberately induce delays in the port stay time of vessels and increase the number of 

vessels to evaluate their dynamic policy in a rolling horizon framework. That is to say that the 

notion of dynamic BAP used in [10] is very limited and, therefore, we will use the second 

notion in which the occurrence of events may change in time. 

Berth

Time

Berth

Time

Berth

Time

(a) (c)(b)  

Figure 2: Changes in the original allocation due to changes in arrival time and service time. 

The original assignment of the ship, (b) delayed arrival time, and (c) delayed service time  

      Resulting from the terminal’s lack of resources (such as cranes and trucks) 
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Figure 2 demonstrates possible disruptions in an original berth allocation. These disruptions 

may have occurred due to delays in vessel arrival time (Figure 2b), or vessel service time 

(Figure 2c). If these unexpected delays make the original allocation plan unsatisfactory, re-

allocation of vessels may be needed to maintain the same level of quality of berth 

performance. The re-allocation can easily be implemented by using a rolling horizon 

framework in such a dynamic environment. It should be noted that frequent re-planning is 

often undesirable and sometimes impossible as it has adverse impact on other terminal 

resources. So, the re-planning of a berth allocation should be carefully performed by 

considering the impact on all in-terminal resources. 

2.2 Literature Review 

Recently, berth allocation problems have been the focus of many research efforts. Imai et al. 

proposed a mixed integer programming formulation of the discrete berth allocation problem [10]. 

Two formulations are developed for static and dynamic variants of the problem. A Lagrangian 

relaxation methodology equipped as a heuristic method was developed to minimize the ships’ 

waiting and handling times. Imai et al. in [11] developed a formulation and a solution 

methodology for the discrete berth allocation problem with priority considerations. In this work, 

they extended their previous work in [10] to serve calling vessels at various service priorities. A 

heuristic method based on genetic algorithms was developed to approximately solve the problem 

with less computational burden.  

In [8], Imai et al. considered a continuous berth allocation problem in which a vessel can be 

moored across the designated quay boundaries. The authors developed a heuristic solution based 

on their discrete BAP solution in [10]. They used a series of local procedures to ensure the 

feasibility of the solution. The approach was based on the fact that an optimal solution to the 

BAP provides an upper bound, when the berth length is set to the maximum ship length, and 

provides a lower bound, when the minimum ship length is used. Guan and Cheung in [12] 

developed a composite heuristic for a BAP whose objective is to minimize the weighted 

completion time. A batch was defined as a group of ships whose total size is smaller than the 

overall berth space. As an exact solution method, a tree search procedure was proposed to solve 

small-sized problems. In the composite heuristic proposed, a pair-wise exchange was performed 
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between batches. The tree search procedure was applied to enhance the solution of each batch.  

Park and Kim in [5] addressed a BAP with a general objective that minimizes the costs resulted 

from the vessels delayed departure times. The objective function also consists of additional 

handling costs, which were resulted from deviated berthing locations. The BAP formulation is 

very practical since the cost related to the delayed departure times is explicitly minimized. In 

practice, penalties are imposed if the requested service cannot be done by the requested departure 

time. A subgradient optimization technique was applied to solve the proposed BAP formulation. 

A heuristic method was repeatedly used to update an upper bound. The method attempted to 

move overlapping schedules to feasible directions which yielded the minimum cost increase. 

Park and Kin in [13] proposed a simulated annealing based method to solve the BAP. Their 

heuristic resembled the tree search in [12] since it sequentially tried to locate each ship at lowest-

cost point.  

Moorthy and Teo in [6] studied the allocation of preferred berthing space to a set of vessels 

which arrive periodically in a weekly basis. The authors used the concept of sequence pair for 

defining search space. By defining the time and space constraint separately, cost estimation for 

each dimension was provided. Several neighborhood searches were employed by a simulated 

annealing method to modify or update a sequence pair. However, due to the periodicity of the 

weekly arrivals, the authors focused on reducing the overlaps between unfinished vessels 

rectangles in the current planning horizon and scheduled rectangles in the next horizon. Golias et 

al. in [14] considered simultaneous berth and quay cranes scheduling. They formulated the 

problem as an integer programming problem with objective of minimizing the costs resulting 

from delays. They used the genetic Algorithms optimization technique to solve the problem. 

3 The Berth Allocation Problem (BAP) 

In this section, we study the static continuous berth allocation problem which can be represented 

by a space-time diagram where the horizontal and vertical axes represent the berthing space and 

time, respectively. Figure 3 shows the representation of a berth in the space-time diagram. A 

vessel k  with length kl  and width kh  can be defined by a rectangle in this diagram. 
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Figure 3: Defining a vessel in the space-time diagram 

3.1 The BAP Formulations 

The following notation is used throughput this section for the various formulations of the BAP 

that will be presented. 

M  Number of sections along the berth (length of the berth) 

T  Time horizon 

K  Number of vessels to be scheduled 

ka  Estimated arrival time of ship (vessel) k  

kd  Desired departure time of ship k  

kh  Estimated handling time needed for ship k  

kw  Priority factor (weight) assigned to ship k  

kl  The length of ship k  in terms of the number of sections along the berth 

kx  The section of the berth for which the left bottom corner of ship k  is assigned 

kt  The time at which berthing of ship k  starts  

klδ  The relative horizontal position of ship k  with respect to ship l . It is 1 if ship k  is 

completely to the left of ship l , and 0 otherwise 

klσ  The relative vertical position of ship k  with respect to ship l . It is 1 if ship k  is 
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completely placed below ship l , and 0 otherwise 

α  The minimum space required between two ships moored at the same time at the berth 

(i.e., safety allowance) 

τ  The minimum time needed between a ship departure time and the next ship berthing 

time at the same location (i.e., time stability factor) 

The mathematical formulation for the BAP can be either represented by the relative 

position of vessel rectangles, or by the space covered by the vessel rectangles. 

3.1.1 The Relative Positioning Formulation for the BAP 

The relative positioning formulation, which hereafter is called formulation RPF, considers the 

relative positioning of vessel rectangles. The objective function (1) minimizes the penalty 

incurred by not satisfying the desired departure times requested by vessels. The notation ( )+⋅  in 

(1) is used with the following meaning: max{0, }y y+ = . 

       min  
1

( )
K

k k k k
k

w t h d +

=

+ −∑  (1) 

 s.t. [ ( ) ] 0l k k klx x l α σ− + − ⋅ ≥  , ,k l k l∀ ≠  (2) 

  [ ( ) ] 0l k k klt t h τ δ− + − ⋅ ≥  , ,k l k l∀ ≠  (3) 

  1kl lk kl lkσ σ δ δ+ + + ≥  , ,k l k l∀ ≠  (4) 

  1kl lkσ σ+ ≤  , ,k l k l∀ ≠  (5) 

  1kl lkδ δ+ ≤  , ,k l k l∀ ≠  (6) 

  [1,  1]k kx M l∈ − +  k∀  (7) 

  [ ,  1]k k kt a T h∈ − +  k∀  (8) 

  {0,1}klσ ∈  , ,k l k l∀ ≠  (9) 

  {0,1}klδ ∈  , ,k l k l∀ ≠  (10) 

Constraints (2) are to ensure the space requirement if a vessel is completely placed to the left of 

another vessel. Constraints (3) are to guarantee the time requirement if a vessel is completely 
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placed below the other vessel. Constraints (4)-(6) ensure that no vessel rectangles are 

overlapping. Constraints (7) are the space constraints, (8) are time constraints, and (9), (10) are 

binary constraints. 

3.1.2 The Assignment Formulation for the BAP 

The assignment formulation, which hereafter is called formulation AF, is based on partitioning 

the space-time diagram into grid tiles which are covered by vessel rectangles as shown in Figure 

4. A block ( , )i j  is referred to as a grid space whose left bottom corner is located at ( , )i j  for 

[1, ]i M∈  and [1, ]j T∈ . As an example, the vessel rectangle k  covers the consecutive blocks from 

( , )i j  to ( 1, 1)k ki l j h+ − + − . 

kd

ka

rectangle k

( , )k kx t

i

j

kl

M

T

kh

1 2

2

ki l+
 

Figure 4: Vessel-berth allocation in grid spaces 

Additional notation used here to represent the assignment formulation: 

ijkz : 1, if the left bottom corner of rectangle k  is located at ( , )i j ; 0, otherwise 

ijky : 1, if rectangle k  is covering block ( , )i j ; 0, otherwise 

Similar to (1), objective function (11) minimizes the penalty incurred by not satisfying the 

desired departure times requested by vessels. However, in contrast to (1), the minimization in 

(11) is not performed on a continuum but a discrete number of time periods (tiles) representing 

the unmet requested departure time. 
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 min 
1 1

1 1
( )

k k

k

M l T hK

ijk k k k
k i j a

z w j h d
− + − +

+

= = =

⋅ + −∑ ∑ ∑  (11) 

 s.t. 
1

1
K

ijk
k

y
=

≤∑  ,  i j∀  (12) 

  
1 1

0
k ki l j h

ijk k k mnk
m i n j

z l h y
+ − + −

= =

− ≤∑ ∑  1, , 1,  , , 1,  k k ki M l j a T h k∀ = − + = − +   (13) 

  
1 1

1
1

k k

k

M l T h

ijk
i j a

z
− + − +

= =

=∑ ∑  k∀  (14) 

  {0,1}ijky ∈  , ,i j k∀  (15) 

  {0,1}ijkz ∈  1, , 1,  1, , 1,  k ki M l j T h k∀ = − + = − +   (16) 

Constraints (12) imply that a block is covered by at most one vessel rectangle. Constraints (13) 

ensure that blocks covered by a vessel rectangle must be consecutive. Constraints (14) imply that 

each vessel has only one berthing coordinate. Constraints (15) and (16) are binary constraints. 

3.1.3 The Mixed Integer Linear Programming Formulation for the BAP 

The following formulation, which hereafter is called formulation MILPF, is equivalent to the 

BAP formulation in RPF and is the mixed integer linear programming formulation for the BAP. 

Similar to (1), the unmet desired departure times requested by vessels are minimized in (17). 

 min 
1

K

k k
k

w β +

=
∑   (17) 

 s.t. k k k k kt h d β β+ −+ − = −  k∀  (18) 

   ( ) ( 1) 0l k k klx x l Nα σ− + − − − ≥  , ,k l k l∀ ≠  (19) 

  ( ) ( 1) 0l k k klt t h Nτ δ− + − − − ≥  , ,k l k l∀ ≠  (20) 

  , 0k kβ β+ − ≥  k∀  (21) 

  and Constraints (4)-(10). 

The objective function in (17) minimizes the penalty cost resulting from the delay in the 

departure time of vessels. A method for dealing with ( )k k kt h d ++ −  variables is to introduce new 

variables kβ
+  and kβ

− , constrained to be nonnegative, and let k k k k kt h d β β+ −+ − = − . It is intended to 
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have k k k kt h d β ++ − =  or k k k kt h d β −+ − = − , depending on whether k k kt h d+ −  is positive or 

negative. Then the original problem (RPF) can be formulated as a MILP by adding a 

corresponding constraint (18) to (21). 

For an optimal solution to the problem, and for each value of k , we must either have 0kβ
+ =  or 

0kβ
− = . That is true since otherwise we could have reduced both kβ

+  and kβ
−  by the same amount 

while preserving feasibility. In other words, we could have reduced the cost, which is in 

contradiction to optimality. Constraints (19) and (20) are to enforce the definitions of klσ  and klδ , 

and N  is a large positive number. 

3.1.4 Some Notes on Alternative Objective Functions 

The objective function used in (1) minimizes the penalty associated with the violation of the 

desired departure times requested by the vessels. A generalized alternative for this objective 

function is one that rewards early service operations. The following function is a possible choice 

for generalized objective function, which is a linear combination of penalized late departure time 

and rewarded early service operation. 

 { }1 2
2

1
(( ) ) ( ( ))

K

k k k k k k k k
k

w t h d w d t h+ +

=

= + − − − +∑J  (22) 

where 1 0kw >  is the penalty weight, and 2 0kw >  is the reward weight. We require that 1 2
k kw w≥ . 

The setback is that 2J  may assume both negative and positive values. To make 2J  non-negative, 

the possible maximum value of the second term is added to 2J  as an offset. Hence, a better 

choice for the generalized objective function would be 

 ( )1 2 2
3

1
(( ) ) ( ( )) ( ( ))

K

k k k k k k k k k k k k
k

w t h d w d t h w d a h+ +

=

= + − − − + + − +∑J . (23) 

The objective function 3J  can also be rewritten as 
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 3

2

1 2
1

( ), for ( ) 0
(( ) ) ( ( )), for ( ) 0

K
k k k k k k

k k k k k k k k k k k k

w t a t h d
w t h d w d a h t h d=

 − + − <
= 

+ − + − + + − ≥
∑J  (24) 

3J  tries to minimize the delayed departure times while maximizing the temporal margin after 

completion of the service. A very interesting special case of 3J  - which has been considered by 

other researchers [6], [8], is the one in which 1 2
k kw w= . This special case will result in 

 4
1

1
( )

K

k k k
k

w t a
=

= −∑J  (25) 

The objective function 4J  minimizes the delayed mooring time only. Furthermore, by adding a 

fixed offset 1
k kw h  to 4J , the choice of the objective function will be as follows 

 ( )5
1 1 1

1 1
( ) ( )

K K

k k k k k k k k k
k k

w t a w h w t h a
= =

= − + = + −∑ ∑J  (26) 

The objective function 5J  minimizes the delayed mooring and handling times. This choice of 

objective function was considered by Guan and Cheung [12] and Imai et al. [10]. 

Figure 5 shows two different final solutions, when 4J  or 5J  is used. The two solutions are both 

optimal if 1
kw  is the same for all the ships. However, if we consider a more general situation in 

which a delayed departure disturbs the successive assignments, the first solution cannot be 

optimal. In such a case, we can introduce the generalized objective function and can penalize the 

delayed departure time with a higher penalty weight to get an optimal solution. 
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Figure 5: Possible optimal solutions under different cost functions 

3.2 Solution Methods for the BAP 

Since the continuous BAP is an NP-hard problem, in this section, we develop two approximation 

methods to find good solutions in a reasonable amount of time. Without loss of generality, 

formulation MILPF, described in section 3.1.2, is used to illustrate the solution methods. In the 

sequel, we will focus on this formulation. 

3.2.1 The Lagrangian Relaxation Method for the BAP 

Many hard integer problems can be viewed as an easy problem complicated by a relatively small 

set of side constraints. Dualizing side constraints produces a Lagrangian problem which is easy 

to solve and whose optimal value is a lower bound for minimization problems on the optimal 

value of the original problem. This method was termed “Lagrangian relaxation” by Geoffrion 

[20], who developed a systematic methodology to construct the lower bounds as a means of 

exploiting special problem structure. 

The problem (MILPF) can be converted into a relaxed problem using the Lagrange multipliers 

0ijπ ≥ , ,  i j∀ , as follows: 

 ( )LBz π =  
1 1

1 1 1 1 1 1
min  ( ) 1

k kM l T hK M T K

ijk k k k ij ijk
k i j i j k

z w j h d yπ
− + − +

+

= = = = = =

  ⋅ + − + −  
  

∑ ∑ ∑ ∑∑ ∑  ( LRπ )  

 s.t.  Constraints (13)-(16). 

where ijπ π =   , 1, ,i M=   and 1, ,j T=  , is a matrix of Lagrange multipliers. 

The dual problem of the relaxed problem ( LRπ ) becomes 
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 LBz = max ( )LBz
π

π , (D) 

 where 
1 1

1 1 1 1 1 1
( ) min ( ) 1

k kM l T hK M T K

LB ijk k k k ij ijk
k i j i j k

z z w j h d yπ π
− + − +

+

= = = = = =

 = ⋅ + − + − 
 

∑ ∑ ∑ ∑∑ ∑
 

 s.t. Constraints (13)-(16), and 0ijπ ≥ . 

If we ignore the last constant term in (D), then ( )LBz π  is equivalent to 

 
1 1

1 1 1 1 1 1
min  ( )

k kM l T hK M T K

ijk k k k ij ijk
k i j i j k

z w j h d yπ
− + − +

+

= = = = = =

⋅ + − +∑ ∑ ∑ ∑∑ ∑  (27) 

When 1ijkz = , we have 1ijky =  for , , 1km i i l= + −  and , , 1kn j j h= + − . Therefore, for a vessel k , 

the second term becomes 

 
1 1

1 1

k ki l j hM T

ij ijk mn
i j m i n j

yπ π
+ − + −

= = = =

=∑∑ ∑ ∑  (28) 

Then, this implies that the relaxed problem ( LRπ ) can be considered as 

 
1 1 1 1

1 1 1
min  ( )

k k k kM l T h i l j hK

ijk k k k mn
k i j m i n j

z w j h d π
− + − + + − + −

+

= = = = =

 
+ − + 

 
∑ ∑ ∑ ∑ ∑  (29) 

 s.t. Constraints (14)-(16) 

The solution to ( LRπ ) can be obtained since (29) is separable in k . The optimal coordinate for 

each sub-problem is calculated by setting 1ijkz = . 

 
1 1

,
min  ( )

k k

k

i l j h

k k k mni j a m i n j
w j h d π

+ − + −
+

≥
= =

+ − + ∑ ∑  (30) 
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To optimize dual functions in Lagrangian relaxation, we use the subgradient method (SG) for 

separable integer programming problems. All sub-problems are solved optimally to obtain a 

subgradient direction. The subgradient method is an adaptation of gradient methods, in which 

gradients are replaced by subgradients. For further discussion on subgradient methods see [21].  

Given an initial value 0ijπ = , a multiplier is generated by the following rule: 

 ( ){ }1
max 0,  1K

ij ij ijkk
s yπ π

=
= + −∑  (31) 

where ijky  is from an optimal solution to ( LRπ ) and s  is a positive scalar step size. We use the 

following step size which has been commonly adopted in practice [22]. 

 
( )

2
1

( )

|| 1||
UB LB
K

ijkk

z z
s

y

λ π

=

−
=

−∑
 (32) 

where λ  is a scalar satisfying 0 2λ< ≤  and UBz  is the best known feasible (upper-bound) solution 

value obtained by applying a heuristic to formulation (MILPF). 

We use a general rule, which is to set 2λ =  for some fixed number of iterations. This number is 

called maxIter hereafter. At each iteration, we successively halve both the values of λ  and 

maxIter until the value of maxIter reaches some threshold (here, number 4). Note that, 

alternatively, the procedure can be stopped when λ  reaches a threshold.  

To describe our developed subgradient optimization procedure for the BAP, the following 

notation is used. 

LBz  maximum lower bound from Lagrangian relaxation 

UBz  minimum upper bound 

1Hz  initial upper bound found by Heuristic H1 (it is described in section 3.2.3) 

2Hz  updated upper bound found by Heuristic H2 (it is described in section 3.2.4)  

minUB best upper bound so far 

maxLB best lower bound so far 
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maxIter maximum number of iterations 

The following procedure, named BAPsg procedure, describes our developed subgradient 

optimization method. 

BAPsg Procedure (Berth Allocation Problem- Subgradient Method) 

1. Calculate the initial upper bound using H1, 1UB Hz minUB z= =  

 Set 0LBz maxLB= = , 2λ = , 0ijπ = , and 2maxIter K=  

2. If 0.005λ < , then stop. Otherwise, continue. 

3. Update the lower bound LBz .  

  If LBz maxLB> , then LBmaxLB z= , 2λ = , and 1Iter = . Otherwise, 1Iter Iter= + . 

4. Update the minimum upper bound using H2, 2UB Hz z=  

  If UBz minUB< , then UBminUB z= . 

  If 0LBz = , then stop. Otherwise, continue. 

5. If Iter maxIter> , then 0.5λ λ= × , max{4, 0.5}maxIter maxITer= × , and 1Iter = . 

6. Update the step size s  and the multiplier ijπ . Go to step 2. 

In Step 3 of the BAPsg procedure, the lower bound LBz  is acquired by solving each sub-problem 

(30). Then, the heuristic H2 is applied to find a feasible solution in Step 4. Details about 

heuristics H1 and H2 will be provided in sections 3.2.3 and 3.2.4. In the end, the procedure 

returns the best feasible solution (the minimum upper bound) and the maximum lower bound. At 

the end of each iteration of the procedure, an optimal solution to (D) may be still infeasible for 

(MILPF), which means that vessel rectangles may be overlapping. However, as the multipliers 

corresponding to vessels with infeasible berthing are increased, the cost of (D) is increased. This 

ensures that the solution associated to LBz  gets close to a feasible solution of the original problem 

(MILPF). 

Figure 6 demonstrates an instance of a BAP with initial and final solutions which were obtained 

by the above procedure. In the figure, each batch is represented by a distinct color. A batch is 
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defined as a set of rectangles in the space-time domain, where the sum of their lengths, including 

safe distances between them, is less than or equal to the berth length M. The batch concept is 

fundamental to our heuristic methods which will be described later. The left figure is a berth 

allocation plan represented by color-filled rectangles. The figure on the right shows the 

corresponding plan along with time constraints. The time constraints of each vessel are 

represented with a dotted rectangle. The height of a dotted rectangle is determined by the vessels’ 

arrival and desired departure times and the width is equal to the vessel’s length.  

If a vessel rectangle is not fully enclosed by its (dotted) constraint rectangle, it will results in a 

cost increase. As shown in Figure 6(a), the initial feasible solution indicates that two rectangles 

(A and B) are not completely enclosed by their constraint rectangles. Figure 6(b) shows the final 

lower bound solution, which is still infeasible, since several rectangles overlap. Finally, the final 

upper bound solution is shown in Figure 6(c). In this specific example, the procedure yields an 

optimal solution to (MILPF) without penalty cost associated with waiting times. 

Various port disruption events can be graphically described by using a vessel rectangle and its 

constraint rectangle. The disruption can result in changes to either the vessel rectangle or to the 

constraint rectangle. For example: (a) If, because of equipment break-down, the service time kh  

is delayed by ω  hours, then the height of the vessel rectangle is lengthened by ω  hours. That is, 

the vessel rectangle could change. (b) If the arrival time ka  is delayed by ω  hours, because of 

delays due to an unexpected event, the constraint rectangle should be adjusted and, also, the 

berthing time should be adjusted so that k kt a ω≥ + . That is, both the vessel rectangle and its 

constraint rectangle could change.  

In both cases above, we can graphically detect whether the changed rectangles (resulting from a 

disruptive event) disturb an original allocation plan or not. If the original allocation plan is 

disrupted, and the disturbance occurs in batch b , we will reallocate vessel rectangles in the later 

batches ( 1, 2,b b+ +  ). 
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(a) Initial feasible solution 
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(b) Lower bound solution (infeasible) 
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(c) Upper bound solution 

Figure 6: Initial and final solutions found by applying subgradient method 

3.2.2 The Simulated Annealing Method for the BAP 

The second methodology developed is based on simulated annealing (SA) to find good solutions 

to the BAP. The SA methodology was independently presented by Kirkpatrick et al. [23] and 
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Cerny [24]. The SA algorithm resembles the annealing process in metallurgy. In each step of the 

algorithm, the current state (solution) is replaced, with some probability, by a randomly 

generated neighboring state. This probability depends on the difference between the current state 

energy (cost) and generated neighbor energy, as well as, on a global parameter T (temperature) 

which is gradually decreased using a scheduled parameter r (cooling rate). The SA algorithm is 

such that it makes the system ultimately move to lower energy states (called downhill 

movements). Also, uphill movements prevent the algorithm from staying at local minima. 

Before describing the methodology in detail, we start by defining the variables and parameters, 

neighbor search function, and acceptance probability function for our SA procedure. 

3.2.2.1 Notation and Definitions 

The following notation is used in this section. 

sc current state 

sn new state 

sb best state 

ec energy (cost) of current state, ec=E(sc) 

en energy of new state, en=E(sn) 

eb energy of best state, eb=E(sb) 

T0 initial temperature 

r cooling rate 

3.2.2.2 Neighbor (candidate move) Search Procedure 

A new state (solution) sn  is obtained by exchanging a pair of consecutive vessel rectangles in the 

current state sc . The current state (1, , )sc K=   is defined as a sequence of vessel rectangles. 

BAPneighbor Procedure 

1. Choose a rectangle k , where {1, , 1}k K∈ −  

2. Exchange the order of the pair ( , 1)k k +  in the current state sc  

3. Update to a new state sn  by applying heuristics H1 and H2 

Details about heuristics H1 and H2 are provided in sections 3.2.3 and 3.2.4. 
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3.2.2.3 Acceptance Probability Function 

 A probability of making the transition from the current state to a candidate state is specified by 

an acceptance probability function. We adopt the following acceptance probability (AP) function, 

as described in [23]. 

 ( )
1,                             

( , , )
exp ( ) / ,  otherwise

en ec
AP ec en T

ec en T
<=  −

 (33) 

where parameter T  is a designed parameter (temperature in metallurgy). 

3.2.2.4 Simulated Annealing Procedure 

The following procedure implements the simulated annealing heuristic for the BAP, starting from 

the state generated by the initialization routine BAPinit. The call BAPneighbor(sc) generates a 

randomly chosen neighbor for a current state sc . The annealing schedule is defined by 

calling ( , , )AP ec en T , which use the temperature to apply, given the fraction r  of the time budget 

that has been expended so far. 

BAPinit Procedure 
1. Sort vessels according to their arrival times so that 1 k Ka a a≤ ≤ ≤ ≤   

2 . Generate a current state sc  by applying H1 and H2 

3. Set ( )ec bc E sc= =  

The following procedure, named BAPsa Procedure, describes our developed simulates 

annealing optimization method. 

BAPsa Procedure (Berth Allocation Problem-Simulated Annealing Method) 

1 set 1i = , 1flag = , and 0T T=  

 while maxi i≤  and 1T ≥  

  for  1: 2j K=  

   ( )sn sc= BAPneighbor , ( )en E sn=  

   if en eb< ,  

    then sb sn= , eb en= , and 1flag =  
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   elseif ( , , ) (1)AP ec en T rand> , 

    then sc sn=  and ec en=  

   End 

  End 

  set T rT=  

  if 1flag = , 

   then 1i i= +  and 0flag =  

  End 

 End 

3.2.2.5 Initial Temperature and Cooling Rate 

The choice of the initial temperature T0 and the cooling rate r  affects the quality of the solutions 

obtained by the simulated annealing procedure. To be able to determine the right values for T0 

and r , we generated ten instances of the BAP problem whose size are randomly varied from 16 

to 21 vessels. Details about generating an instance of the BAP are given in a later section. Each 

BAP was solved 700 times using different combinations of T0 and r . In our experiments, T0 was 

varied from 10 to 130 by a step of 10, whereas r  was changed from 0.5 to 0.95 by a step of 0.05. 

For each T0 and r , the results were averaged and shown in Figure 7.  
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Figure 7: Normalized objective values 

In Figure 7 each normalized value represents the ratio of the corresponding objective value to the 

lowest objective value. On average, the minimum objective value was found at the initial 
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temperature 70 and the cooling rate 0.6. These values are used in the succeeding experiments. 

Figure 8 shows the average number of iterations to reach final solutions (a) and the number of 

minima (b). Note that the minima of each combination were selected over 10 repeated tests as 

described above.  

As seen from Figure 7, a combination of a higher temperature and a higher cooling rate, 

generally, yields better solutions. However, such combination requires higher number of 

iterations too, which means more running times. The actual required running time of a certain 

combination can be deduced from the figure. It shows that our choice ( 0 70T = and 0.6r = ) needs 

less than 300 iterations to reach to final solutions. Also, the quality of solutions with respect to 

the parameters can also be estimated from Figure 2.8b. It indicates that our chosen parameters 

yield a higher number of minima (about 6.5). Therefore, the chosen parameters are expected to 

produce good solutions within reasonable time. 
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Figure 8: (top) Density plot, showing the average number of iterations to reach final solution; 

(Bottom) Number of minima. Both graphs are parameterized by the cooling rate and Temperature. 

3.2.3 H1: Heuristic Method for an Initial Feasible Solution 

Although methods based on subgradients with Lagrangian relaxation and methods based on 

simulated annealing have been used in the literature to solve the BAP and similar allocation 

problems, our heuristic procedures are quite different from any procedures reported previously in 

the literature. As already mentioned, our heuristics implement a set of systematic and efficient 

methods in order to find an initial feasible solution and to update a current solution by exploring 
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a sufficiently large solution space. 

To find and update feasible solutions for both subgradient (SG) and Simulated Annealing (SA) 

algorithms, two heuristic methods are developed. The first method is called Heuristic H1 and is 

developed to generate an initial feasible solution. Using H1, each vessel rectangle is sequentially 

placed on the solution space according to its arrival order. Heuristic H2 is developed to 

repeatedly improve the feasible solution, using pair-wise swaps between neighboring rectangles 

within a batch or over neighboring batches. A batch is defined as a set of rectangles where the 

sum of their lengths including safe distances between them is less than or equal to the berth 

length M. 

Under any combination of rectangle movements and swapping operations, Heuristic H2 tries to 

create rooms (temporal spaces) for rectangles to be berthed to the earliest possible time (pushed 

down). 

3.2.3.1 Algorithm for an Initial Feasible Solution 

The following notation is additionally used to describe the heuristic procedures. 

pS  the set of rectangle indices in a batch p 

B   the number of batches in a berth, that is p=1,…,B 

qp   the number of rectangles in a batch p, that is, | |p pS q=  

Heuristic Procedure H1 (Algorithm for an initial feasible solution) 
1.   Construct a batch of rectangles by assigning their berthing locations     

    set 1 1x = , 1p = , and {1}pS =  

 for 2 :k K=  

  1 1k k kx x l α− −= + +  

  if k kx l M+ ≤ , then p pS S k=   

  else, 1kx = , 1p p= + , and create { }pS k=  

 end 

2.   Assign a feasible berthing time with the earliest possible berthing time 

 for 1:k K=  
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  if 1k S∈ , then k kt a=  

 else, max{ ,  }k k s st a t h τ= + +  for all 1
k
ps S −∈  

 end 

 

where 1
k
pS −  is a subset of 1pS − , satisfying s k kx x l α< + +  and s s kx l xα+ + >  for 1ps S −∈  and 

pk S∈ . In other words, s  represents a rectangle in 1pS −  whose berthing space overlaps with 

rectangle k . 

3.2.4 H2: Heuristic Method for an Improved Feasible Solution 

The heuristics H2 uses a series of rectangle movement functions, which consist of all possible 

directional movements and swapping operations. The heuristics H2 procedure is used to improve 

an initial feasible solution in the initialization stage and to improve current feasible solutions in 

both subgradient (SG) and simulated annealing (SA) procedures for the BAP. 

Heuristic Procedure H2 (Algorithm for improving the feasible solution) 

1. Set 2Hz  with the minimum of known feasible solution value 

2. Find 2
new
Hz  by running SWAPb, SWAPt, RIGHT, and LEFT 

3. Update and return 2Hz  if 2 2
new
H Hz z≤  

 
Given a feasible solution, a slightly different combination of rectangle movements might work 

better for some problem instances. 

 

3.2.4.1 Rectangle Movement Operators 
 
For the sake of clarity we introduce here the rectangle movement operators. These operators 

define all the possible movements of a rectangle in time‐space, and will be the basis of the 

rectangle movement functions in the next section. 
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Table 1: The rectangle movement operators 

 

 

3.2.4.2 Rectangle Movement Procedure 
 
The rectangle movement functions are designed to generate a better solution by moving each 

rectangle down to its allowable limit which is defined by the arrival time or the neighboring 

rectangles. 

SWAPb (SWAPt) function exchanges a pair of neighboring rectangles in the same batch, which 

starts from the bottom batch (or, from the top batch). These functions eventually try to swap all 

the possible combinations of rectangle pairs in the same batch using the repetition scheme, 

although Swap‐pair operator is designed to exchange of the positions of consecutive rectangles. 
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SWAPb (SWAPt) Procedure 

1. for 1:p P=  ( :1p P= ) 

  for 1: 1pq q= −  

   if p P< , then 

    Push-Up 1pk S +∈   

                Swap-Pair q  and 1q +  

               Push-Down 1p pk S S +∈   

   else 

    Swap-Pair q  and 1q +  

                Push-Down pk S∈
 

   If the cost increases, then restore their positions 

  end 

 end 

RIGHT (LEFT) function pushes a rectangle ( )pS q  to the allowable limit or to the next nearest 

rectangle on the right (or, on the left) in the same batch. 

RIGHT (LEFT) Procedure 

1. for 1:p P=  

  for 1pq q= −  

   if p P< , then 

    Push-Right q  (Push-Left q )  

                Push-Down 1p pk S S +∈   

   else 

    Push-Right q  (Push-Left q )  

                Push-Down pk S∈  
.   if the cost increases, then restore their positions 

  end 

 end 
 

The following figures show how the combination of several rectangle movement functions can 

reduce the allocation cost. Each allocation plan for a vessel is represented by a shaded rectangle 

along with its arrival time and requested departure time (dotted box). Also, darker shade 
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represents the region which causes a penalty cost due to the violation of the desired departure 

time. 

( )pS q
( 1)pS q+

1( 1)pS q+ ′+
1( )pS q+ ′

1( )pS q+ ′

1( 1)pS q+ ′+

( )pS q
( 1)pS q+

 

Figure 9: Reduction by SWAPx resulting from Swap-Pair between Sp(q) and Sp(q+1) followed by Push-Down 
Sp+1(q’).  
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Figure 10: Reduction by RIGHT resulting from Push-Right of Sp(q+1) followed by Push-Down Sp+1(q’). 
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Figure 11: Reduction by LEFT resulting from Push-Left of Sp(q+1) followed by Push-Down Sp+1(q’+1). 

3.3 Computational Experiments for the BAP 

A disruption at a berth may result in changes in the space-time diagram as compared to the 

baseline plan. The disruption may alter the diagram in the time dimension, the space dimension, 

on in both dimensions. Usually, disruptions in the time domain are caused by delayed arrival 

times, delayed berthing times, or longer service times. Disruptions in the space domain are less 
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frequent yet their impact is more severe on the port operations. They may be the result of 

anticipated events (e.g., construction, scheduled maintenance, pre-planned military surge, etc.), 

or unanticipated events (e.g., terrorist acts, earthquakes, hurricanes, etc.).  

In this section, we will consider disruptions caused by delays, i.e., disruptions affecting only the 

time dimension of the space‐time diagram. Disruptions affecting the space dimension will be 

studied in Section 4, where we introduce partially operational berths and the Terminal Allocation 

Problem. Here we assume that the delays are caused by an increase in the number of calling 

vessels on the berth. This increase in the number of vessels to be serviced could be for example a 

direct consequence of physical break‐downs in adjacent berths within the same terminal/port, due 

to unanticipated events. Because of the increased number of vessels, we may not be able to serve 

all the vessels within their requested time frames. The objective is to minimize the total delay 

incurred for all the vessels. We will show, via several computational experiments that our 

developed subgradient and simulated annealing optimization techniques will be able to deal with 

this type of disruptions by finding the best allocation for the calling vessels such that the total 

delay is minimized. The CPLEX MIP solver is used to find exact solutions for small size 

problems, enabling us to evaluate the quality of the solutions generated by our methodologies for 

such problems. 

3.3.1 CPLEX MIP: Computational Experiments 

The computational experiments are conducted using realistic data obtained from Park and Kim in 

[5], and Kim and Moon in [13]. In order to generate random instances, we use a discrete uniform 

distribution whose Cumulative Distribution Function (CDF) is given by  

                        
1

1( ; , ) ( )
1

n

i
i

F x a b H x x
b a =

= −
− + ∑                      (34) 

where the Heaviside step function ( )iH x x−  is the CDF of the degenerate distribution centered at 

ix . Table 2 shows the range of parameters a  and b  assumed in our simulation experiments to 

generate kl , kh , ka , and kd . For instance, kh  is generated randomly using the given CDF for 

7a =  and 23b = . Upon choosing kh , the value of ka  is randomly generated using the same CDF 

with parameters 1a =  and 1kb T h= − + . Note that kd  is chosen so that 2k k k kh d a h≤ − ≤ . In our 
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simulation experiments, we set 1200[ ]M m= , 168[ ]T h= , 20[ ]mα = , and 2[ ]hτ = . 

 

Table 2: Ranges of parameters α and b 

Parameter kl  [m] kh  [h] ka  [h] kd  [h] 

a  170 7 1 k ka h+  

b  290 23 1kT h− +  2k ka h+  

We assume that the weight kw  in (1) is equal to the area covered by the vessel rectangle, i.e., 

k k kw l h= ⋅ . This choice of kw  imposes higher penalties to be paid to ships with possibly higher 

workloads, if the requested departure times are not met.  

Using the specifications given in Table 2, we generate 500 random instances of the BAP. Table 3 

compares the performance of the CPLEX MIP solver (IP), the subgradient optimization method 

(SG), and the simulated annealing method (SA).  

Table 3: Comparison between the BAP solutions using IP, SG, and SA methods 

K rOC 
Cost Average time[s] Maximum time[s] 

zIP zSG zSA zIP/zSG zIP/zSA tIP tSG tSA mIP mSG mSA 

11 0.19 10.7 32.4 14.3 3.03 1.34 0.0 2.0 2.1 10.6 115.4 178.0 

12 0.21 23.5 46.7 41.5 1.99 1.77 0.2 3.4 6.6 25.4 130.8 254.1 

13 0.22 34.0 112.8 52.8 3.31 1.55 0.8 5.5 8.5 236.5 106.2 252.0 

14 0.24 71.2 187.1 115.9 2.63 1.63 1.7 11.2 20.0 468.8 183.8 444.6 

15 0.26 89.8 310.0 170.1 3.45 1.89 28.8 13.7 21.5 6781.0 238.1 367.8 

16 0.27 89.7 299.2 137.6 3.34 1.53 16.7 19.1 31.0 1486.2 234.2 481.8 
17 0.29 230.4 606.4 307.6 2.63 1.33 156.8 30.5 61.8 24739.6 260.4 639.6 

18 0.31 244.0 683.4 389.7 2.80 1.60 361.1 38.7 76.9 38798.5 239.3 617.6 

In Table 3, IPz , SGz , and SAz  are, respectively, the average cost of the best solutions found by the 

IP, SG and SA. The average and the maximum running times for different methodologies are also 

shown in the table. It indicates that the cost ratio of SA to IP (i.e., /IP SAz z ) is rather small which 
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means that SA yields good quality solutions. The cost ratio /IP SGz z  is much higher than /IP SGz z . 

To improve the solution quality of SG, one can increase the number of iterations of H2. 

The occupation ratio of a berth, denoted by OCr , is defined as the sum of the vessel rectangles 

divided by the entire space 

 
1

( )K
OC k kk

r h l MT
=

=∑  (35) 

The occupation ratio is an indicator of the berth utilization. As indicated by Table 3, as OCr  

increases, more time is needed to find the best solutions. 

As it can be seen from Table 3, the IP can solve the problem instances up to K =18. However, 

comparing to the heuristics, as K increases, the IP needs considerable amount of time to find the 

exact solution. We noticed that for K >18, we will not be able to find the exact solutions in a 

reasonable amount of time. This limitation will be more pronounced as we move toward the 

dynamic BAP and the multiple BAP, which are discussed in the following sections. 

3.3.2 Heuristic Methods: Computational Experiments  

We assume that the number of vessels calling on a berth is between 12 to 20 vessels. This 

number is close to the numbers of vessels considered in real‐life scenarios in [5], [13]. 

In Table 3, we have observed that the exact method is able to find the optimal solution, in a 

reasonable amount of time, for K ≤16 . However, the running time of the exact method is 

abruptly increased when K ≥17 . In this subsection and in order to evaluate and compare our 

developed heuristic methods, we consider instances of the BAPs with 17 ≤ K ≤ 21. We adopt the 

generalized objective function J3 in (23) with 1 10k kw l=  and 2
k kw l= . These values are chosen so 

that we can impose higher penalties on delayed departure times. The values of 1
kw  and 2

kw are 

directly proportional to the length of the vessel k, kl . Hence, higher priority is given to larger 

vessels which, most probably, carry higher volume of loads.  

Table 4 shows the performance of the SG and SA optimization methods over various sizes of 

problems. Among randomly generated instances, 20 instances are selected as long as they have a 
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non‐zero initial feasible solution. Each result in the table is averaged over 20 such independent 

trials. 

 

Table 4: Performance comparison between SG and SA methods 

K rOC 
Subgradient optimization Simulated Annealing 

zSA/zUB 
zLB zUB gSG tSG cSG zSA tSA cSA 

17 0.29 145.2 380.3 1.6 590.4 227.1 322.1 133.3 148.1 0.85 

18 0.32 403.2 737.4 0.8 742.5 281.6 532.8 183.1 195.4 0.72 

19 0.33 525.8 897.9 0.7 711.0 268.6 569.3 154.7 183.4 0.63 

20 0.35 428.6 899.7 1.1 845.4 304.8 545.9 261.1 289.0 0.61 

21 0.36 729.5 1951.2 1.7 822.8 268.6 1409.1 248.5 261.4 0.72 

In the table 4, OCr  is the occupation ratio of a berth, LBz  is the maximum lower bound from 

Lagrangian relaxation model, UBz  is the minimum upper bound (best feasible solution by the SG 

method), SGg  is the duality gap between LBz  and UBz , defined as ( ) /SG UB LB LBg z z z= − , SGt  is the 

computational time of the SG method, SGc  is the number of iterations of H2 in the SG method, 

SAz  is the best feasible solution by the SA method, SAt  is the computational time of the SA 

method, and SAc  is the number of iterations of H2 in the SA method. The duality gap SGg  implies 

the maximum deviation of the final lower bound from the best feasible objective value. The 

duality gap ranges from 70% to 170% which means that the SG produces good approximations 

of optimal solutions. 

In Table 4, in order to improve the solution quality of the SG methodology, we may increase the 

number of iterations of H2. It is noted that step 4 in BAPsg doesn’t need to be executed every 

iteration. We noted that the step should be executed when LBz maxLB<  or LBz maxLB≤ .  

We can also observe that, on the average, the SA algorithm still yields a non-inferior solution, 

which ranges from 61% to 85% of the corresponding upper bound found by the SG algorithm. 

This might have resulted from the fact that the range for swapping operations in the SA method 

is little wider. Considering the superiority of the solution quality and the running time of the SA 
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methodology, in the following sections we will only use the SA methodology to find the best 

solutions to other variants of the BAP namely the dynamic BAP, and multiple BAP. 

4 Terminal Allocation Problem (TAP) 

Usually certain berthing locations (home berths) are preferred due to the long-term contracts 

with carriers, the depth of water, differing wave heights, etc [5]. In this section, we assume that 

for some predicted or unpredicted scenarios (disruptions) a calling vessel cannot moor at its 

home berth location and that other berth locations (within the same terminal or adjacent 

terminals) can accommodate the vessel. This leads to a more complex, yet general, variant of the 

BAP which, hereafter, is referred to as the terminal allocation problem (TAP). 

In the TAP, we assume that we have N  disjoint berths. The disjoint berths could belong to the 

same or to different terminals, and because they are disjoint, a vessel can utilize only one such 

berth (i.e. a vessel cannot moor across two or more such berths). The disjoint property will 

enable us to model a partially functional terminal (e.g., a terminal consisting of N  disjoint berths, 

of which 1N N≤  have been rendered non functional due a disruptive event, hence there are only 

1N N−  remaining functional berths). We assume that the length of berth n   is nM  and that the 

time horizon for all berths is T . Figure 12 illustrates the TAP graphically in a space-time 

diagram. 

T

1MBerth 1

Time

T

2MBerth 2

T

NMBerth N

•••

 

Figure 12: Space-time diagram for the Terminal Allocation Problem 

The TAP can be stated as follows: Determine the least-cost assignment of K  vessels to N  

disjoint berths such that each vessel is assigned to exactly one berth and no two vessels are 
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overlapping  (in the space-time domain), while all the vessels’ constraints (arrival times, service 

times, etc.) are met. Therefore, the TAP consists of two intertwined problems: (1) A set 

partitioning problem (SPP), and (2) A number of individual berth allocation problems (BAPs). 

4.1 Set Partitioning Problem 

Given a collection of feasible subsets of a certain ground set, one can formulate the problem of 

finding the best collection of subsets such that the cost associated with these subsets is 

minimized. This problem is called the set partitioning problem (SPP). 

Let jy  be 1 if berth j  is functional and at least one vessel is assigned to it, and zero otherwise. 

Let jc  be the cost of berth j  which is computed as the aggregated costs of serving all the vessels 

assigned to that berth. Let also ija  be 1 if vessel i  is assigned to berth j , and zero otherwise. The 

SPP can be formulated as follows: 

 min 
1

N

j j
j

c y
=
∑  (36) 

 s.t. 
1

1
N

ij j
j

a y
=

=∑ , 1, ,i K=   (37) 

  {0,1}jy ∈ , 1, ,j N=   (38) 

Almost every heuristic approach, for solving general integer programming problems, has been 

considered and applied to the set partitioning problem. For instance, in [15], some greedy 

algorithms and interchange approaches were applied to the SPP problem. Other heuristic 

approaches such as genetic algorithms; probabilistic search, simulated annealing, and neural 

networks have also been studied and applied to the problem. In addition, heuristics are embedded 

within exact algorithms so that one iteratively tightens the upper bound and at the same time 

attempting to get a tight approximation to the lower bound for the problem [16], [17]. 

Unfortunately, there has not been a comprehensive and comparative test across such methods to 

determine under what circumstances a specific method might perform best.  

It should be noted that the SPP is known to be NP-hard [19]. As described above, the TAP can be 
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mapped into the SPP; hence, the TAP is an NP-hard problem too. Moreover, the TAP consists of 

a collection of BAPs, where each BAP is an NP-hard problem [7].Therefore, as the number of 

the berths and vessels in the TAP increases, finding an optimal solution will be computationally 

too expensive. In the following, we develop an approximation methodology to find good 

solutions to the TAP in a reasonable amount of time. 

4.2 Solution Method for the TAP 

Figure 13 demonstrates our approach toward the TAP. The approach is based on a typical set 

partitioning procedure. Assuming that the terminal consists of N disjoint berths, the TAP is 

partitioned into N BAPs. Each BAP is solved separately using the previously developed 

heuristics H1 and H2 as described before. Based on our computational results and findings 

presented in Section 3.3, we will use the simulated annealing methodology for each BAP 

sub‐problem. 

 
Figure 13: The TAP as a set partitioning problem 

Initially, a specific number of vessels, calling on the port is assigned to each berth. This number 

is proportional to the area of the space‐time diagram of each berth. If a vessel has specifically 

requested to be served at a particular berth, it will be assigned to that berth, unless other 

restrictions at the berth prohibited this assignment. 

Recall from Section 3.1.2 that a block ( , )i j  is referred to as a grid space whose left bottom 
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corner is located at the point ( , )i j . The overlapping value of block ( , )i j  at berth n , denoted by 

ijnc , is defined as the number of overlapping vessels at block ( , )i j  at that berth. The maximum of 

this value is { }max, ,
maxn ijni j

c c= , 1, , ni M=   and 1, ,j T=  .  

Let Bn  be the set of vessels assigned to berth n. Assume vessel k  The vessel k overlapping 

index, denoted by kIV , is defined as the number of blocks whose values are max,nc  within the 

vessel rectangle k . The overlapping index of berth n , denoted by nIB , is defined as the sum of 

the block values in that berth. 

 
1 1

nM T

n ijn
i j

IB c
= =

=∑∑  (39) 

Figure 14 illustrates a simple example to demonstrate how to find a vessel’s and a berth’s 

overlapping indices. The right figure shows berth n  containing two overlapping vessel rectangles 

k  and k ′ . For this example max, 1nc = , 2nIB = , and 2k kIV IV ′= = . 
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Figure 14: Value of the block 

Before describing the SA methodology for the TAP in details, we define the variables and 

parameters used in our SA methodology. 

4.2.1 Notations and Definitions 

 
A vessel rectangle k, denoted by kv , is defined by a 9‐tuple as follows. 

 ( )1 2, , , , , , , ,k k k k k k k k k kv n l h a d w w x t=  (40) 

where  
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kn  is the assigned berth index for vessel rectangle k  

kl  is the length of vessel k  

kh  is the estimated handling time of vessel k  

ka  is the estimated arrival time of vessel k  

kd  is the requested departure time of vessel k  

1
kw  is the penalty weight assigned to vessel k  

2
kw  is the reward weight assigned to vessel k  

kx  is the assigned mooring location to vessel k  

kt  is the assigned mooring time to vessel k  

Let nB  be the set of vessels assigned to berth n . That is, 

( ){ } { }| , , , ,  1, , , 1, ,n k k k k kv v n t n n k K n N= = = = ∈  B         (41) 

where K  is the number of vessels to be scheduled, and n nK=B  is the cardinality of the set 

representing the number of vessels assigned to berth n . A state s  is formed by aggregating all nB  

in a single set, i.e.                          

{ }1, , N=s B B .                       (42) 

The cost of the state s  is defined as the sum of the costs of all the individual berths nB  forming s . 

Recall that the cost of each berth is defined in (1). Alternative costs were discussed in 3.1.4. 

In addition, the following notation is defined and used in this section. 
 sc  current state 

 sn  new state 

 sb  best state 

ec  cost of the current state sc , ( )E=ec sc  
en  cost of the newt state sn , ( )E=en sn  
eb  cost of the best state sb , ( )E=eb sb  
 
In the set partitioning algorithm, we construct a single aggregated state sc  to easily perform an 

interchange operation. The new state sn  is obtained from the current state sc  by exchanging a 
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pair of vessel rectangles across different berths. After interchanging vessels across different 

berths, the optimization procedure is sequentially applied to the sub-problems. Each sub‐problem 

by itself is a BAP. The BAP optimization algorithms were discussed extensively in the previous 

section. The policy for choosing the pair of vessels to be exchanged is represented in lines 2 to 5 

of the following procedure. 

NewPartition 
1. Order the rectangles of a current state sc  by arrival times. 

2. Choose (randomly when tie) a berth 1b  having max nIB . 

3. Choose (randomly when tie) a vessel 1k  having max kIV  where 
1bk∈B . 

4. Choose the first 2k  such that 
1 2k ka a<  and 

1 2k kn n≠ . 

5. If 2k  cannot be found, go to step 2 

    Else, exchange the berth indices of 
1kv  and 

2kv . 

6. Divide into sub-states { }|n k kv n n′ = =B  and sort by arrival times. 

7. Generate an initial solution for each BAP by applying H1 and H2. 

8. Update each state ( )n n′= BAPsaB B  and return a new state { }1, , N=sn B B . 

4.2.2 TAP Procedure 

The proposed solution procedure for the TAP is referred to as TAPproc. In the procedure, the 

sum of nIB s under i th partition is denoted by isIB (line 3 in the following procedure description). 

This procedure is terminated when the best objective function value of the TAP or the sum of the 

berth overlapping indices isIB  reaches zero (line5). 
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TAPproc (Terminal Allocation Problem Procedure) 
1. Initialize =bc sc  by TAPinit, ( )E= =eb ec sc , 1i = , and 0r = . 

2. while maxi i≤  

3.  ( )=sn scNewPartition , ( )E=en sn , and i nn
sIB IB=∑  

4.  if <en eb , then =sb sn  and =eb en ; 

5.  if 0=eb  or 0isIB = , then stop 

6.  for 1: 1j i= −  

7.   if j isIB sIB= , then 1r r= +  

8.  End 

9.  if maxr r= , then stop 

10. End 

The TAP optimization algorithm starts by a feasible solution generated by TAPinit. Vessels are 

alternately assigned to berths according to their arrival times. However, in the presence of a 

partially functional berth (which will be defined later), the initial subsets will be assigned based 

on the ratio of the operational region in the space-time domain. 

TAPinit 
1. Sort the order of rectangles of a current state sc  by arrival times 

2. Assign a berth index to each vessel  (mod  )kn k N≡  

3. Divide into sub-states ( )|n k kv n n′ = =B  

4. Generate an initial solution by applying H1 and H2 

5. Update each state ( )n n′= BAPsaB B  

4.3 Port Disruptions Resulting in Partially Functional Berths 

A berth is said to be functional (or fully functional) if the entire berth is available to be used by 

the calling vessels for the entire planning horizon. A berth is partially functional if some sections 

along the berth are not operational for some periods of time. These non‐operational regions may 

be caused by anticipated events (e.g. construction; scheduled maintenance; pre‐planned military 

surge etc.), or by unanticipated disruptions (e.g. terrorist acts; earthquakes; hurricanes etc.). 
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Recall that a port disruption will result in changes of the space‐time diagram as compared to the 

baseline plan. A partial region in the space‐time diagram is termed a cell. A non‐operational 

region is regarded as a cell termed a non‐operational cell. The remaining region in the 

space‐time diagram can be divided into several operational cells based on its shape. These cells 

are all mutually disjoint and exhaustively cover the space‐time diagram. Figure 15 illustrates the 

space‐time diagrams for three different examples of partially functional berths. 

To decompose the time‐space diagram into operational and non‐operational cells, we can employ 

a simple coverage type algorithm [18]. This is similar to grid‐based coverage algorithms used in 

mobile robot applications, such as demining, lawn mowing, and floor cleaning tasks. These 

algorithms require complete coverage of an unstructured environment with obstacle avoidance. 

Our non operational regions in the space‐time domain are comparable to obstacles in the mobile 

robot applications. Both our operational non‐operational regions are rectangular in shape, hence 

we can easily employ a grid-based coverage algorithm. 

Subsequently, our developed heuristics are modified to incorporate the terminal allocation 

problem when a berth is only partially functional. A cellular decomposition scheme is 

incorporated into the heuristic H1, which was developed to generate an initial feasible solution. 

The modified heuristic is referred to as heuristic mH1. Once the vessels are assigned to batches, 

heuristic H2 will be deployed to improve the current solution. Recall that a batch is defined as a 

set of rectangles where the sum of their lengths including safe distances between them is less 

than or equal to the berth length M. The cellular decomposition scheme is done in two stages in 

the modified heuristics. At first, the solution space is roughly decomposed into cells that allow 

some overlapping with neighboring operational cells. Figure 15 shows some examples of the 

decomposed cells from the first stage. The space-time diagrams are divided into several 

operational and non-operational cells. The cells are mutually disjoint and exhaustively covering 

the space-time diagram. An operational cell r  is defined by the coordinate of its lower-left 

corner and the projected distances of its upper-right corner along both axes: ( , , ,r r r rx t M T ), where 

the total number of operational cells is R , i.e., |r|=R 
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Figure 15: Examples of partially functional berths 

In the second stage, any overlapping is removed since the upper cells are adjusted by the 

allocation plan of lower cells. Then, the cells are mutually disjoint and exhaustively cover the 

solution domain. In the modified procedure for an initial feasible solution, the cells are 

decomposed and allocated in two stages by the following procedure in a bottom-up fashion. 
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Heuristic procedure, mH1 (Algorithm to generate an initial feasible solution for TAP) 

 

where 1
k
pS −  is a subset of 1pS − , satisfying s k kx x l α< + +  and s s kx l xα+ + >  for 1ps S −∈  and 

pk S∈ . 

In lines 4-9, each batch of rectangles is constructed by assigning their berthing locations. The 

first rectangle of operational cell r  is denoted as rk  and is allocated at the beginning section of 

the cell, rx . In lines 10-13, a feasible berthing time is assigned as the earliest possible berthing 

time. Finally, in lines 14-18, a batch that overrides with the next cell is determined as the last 

batch of the current cell. The contour of the next cell is adjusted according to the allocation plan 

of the current cell. Eventually, the entire functional region can be decomposed into independent 

cells occupied by a feasible berthing plan. If an overlapping takes place in the last batch, it 

implies that the remnant of the current scheduling will stay for the next planning horizon. 
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However, in a rolling horizon framework, we can easily generate a feasible solution by 

considering the next planning horizon as a neighboring cell. 

The contour of the next cell is adjusted according to the allocation plan of the current cell. 

Eventually, the entire functional region can be decomposed into independent cells occupied by a 

feasible berthing plan, as shown in Figure 16. 

 

Figure 16: Allocation on decomposed operational cells 

By repeatedly applying the steps used in H1, this modified procedure generates an initial feasible 

solution when a non‐operational cell exists in a berth space‐time domain. 

Therefore, in the case of a partially functional berth, the heuristic mH1 replaces H1 in 

procedures BAPneighbor, BAPinit, and BAPsa. Subsequently, the procedures for the mBAP 

should be properly modified to handle a situation where a partially functional berth exists among 

multiple berths. We assume that all ships can be allocated to any berth, possibly, allowing for 

extra penalty if the ship does not moor at its home berth. Again, in the presence of a partially 

functional berth, the heuristic mH1 replaces H1 in the procedure NewPartition.  

In particular, vessel rectangles are distributed according to the proper occupation ratio in the 

initialization procedure, which is referred to as mTAPinit. 

In the presence of a non-operational region, the occupation ratio of berth n , ( )OCr n , is redefined 

as the sum of the vessel rectangles and the non-operational area of nA  divided by the entire space. 
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mTAPinit 
1. Sort a current state { }1, , N=sc B B  by arrival times 

2. Assign a berth index to each vessel:  (mod  )kn k N≡  
3. Randomly substitute berth indices so that  
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1 ( )
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r nK K
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=

−
=

−∑
 where 

1

N
nn

K K
=

=∑  

 Divide into sub-states { }|n k kv n n′ = =B  

4. Generate a feasible solution by applying mH1 and H2 

5. Update each state ( )n n′= BAPsaB B  

4.4 Computational Experiments for the TAP 

In this section, we perform several computational experiments are performed to evaluate our 

developed methodology for the TAP. Our computational experiments consist of both functional 

and partially functional berths. Here, we consider vessels with both flexible and inflexible 

berthing locations and departure times. To evaluate our develop techniques, under different 

experimental scenarios, we use the cost function 6J  defined as 

 3
6 3

1
min  

K

k k k
k

w n m
=

 
= + − 

 
∑J J , (44) 

where 3J  is the cost function defined in (23), km  the desired (home) berth location for vessel k , 

and 3
kw  the spatial penalty for vessel k . The penalty 3

kw  is applied to a vessel which cannot be 

moored at its desired berth. The last term in 6J , in fact, penalizes the difference between the 

assigned and the desired berthing location for vessel k .  

In our computational experiments, and without loss of generality, we assume the following 

values for wk
1,wk

2 and wk
3. 
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 1 ,  if  1 and  
10 ,  otherwise

d
k k k k

k
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 = + >= 


  

 2
k kw l=  (45) 

3 ,   if  1 and 
2 ,  otherwise.

b
k k k

k
k

Q f n m
w

l
 = ≠= 


  

where Q  is a big positive real number 

1,   if the departure time of vessel  is not flexible
0,  otherwise

d
k

k
f 

= 


                                                   (46) 

1,   if the berthing location of vessel  is not flexible
0,  otherwise

b
k

k
f 

= 


 

In the following, we will consider various scenarios to evaluate our developed methodologies 

under different circumstances. 

4.4.1 Case I: Vessels with Flexible Berthing Locations and Departure Times 

Here, we assume that the calling vessels have flexible berthing locations and flexible departure 

times (i.e., 0d
kf =  and 0b

kf = ). By flexible berthing locations, we mean that the vessels do not 

have any restrictions on the section of the berth they will be assigned to. However, these vessels 

may be willing to moor at any other berth within the terminal or may only choose a specific berth.  

In our experiments, and without loss of generality, we assume that 3N = , 1200nM M m= =  for 

1, ,3n =  , and 168T h= . We also assume that the number of vessels mooring at each berth is 

initially uniformly distributed between 16 to 21. 

Scenario 1: In this scenario, all three berths are functional and the vessels are not flexible to 

change their berths. In fact, this scenario can be viewed as three disjoint BAPs. 

Scenario 2: In this scenario, the vessels in Scenario 1 are flexible in changing their berths. This 

scenario, in fact, represents an instance of the TAP with three berths. 

We randomly generated 20 instances of the problem are randomly generated with general 

specifications as described above. Each instance is comprised of three BAPs such that at least 

one BAP has a non-zero cost (i.e., the value of the objective function generated by H1 is non-
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zero). 

In order to evaluate the proposed heuristics for Scenarios 1 (BAPs) and 2 (TAP), a series of 

BAPprocs and TAPproc are successively applied to each instance. The results are averaged and 

summarized in Table 5. 

Table 5: Experiment results for Scenarios 1 and 2 

rOC 
Scenario 1 Scenario 2 

g12 zS1 tS1 cS1 zS2 tS2 cS2 pS2 
0.31 2796.0 967.7 491.8 27.3 7700.7 4558.0 13.5 0.99 

In Table 5, OCr  is the occupation ratio of the terminal which is defined as the statistical mean of 

( )OCr n  in (41). Siz  is the value of the best solution in Scenario i , Sit  the computational time in 

seconds, Sic  the number of iterations of procedure H2 by calling BAPneighbor, Sip  the number 

of iterations of the set partitioning by calling NewPartition, and ijg  the cost reduction as a 

solution gap between Scenarios i  and j , i.e., ( ) /ij Si Sj Sig z z z= − .  

As seen from the table, due to the flexibility of vessels in choosing different berths, the total 

allocation cost of Scenario 2 is reduced by 99% (g12=0.99) compared to Scenario 1. The table also 

shows that the running time for scenario 2 is almost 8 times larger than that of scenario 1.  

The following scenarios 3 and 4, are similar to scenarios 1 and 2, under the additional condition 

that one of the berths in the terminal is now only partially functional.  

Scenario 3: Consider Scenario 1 again. Here, berths 2 and 3 are fully functional while berth 1 is 

partially functional. We assume that berth 1 has a non-operational cell between 600-1200m in 

space and 1-100h in time in the space-time diagram.  

Scenario 4: Consider Scenario 2 again. Similar to Scenario 3, we assume that berths 2 and 3 are 

fully functional while berth 1 is non-operational between 600-1200m in space and 1-100h in time. 

Using the same problem instances generated for Scenarios 1 and 2, Scenarios 3 and 4 are created 

by assuming a non-operational cell in first berth, respectively.  
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Table 6 summarizes the average results over 20 problem instances, Comparing Table 6 and Table 

5, we can easily observe that the non-operational cell increases the occupation ratio from 0.31 to 

0.41 and it increases the cost of BAPs by more than 10 times. It indicates that, even in the 

presence of a partially functional berth, the allocation cost can still be reduced by using multiple 

berths. It is found that the cost is decreased by 93% (g12=0.99). 

Table 6: Experiment results for Scenarios 3 and 4 

rOC 
Scenario 3 Scenario 4 

g34 zS3 tS3 cS3 zS4 tS4 cS4 pS4 
0.41 32232.0 1241.0 504.8 2266.8 41036.8 26338.5 44.7 0.93 

4.4.2 Case II: Vessels with Strict Berthing Locations and Departure Times 

Hence, we assume that the departure times and/or the berthing locations of some vessels cannot 

be violated (i.e., 1d
kf =  and/or 1b

kf =  for some vessels). Accordingly, the set of vessel rectangle 

kv  assigned to berth n , nB , is divided into two subsets: 

 
( ){ }
( ){ } { }

| , , , ,  0, 1, , ,  and

| , , , ,  1, 1, ,   1, ,

free b
n k k k k k k

fixed b
n k k k k k k

v v n t n n f k K

v v n t n n f k K n N

= = = = =

= = = = = ∈

 

  

B

B
 (47) 

The procedures for generating an initial feasible solution and an updated partition are 

respectively modified to handle the inflexible requests by vessels. First the rectangles from the 

first subsequence free
nB  are distributed over N  berths according to the initial occupation ratio 

( )OCr n  and then the assigned rectangles are combined with the rectangles from the second set 
fixed

nB .  

In the set partitioning procedure NewPartition, only the rectangles from the set free
nB  are selected 

for swapping operation. The following four scenarios 5‐8 are used to evaluate the proposed 

algorithms when some vessels have requested strict berthing locations and departure times. 

Scenario 5: We assume that all three berths are functional and that vessels are not flexible in 

changing their berths. Additionally, we assume that 30% of the vessels in each berth have strict 

departure time requests. In fact, this scenario represents three BAPs having strict berthing time 
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requests. 

Scenario 6: In this scenario, we assume that some vessels in Scenario 5 are flexible in changing 

their assigned berths, However, 30% of the vessels in each berth have requested strict berth 

location. In fact, this scenario represents a TAP having strict requests on berthing times and 

berthing locations. 

Again, we randomly generated 20 instances. Each instance is comprised of three BAPs such that 

at least one BAP has a non-zero initial objective function value generated by H1. In order to 

evaluate the proposed heuristics over scenarios 5 (BAP) and 6 (TAP), a series of BAPprocs and 

TAPproc are successively applied to each instance. The averaged results are summarized in 

Table 7.  

Since the BAPs in Scenario 5 have the strict requests on departure times, some vessels’ 

rectangles, probably with lower priority, may not be allocated in the current time horizon 

(possibly placed over two consecutive planning horizons). The number of these undesirable 

allocations in Scenario i  is denoted by Sie .  

According to the results, if vessels are allocated to the single integrated terminal with multiple 

berths, the allocation cost can be reduced by 63% even with the strict requests on berthing 

locations and departure times. Note that the average number of vessels having the inflexible 

departure times is 5.55 for 3 berths. These vessels having higher priority could make some 

allocations undesirable. However, by implementing the TAP, the number of undesirable 

allocations can also be reduced from 0.27 to 0.09. Table 7 also shows that the running time is 

increased from 0.19 to 2.24 hour. 

Table 7: Experiment results for Scenarios 5 and 6 

rOC 
Scenario 5 Scenario 6 

g56 zS5 tS5 cS5 eS5 zS6 tS6 cS6 pS6 eS6 
0.31 31258.1 666.4 489.9 0.27 11442.2 8052.1 6916.6 10.8 0.09 0.63 

 

Furthermore, additional scenarios are prepared to compare the BAPs and TAP in the presence of 

a partially functional berth. Using the same problem instances generated for scenarios 5 and 6, 
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scenarios 7 and 8 are prepared by adding a non-operational cell in the first berth, respectively. 

Scenario 7: Consider Scenario 5 again. Assume that berth 1 has a non-operational cell between 

600-1200m in space and 1-100h in time while berths 2 and 3 are fully functional. 

Scenario 8: Consider Scenario 6 again. Similar to Scenario 7, we assume that berths 2 and 3 are 

fully functional while berth 1 has a non-operational cell between 600-12000m in space and 1-

100h in time. 

Table 8 shows the benefit of implementing the single integrated terminal in the presence of a 

partially functional berth when vessels have both strict requests on berthing locations and 

departure times. 

A comparison between Table 6 and Table 7 indicates that, although the presence of the non-

operational cell increases the cost of BAPs by more than 700%, the allocation cost is still 

reduced to 57%. In addition, the number of undesirable allocations is reduced from 1.91 to 0.82, 

on average. Table 8 also shows that the running time is increased from 0.24 to 6.03 hours. 

Table 8: Experiment results for Scenarios 7 and 8 

rOC 
Scenario 7 Scenario 8 

g78 zS7 tS7 cS7 eS7 zS8 tS8 cS8 pS8 eS8 
0.41 221176.1 872.3 599.2 1.91 95818.3 21724.5 21444.5 33.5 0.82 0.57 

5 Disruption Mitigation at the Regional Level 

Logistics service providers or carriers consolidate their freight in a network of hubs and 

terminals and build up regular services. The design of such services requires decisions about the 

frequency, mode, and route of the service and the corresponding schedule and routing of freight. 

Planning decisions for such networks are made on a tactical level and have a direct impact on 

customer services and costs. These kinds of tactical planning problems are generally referred as a 

service network design [25]. 

5.1 Service Network Design 

Railways, less-than-truckload (LTL) motor carriers, mail/package delivery services, airlines, 
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intermodal shipping lines are typical examples of such systems that require tactical planning of 

operations. Service network design is increasingly used to designate the set of main tactical 

issues and decisions relevant to the described carriers: the selection and scheduling of the 

services to operate, the specification of the terminal operations, the routing of freight, the empty 

balancing strategy, etc. The corresponding models usually takes the form of network design 

formulations, a class of the mixed-integer network optimization problems for which no efficient 

exact solution method exists, except for special variants [26]. 

In this section, we describe a general service network design problem containing decisions 

regarding the service selection and the traffic distribution. In the service selection, the routes 

which services are offered and the characteristics of services are defined. In the traffic 

distribution, the paths between origins and destinations are determined to move every demand. 

Network design formulations are defined on graphs containing nodes connected by links. The 

objective is to select links in a network, along with capacities, eventually, in order to satisfy the 

demand for transportation at the lowest possible system cost computed as the total fixed cost of 

the selected links, plus the total variable cost of using the network. Consider a graph 

( , )=G N A  which represents a physical network, where N  is a set of node and A  is a set of 

links. 

FORMULATION FCSN. The following formulation, which hereafter is called formulation 

FCSN, is equivalent to the fixed cost service network. 

 Min 
( , ) ( , ) ( , )

p p
ij ij ij ij

i j i j i j
f y c x

∈ ∈ ∈

+∑ ∑ ∑
A A P

 (48) 

 Subject to p p p
ij ji i

j j
x x d

∈ ∈

− =∑ ∑
N N

 i∈N , p∈P  (49) 

 p
ij ij ij

p
x u y

∈

≤∑
P

 ( , )i j ∈A  (50) 

 0p
ijx ≥  ( , )i j ∈A , p∈P  (51) 
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 {0,1,2, }ijy ∈   ( , )i j ∈A  (52) 

where 

•  ijf  is the fixed cost incurred by opening service on link ( , )i j  per service unit 

• ijy  is the discrete decision variable which represents the number of service units (e.g. 

trucks) offered on link ( , )i j  

• p
ijc  is the transportation cost per unit flow of product p  on link ( , )i j  

• p
ijx  is the flow decision variable indicating the amount of flow of commodity p  using 

link ( , )i j  

• p
id  is the demand of product p  at node i  

• iju  is the capacity of link ( , )i j .  

The objective function (48) minimizes

 the cost of all relevant decisions, i.e., the service selection and the traffic distribution. Constraint

 (49) is the flow conservation and demand satisfaction requirements. Constraint (50) is the capaci

ty restriction of the flow on each link. Constraints (51) and (52) ensure the variables are nonnega

tive and the design variable is an integer. 

5.2 Service Network for the U.S. West Coast Region 

The focus area for developing mitigation strategies at the regional level, is the region consisting 

of the entire west coast of the United States. The region contains multiple marine ports and the 

associated ground transportation network, through which goods move within the region and in 

and out of the region. The basic question at the regional level is: “what is the impact of 

appropriate mitigation measures if one of the ports in the region becomes partially or fully non-

functional for a specific period of time?” 

The existing service network is defined at a high level of aggregation, which includes the major 

ports and aggregated terminals (zones) representing broad geographical destinations and 
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intermediary terminals. To define the regional network at an appropriate level of resolution, the 

2002 Origin-Destination data from the Freight Analysis Framework (FAF) of U.S. DoT FHWA 

(Federal Highway Administration) is used [27]. Using the FAF data, the service network of the 

west coast region, including the state of Nevada, is constructed. This region consists of 11 zones. 

In addition, the remainder of the U.S. is considered as one zone and four major combined ports 

(Los Angeles and long beach, San Francisco, Portland, and Seattle) are also added in the network. 

Then, the regional service network consists of 20 nodes as shown in Figure 17. The zoning of the 

FAF is represented in Figure 17(a) and the corresponding network is shown in Figure 17(b). 
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Figure 17: Service network for the U.S. west coast region 

 

Sine each zone in the FAF data represents an aggregated location of demands, it is modeled as a 

node ( ZN ). A port of disembarkation is not represented as a zone in the data. However, each port 

node is added to supply the zones. Also, in order to assign the capacity to a port node, it is split 

into an inbound node ( IN ) and outbound node ( ON ). In this level of aggregation, a link does not 

imply a specific freeway or railway between two corresponding nodes. Rather, it represents an 
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aggregated path by possible ground transportation modes (trucks and trains). This distribution 

network for import freight is assumed to handle an aggregated single commodity. Then, N  is a 

set of node comprised of port nodes and zone nodes ( I O Z= ∪ ∪N N N N ) and A  is a set of 

links comprised of port and ground links ( P G= ∪A A A ),  

where, {( , ) | ,  }P I Oi j i j= ∈ ∈A N N  and {( , ) | , , ,  }G O Z Zi j i j i j= ∈ ∈ ≠A N N N  

Formulation MCFP. If all links are activated to move freight, the regional service network can 

be modeled as a minimum cost flow problem, which hereafter is called formulation MCFP, is 

showed in the following: 

 Min 
( , )

ij ij
i j

c x
∈
∑

A
 (53) 

 Subject to ij ji i
j j

x x d
∈ ∈

− =∑ ∑
N N

 i∈N  (54) 

 ij ijx u≤  ( , )i j ∈A  (55) 

 0ijx ≥  ( , )i j ∈A  (56) 

where  

• ijc  is the transportation cost per unit flow in link ( , )i j  

• ijx  is the flow decision variable indicating the amount of flow using link ( , )i j  

• id  is the demand at node i  

• iju  is the capacity of link ( , )i j  

Classical pseudopolynomial-time algorithms, such as, cycle-canceling, primal-dual, out-of-kilter, 

and relaxation algorithms can be applied to solve this problem. These algorithms have some 

commonalities in that they all repeatedly solve shortest path problem. They frequently provide 

the essential building blocks and core ideas used in more efficient algorithms. Also, it can be 
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solved by a linear programming method. Note that a linear program with 0-1 incident matrix can 

be transformed into a minimum cost flow problem [28]. 

5.3 Mitigating Disruptions at Regional Level 

When a disruption occurs at the regional level, the regional service network may need to be 

reconfigured. For example, consider the U.S. west coast region presented in Figure 17. If the LA 

port node is rendered non-functional for a period of time, all services originating from the node 

will either be discontinued or be operated at lower capacity. The reconfiguration of the service 

network is performed by installing a sea transportation mode between ports. Figure 18 shows the 

possible sea transportation links (dotted arrows) from the LA port node to other port nodes. 
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Figure 18: Reconfiguration of the regional service network 

 

The choice of sea transportation links will determined by an optimization procedure, which 

minimizes a generalized cost while satisfying the transportation demands. Our solution provides 

the data about the amount of goods that can be distributed by sea links and the corresponding 

alternative ground links. Due to capacity constraints of links, some amounts of goods may not be 
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distributed although all the available sea links are activated. The amount of goods may remains 

at the disruptive port waiting to be distributed in the next planning horizon. 

Formulation MCFPB. The set of links A  are differentiated into port operation links PA , ground 

transportation links GA  and sea transportation links SA , where, {( , ) | ,  ,  }S I Ii j i j i j= ∈ ∈ ≠A N N . 

Then, the service network formulation which can mitigate disruptions is modeled as a minimum 

cost flow problem with binary constraints. The following formulation is called formulation 

MCFPB. 

 Min 
( , ) ( , )S

ij ij ij ij
i j i j

f y c x
∈ ∈

+∑ ∑
A A

 (57) 

       Subject to ij ji i
j j

x x d
∈ ∈

− =∑ ∑
N N

 i∈N  (58) 

 ij ij ijx u y≤  ( , ) Si j ∈A  (59) 

 ij ijx u≤  ( , ) ,P Gi j ∈A A  (60) 

 0ijx ≥  ( , )i j ∈A  (61) 

 {0,1}ijy ∈  ( , ) Si j ∈A  (62) 

where 

• ijf  is the activation cost of sea link ( , )i j  

• ijy  is the discrete decision variable of sea link ( , )i j   

• ijc  is the transportation cost per unit flow in link ( , )i j   

• ijx  is the flow decision variable indicating the amount of flow using link ( , )i j  

• id  is the demand at node i  
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• iju  is the capacity of link ( , )i j  

If the maximum flow saturates all the links from the source, the minimum cost flow problem is 

feasible. That is to say, when the supplies/demands at the nodes satisfy the condition 0ii
d

∈
=∑ N

, 

the minimum cost flow problem has a feasible solution. To make this problem feasible by 

ensuring 0ii
d

∈
=∑ N

, we add a set of slack transportation links between port-inbound nodes and 

zone nodes. The set of slack transportation links defined as {( , ) | ,  }K I Gi j i j= ∈ ∈A N N . Then, the 

set of links are redefined as P G S K= ∪ ∪ ∪A A A A A . These slack links will provides information 

how much of goods cannot be delivered to each demand nodes. 

FORMULATION SSST. Formulation (MCFPB) can also be rewritten by separating the set of 

slack transportation links and in that case it will be called formulation SSST. 

 Min 
( , ) ( , ) , , ( , )S P G S K

ij ij ij ij ij ij
i j i j i j

f y c x xω
∈ ∈ ∈

+ +∑ ∑ ∑
A A A A A

 (63) 

 Subject to ij ji i
j j

x x d
∈ ∈

− =∑ ∑
N N

 i∈N  (64) 

  ij ij ijx u y≤  ( , ) Si j ∈A  (65) 

  ij ijx u≤  ( , ) , ,P G Ki j ∈A A A  (66) 

  0ijx ≥  ( , )i j ∈A  (67) 

  {0,1,2, }ijy ∈   ( , ) Si j ∈A  (68) 

where ijω  is the penalty to undistributed goods which could be greater than the cost related to the 

alternative sea link choice. 

This problem is solved by a branch-and-bound (B&B) method and a linear programming (LP) 

relaxation is performed on every leaf of the branch-and-bound tree. The Simplex algorithm is 

applied to solve the relaxed LP problem. The Simplex algorithm is defined by the pivot rule. This 
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rule defines the way that decides with vertex of polyhedron is selected when there are many 

basic feasible solutions (BFSs) to choose from [29]. Suppose that the pivot rule is always to 

move the adjacent to BFS which there is at least increase in the objective function value. Under 

this pivoting rule, the Simplex algorithm requires 2 1n −  pivoting steps before terminating. More 

precisely, in a standard form, the time complexity of LP is ( 2 ) ( 2 ) (2 )n n nO mn O n O= =  where, 

m  is the number of rows and n  is the number of columns of the incident matrix. In a worst case, 

since a B&B could generate all leafs on the tree and it solves a relaxed LP on every leaf, it takes 

exponential time ( ( 1) 2 )n
aO p p⋅ − ⋅  to solve our problem, where ap  the number of ports in 

which activated sea links are originated and p  is the number of all ports in the network. 

As described above, the Simplex algorithm has exponential time complexity. Its average 

behavior and worst case behavior have been studied and explained by Borgwardt [30] and Klee 

and Minty [31], respectively. There is no deterministic pivot rule under which the Simplex 

algorithm is known to take a sub-exponential number of iterations. However, the numerical 

behavior is conflict with theoretical analysis [32]. That means that it is efficient in practice, while 

having no polynomial time worst-case complexity, although there are no satisfactory theoretical 

explanations of its excellent performance. Therefore, the running time in solving our problem is 

governed by the term ( 1)ap p⋅ − . 

The B&B method explores the set of feasible integer solutions. However, it uses bounds on the 

optimal cost to avoid exploring certain part of the feasible set. The developed algorithm follows 

the typical B&B strategies, with few implementation strategies which are listed below. 

- It always branches a non-convergent sub-problem unless it is a leaf of the B&B tree. 

- To break a sub-problem, it chooses a variable ix  which is not integer and creates two sub-

problems by adding either of the constraints *
i ix x ≤    or *

i ix x ≥   . 

- The lower bound of the optimal cost of a sub-problem is obtained by the linear programming 

relaxation using the simplex method. 

- The upper bound is updated with the best feasible integer solution so far. 
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- As a way of choosing an active sub-problem, it uses depth-first search with back-tracking. 

5.4 Computational Experiments 

As we described earlier, our regional service network is constructed based on zoning and data 

from 2002 FAF. The service network of the US west coast region including the state of Nevada is 

constructed, which consists of 11 zones for the interested region, 1 zone for the remainder of the 

US, and four imaginary zones for the major combined port areas (Los Angeles, San Francisco, 

Portland, and Seattle). In order to assign the capacity to a port zone, each port node is split into 

an inbound node and outbound node. Therefore, the regional service network consists of 20 

nodes as shown in Figure 18.  

The freight demands (in tons) are extracted from multi-dimensional matrices which consist of 

origin, destination, commodity, mode, and port of disembarkation. Originally, origins and 

destinations consist of 114 regions and 7 international regions. We extracted the freight from the 

international regions to the interested ports in the west coast regions. Among all freight, we 

selected freight whose transportation modes are truck, train, and a combination of truck and train. 

Based on this information, the west coast service network is constructed as shown in Figure 18 

and the corresponding demands are defined in Table 9. 
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Table 9:  Import Freight Distribution (ton/day) via Major West Coast Ports 

node z8 z9 z10 z11 z12 z59 z60 z84 z85 z109 z110 zR Supply 

LA 113667 5651 444 2457 4926 1369 61 239 159 757 233 12969 142932 

SA 385 8 454 10508 1112 24 59 32 26 76 68 681 13433 

PO 321 44 58 34 120 3 25 6643 661 526 1325 935 10695 

SE 710 3 31 77 83 1 1 994 670 21861 2525 2819 29775 

It summarizes the supplies and demands of four independent distribution networks originating ea

ch combined port complex. First column represents ports of the west coast region and first row re

present zones in the region. Columns 2 to 13 represent demand XX
id  of zone i  supplied by port X

X, independently. Then, LA SA PO SE
i i i i id d d d d= − − − − . The last column represents the supply to each

 port. Following table describes the legends and indices used in above table and figures.  

 

 

 

 

 

 

 

 

 

Table 10:  Legends and numbers of nodes describing FAF zones 
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Legend FAF acronym Zone Node 

LA CA Los A Los Angeles/Long Beach port areas 17, 1 

SA CA San J Oakland port area 18, 2 

PO OR Portl Portland port area 19, 3 

SE WA Seatt Seattle/Tacoma port areas 20, 4 

z8 CA Los A Los Angeles-Long Beach-Riverside, CA 5 

z9 CA San D San Diego-Carlsbad-San Marcos, CA 6 

z10 CA Sacra Sacramento-Arden-Arcade-Truckee, CA-NV 7 

z11 CA San J San Jose-San Francisco-Oakland, CA 8 

z12 CA rem Remainder of California 9 

z59 NV Las V Las Vegas-Paradise-Pahrump, NV 10 

z60 NV rem Remainder of NV 11 

z84 OR Portl Portland-Vancouver-Beaverton, OR-WA 12 

z85 OR rem Remainder of Oregon 13 

z109 WA Seatt Seattle-Tacoma-Olympia, WA 14 

z110 WA rem Remainder of Washington 15 

zR - Remainder of West Coast Zone 16 

The activation cost ijf  of link ( , ) Si j ∈A  can be defined by ‘the running cost’ of a ship during the 

entire trip including the loading at Ii∈N , and the unloading at Ij∈N . The transportation cost 

ijc  of link ( , ) Si j ∈A  is defined as ‘the price per ton’ since the distance is already considered in 

the opening cost. Following relations are used to calculate the opening cost and transportation 

cost of sea links, especially from LA to other ports. 
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Fuel cost (FC) = (Loading and Unloading time)×Fuel per day at port + Transit time×Fuel per day at 

sea 

Running Cost = Daily running cost×Total time + fuel cost + port cost 

Price per ton = (Daily profit×Total times + Running Cost) / Total tons 

Besides the distance information between port nodes, several assumptions are made to calculate 

these costs in Table 11. 

- Average ship speed is 25 knot. 

 Transit time (17-18) = 368/25/24 = 0.6133 hour 

- Loading/unloading time is 1 hour. 

- Fuel consumption per day at port and at sea is 2 ton and 34 ton, respectively. 

- Fuel price per ton is $100. 

Fuel cost (17-18) = (1×2+0.6×34)×100 = 2240 

- Daily running cost of a ship is $5000 and each port cost is $3000. 

Activation cost (17-18) = 5000×2.6+2240+3000×2 = 21240 = f17,18 

- Daily profit required is $1000. 

- Maximum load of a ship is $10000. 

Price per ton (17-18) = (1000×2.6+21240)/10000 = 2.384 = c17,18 

 

 

Table 11:  Activation and transportation cost of sea links 
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Sea link Distance Transit time 
activation 

cost 
Price per ton 

i-j (nautical 
miles) 

(h) fij cij 

17-18 368 0.6 21240 2.384 

17-19 976 1.7 25480 2.818 

17-20 1127 1.9 27160 3.006 

According to [33], the price per ton-mile of ground transportation modes (truck and train) is 

roughly 22 times higher than that of sea transportation mode. Since our price per-tone mile of sea 

links is about $0.004, we can proportionally assumed that the price per ton-mile of our ground 

transportation link is about $0.1. Then, the ground transportation cost per unit ton is 0.1ij ijc m= , 

where ijm  is distance in miles of link ( , ) Gi j ∈A . 

The maximum capacity of link is assumed to be high enough to distribute current demands found 

in the FAF data. First, the maximum capacity of port link ( , ) Pi j ∈A  is defined by increasing the 

current optimal flow which is an optimal solution to (MCFP).  

 * /m
ij ij pu x r= , (69) 

Where, m
iju  is the maximum capacity, *

ijx  is the optimal solution to (MCFP), and pr  represents 

the capacity utilization ratio ( 0 1pr< ≤ ). Without any disruption, a higher pr  is given to the LA 

port node. However, we will generate a disruption in LA node by reducing it’s pr  in the 

experiments. 

Table 12 shows the maximum capacity of each link and the residual capacity r
iju  which will be 

used in PART I of the experiments, later. 

Table 12: Estimating capacity (ton) of port links 
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Port Link Optimal flow rp 
Maximum 

capacity 

Residual 

capacity 

17-1 142932 0.9 158813 158813 

18-2 13433 0.5 26866 13433 

19-3 10695 0.5 21390 10695 

20-4 29775 0.6 49625 19850 

Secondly, the capacity of ground link ( , ) Gi j ∈A  is defined by increasing the current optimal flow 

which is an optimal solution to (MCFP).  

 * /m
ij ij gu x r= , (70) 

where m
iju  is the maximum capacity, *

ijx  is optimal solution to (MCFP), and gr  represents the 

capacity utilization ratio. A higher gr  is given to links whose destination has more demand as 

shown in Table 13. 

Table 13:  Estimating capacity of ground links 

Zone rg Links 

LA Metropolitan area 0.9 1-5,1-6 

Other Metropolitan area 0.6 2-7,2-8,3-12,3-14,4-12,4-14 

Other than above 0.5 Other than above 

 

5.4.1 Distributions of Freight from LA Port Node 

In this part, it is assumed that, if some of freight which cannot be processed in the LA node, they 
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are distributed through other port nodes. Therefore, higher priority is given to the supplies of 

those nodes. That is, the distributions between the other nodes to zones are performed a priori. 

That is, r
ij iju u=  for ( , ) Pi j ∈A  and m

ij iju u=  for ( , ) Gi j ∈A . Assume that a disruption occurs in LA 

port. As a result of the disruption, we assume that the capacity of link 17-1 is reduced from 90% 

to 70% in 5% decrements. Table 14 shows the performance of our mitigation strategy 

summarized in terms of the cost of distribution and the amount of remaining freight.  

Table 14: Freight distribution from LA port by activating sea links 

Capacity Capacity Base Case 
(MCFP) Reconfiguration Case (SSST) 

(%) (ton) RGoods Cost 
(LA) SA PO SE RGoods Total 

Cost 

90 142932 0 3.53e+6 2962 1388 0 0 3.36e+6 

85 134991 7941 1.91e+6 6457 1484 0 0 3.42e+6 

80 127050 15882 6.74e+5 6457 4658 4767 0 3.61e+6 

75 119110 23822 5.11e+5 6457 8499 6101 2765 3.78e+6 

70 111169 31763 4.45e+5 6457 8499 6101 10706 3.72e+6 

The first column represents the current capacity of LA port link with respect to the maximum 

capacity. The second column shows the corresponding capacity in tonnage. Cost (LA) is the 

optimal cost of distributed goods supplied to the LA node. RGoods is the amount of remaining 

goods at LA node due to capacity insufficiency of the overall service network. Suppose that the 

optimal solution to (MCFPB) or (SSST) is * *( , )ij ijx y . Then, 

* *
( , ) ( , ) , ,

PCost
S P G S

ij ij ij iji j i j
f y c x

∈ ∈
= +∑ ∑A A A A

.                                                                      (71) 

*RGoods ,  ( , )ij Kx i j= ∈A                                                                                                (72) 

When the current capacity is down to 90%, all the freight from LA node can be distributed using 



 74 

only ground links. However, by activating two sea links, the computational result indicate that 

the distribution cost originating LA node can be further reduced under our assumptions regarding 

costs. If the current capacity of LA node is reduced to less than 90%, the part of freight supplied 

to LA node cannot be distributed in (MCFP). When the capacity is reduced to 85% or 80%, the 

freight supplied to LA zone can still be distributed by opening some of the sea links in (MCFPB). 

However, if the capacity of LA node is reduced to 75%, we have excess freight of 2765 ton even 

though all the possible sea links from LA are activated. 

6 Overall Disruption Modeling and Mitigation  

Mitigation strategies have been developed at the terminal, port and regional levels and several 

scenarios were discussed to demonstrate the best mitigation strategies to be followed at each 

level. It is important that these strategies be integrated with each other, in order to optimize the 

routing of ships, trucks and trains and to dissipate the disturbance caused by a disruption at any 

level. 

Our overall methodology is developed based on minimizing the total cost at all levels. The 

regional level takes inputs from the terminal and port levels and the results are used as a new 

input to the port level using heuristic methods to optimize the routing of goods to their 

destinations as explained in detail in previous chapters. In the following, a computational 

experiment is discussed to evaluate the overall methodology applied to a combination disruptions 

at all levels. 

In the following scenario, we have focused on the port of LA/LB which consists of 15 container 

terminals and the adjacent road network. A major portion of the goods from the port complex are 

delivered to zone 8 which includes the Los Angeles, Long Beach and Riverside regions. Trucks 

take I-710, I-110, 47 and 103 roads to distribute the goods in zone 8 as shown in the Figure 19. 
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Figure 19:  Port (LA/LB) complex and adjacent road network. 

For the simulation of cargo movements inside terminals we use the macroscopic terminal model 

TermSim that was developed under a previous METRANS project and was modified to handle di

sruptions under this project. For the simulation of traffic flow i

n the road network adjacent to the twin ports we use the commercial software VISSIM to develo

p and tune a microscopic traffic simulation model. 

The VISSIM based microscopic traffic simulation model is integrated with the macroscopic term

inal model in order to calculate the number of trucks entering and leaving the terminals. 

Locations of terminals are shown in Figure 20 and the capacity of each terminal is presented in 

Table 15. 
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Figure 20:  Location of container terminals 
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Table 15: Capacity of terminals 

Terminal# Normal Capacity 

(ton/day) 

Maximum 
Capacity 

1 11149 6133 

2 8290 9133 

3 15437 17106 

4 7004 7809 

5 4145 4609 

6 12578 13871 

7 4145 4626 

8 28015 32150 

9 13864 17220 

10 8290 12010 

11 5717 6985 

12 4145 6100 

13 5717 7810 

14 11149 14905 

15 2287 2536 

Baseline traffic flow on the adjacent roads prior to applying the scenario assumptions is shown in 

Figure 21.  
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Figure 21:  Baseline traffic flow 

 (PCU -Passenger Car Unit, 1 truck=2.5 PCU, 1 car=1 PCU) 

In our disruption scenario terminals 1, 2, 3 and 4 are partially functional due to a military surge 

(the disruption scenario assumes that the terminals operate at 50% capacity). Therefore, 21100 

ton/day is left to be redistributed to the other terminals. 

In the following, we provide a comparison of using our methodology, i.e. a combination of the 

terminal allocation problem (TAP) and service network optimization, versus separately 

optimizing each one. 

6.1 TAP and Service Network Optimization (separately) 

In this part, the goods are distributed among other terminals. Table 16 shows the performance of 

TAP mitigation strategy summarized in terms of distribution of goods in terminals. 
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Table 16:  TAP optimization, container distribution 

Terminal# 
Normal 
Capacity 

Maximum 
Capacity 

1 5575 6133 

2 4151 9133 

3 7775 17106 

4 3549 7809 

5 4332 4609 

6 12803 13871 

7 4362 4626 

8 32115 32150 

9 16467 17220 

10 11096 12010 

11 8642 6985 

12 6085 6100 

13 7785 7810 

14 14746 14905 

15 2501 2536 

Figure 22 shows traffic flow in the adjacent network. Traffic congestion is observable in I-110 

and 47 highways. 
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Figure 22:  Service network optimization, traffic flow 

6.2 Combination of TAP and Service Network Optimization 

In this part, the impact of the adjacent road network traffic is added to the cost function. As a res

ult, terminals 2 to 8 receive more containers compared to the previous part to relieve the traffic fl

ow on I-110. This is shown in Table 17. 
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Table 17:  Combined optimization, container distribution 

Terminal# 
Normal 
Capacity 

Maximum 
Capacity 

1 5575 6133 

2 4151 9133 

3 7775 17106 

4 3549 7809 

5 6190 4609 

6 14621 13871 

7 6297 4626 

8 29921 32150 

9 15674 17220 

10 10009 12010 

11 7514 6985 

12 5075 6100 

13 7514 7810 

14 12963 14905 

15 4311 2536 

As an outcome of considering service network optimization and TAP, the traffic flow shown in 

Figure 23 is less congested than traffic flow of Section 6.1. 
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Figure 23:  Combined optimization, traffic flow 

Figure above demonstrates the improvement of the traffic flow in the network and the total travel 

time is reduced by using the combined optimization. 
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7 Conclusions 
Shipping is the heart of the global economy, but it is vulnerable to disruptions. Disruptions at 

marine terminals and ports may cause long delays and long queues at the terminals which may 

have enormous adverse impacts on the economy. Disruptions may be the result of anticipated 

events (e.g., construction, scheduled maintenance, pre‐planned military surge, etc.), or 

unanticipated events (e.g., terrorist acts, earthquakes, hurricanes, etc.). In this project, we 

developed strategies to mitigate the effects of such anticipated or unanticipated disruptions in an 

effort to maintain port operations and productivity. We investigated methods of modeling and 

evaluating port disruptions, at the terminal, port and regional levels.  

 

At the terminal level disruptions were analyzed within the framework of the Berth Allocation 

Problem (BAP). Since the BAP, which can be viewed as a rectangle packing problem, is an NP 

hard problem, two heuristic optimization techniques based on the sub gradient (SG) and 

simulated annealing (SA) optimization methods were developed. Simulation results show that 

the developed methodologies are able to find a near‐optimal solution in a reasonable amount of 

time. 

 

At the port level the disruptions were analyzed within the framework of a Terminal Allocation 

Problem (TAP). In the TAP, vessels calling on a port were represented by rectangles in the 

space‐time diagram. Disruptions may alter the diagram in the time, space, or both time and space 

domains. Usually, disruptions in the time domain are caused by the delays in arrival times, 

delays in berthing times, longer service times, etc. Disruptions in the space domain are less 

frequent yet their impacts are more severe on the port operations. They may be caused by 

construction, scheduled maintenance, military surge, terrorist acts, etc. When a disruptive event 

occurs at a berth, other berths within the terminal may be utilized to further mitigate the impact 

of that event. To be able to consider a very general TAP, we defined concepts such as a partially 

functional berth which can be used to represents any type of disruptions in the space‐time 

diagram. We show that the TAP can be viewed as a set partitioning problem, in which each 
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partitioned problem is a BAP. Since the TAP is also an NP hard problem, a heuristic method 

based on the simulated annealing algorithm was developed to find a good solution in a 

reasonable amount of time. Numerous experimental scenarios were developed to evaluate the 

developed TAP solution method in the presence of disruptions. We show that when multiple 

berths are utilized to accommodate calling ships, the impact of disruptions, either anticipated or 

unanticipated, can be mitigated significantly using the developed methodologies. 

At the regional level disruptions were analyzed within the framework of a service network. The 

service network optimization is modeled as a minimum cost flow problem with binary (or, 

integer) constraints. Computational experiments showed that the possible cost reduction acquired 

under the maximum utilization of the network capacity. The focus was on the entire west coast 

region of the US, consisting of multiple ports and the associated transportation network. The 

regional service network is defined at a high level of aggregation. Under a disruptive event, the 

network is reconfigured by opening sea transportation mode between ports.  

In the combined methodology (TAP and service network optimization), the traffic flow in the 

road network adjacent to the port is less affected by the disruption in one terminal or multiple 

terminals. The road network in Figure 23 shows less traffic congestion in the area and as the 

result the total travel time is reduced. Therefore, the total cost is decreased by considering the 

combination of disruption mitigation methodologies at all levels. 
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