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Disclaimer

The contents of this report reflect the views of the authors, who goemstble for the facts and the accuracy
of the information presented herein. This document is disseminated undspdheorship of the U.S.
Department of Transportation, University Transportation Centersr@mgand California Department of
Transportation in the interest of information exchange. The U.S. Goveitrame California Department of
Transportation assume no liability for the contents or use thereof. Thentsrte not necessarily reflect
the official views or policies of the State of California or the Department ah3portation. This report does
not constitute a standard, specification, or regulation.

Abstract

The purpose of this research is to demonstrate the feagibflian automated system for medium-
duration, deployable, in-the-field vehicle classificatiddost temporary surveys of vehicle traffic today
are done manually, typically with human observers recgrdiaffic. Instead, we plan to employ a
network of traffic sensors (NOTS), a number of small, lowteamsmputer nodes, each with a portable
inductive loop sensor. This system can provide accuratesanements for longer duration and lower
cost than is possible today. Our system will allow mediunmtesurveys, targeting 7-14 days. For
temporary surveys like these it is essential that the sybtegasily deployable, not requiring investment
in permanent, in-roadway sensors, but instead capableind loeployed by one or a few people in a
few hours. We look at accurate vehicle classification andpamour results to ground truth taken from
off-line analysis of videos, and to on-line human obseorai
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1 Introduction

This report summarizes the research done as part of the Sensor dgpéited Roadway Events: Field
Trials (SURE-FT) project, from January 2005 through August 2006.

SURE-FT is applying sensor networks to classify vehicle traffic. We aveldping a network of traffic
sensors (NOTS), which are small, low-cost computer nodes, each withiabfe inductive loop sensor. A
prior project, SURE-SE project [15], defined this problem, reviewéated work and the current state-of-
the-art (summarized in Section 2), and conducted a preliminary experitig8Gato collect data (described
in Section 5.1).

Our goal in SURE-FT was to develop algorithms to classify vehicles by tygiaduhe FHWA classifi-
cation system [5]), to evaluate the use of multiple sensors to reduce,emnoro integrate data collection,
configuration, and processing software.

The remainder of this introduction reviews the need this research (Seclipriithitations of current
approaches (Section 1.2). The remainder of the report reviews pitr(®ection 2), describes our proposed
system (Section 3), the algorithms we developed for single- and multi-noskafedation (Section 4), prior
and new data collection (Section 5), and evaluation of these algorithms (©6ktio

1.1 Background and Justification of Research

There is an ongoing need for traffic data to validate and calibrate regaoddbcal transportation models.
Regional models are used to evaluate alternative short and long rangpdriation plans. They are also
used to test hypotheses regarding human travel behavior, transpoeatidand use interactions, and the
effectiveness of alternative investments or pricing policies [19, 2028, Transportation network simu-
lation models are used to evaluate changes in economic activity or transpoggiem characteristics at
a more disaggregate level. Traffic management policies, congestionticedsrategies, impacts of new
development (such as housing or commercial centers) are some exafmpésark simulation model ap-
plications [14, 2, 25, 26]. More powerful and efficient computing haslengossible wider application of



micro-simulation models. These models are data intensive, requiring exdemsiwdetailed information on
vehicle flows.

Due to their recent rapid increase, freight flows are of growing interiisin metropolitan areas. As the
impact of commodity flows has increased, government planners and sys&aiors have a greater demand
for commodity flow information and for better methods to track, analyze, andtandhese flows as they
impact transportation networks and nodes. Demand for better informatibareatysis tools is particularly
strong at the metropolitan level, because access to disaggregate data is livditethlysis tools are not yet
well developed [12, 23, 10].

The lack of data on truck traffic is particularly problematic. We have sungfiglittle information on the
characteristics of truck traffic, including its distribution across spacdiared State highway transportation
departments have “weigh-in-motion” (WIM) stations at key locations on thestae highway systems
that provide truck traffic data, but there are relatively few such stafitiese are only 84 stations in all of
California), mainly due to their high installation and maintenance costs. Additianei data is obtained
from special double inductive loop sensors, but these also are elyasivarce. Truck data on the arterial
system is almost non-existent, because there is no easy way to collectatach

For research and planning, as well as for some types of system monjtsaimple data are sufficient.
Ideally, we would have accurate, low-cost methods for short-term dditsction. In this project we devel-
oped components of a network of traffic sensors (NOTS). Thesavaak, $ow-cost computer nodes, each
with a portable inductive loop sensor. Each locally classifies a vehiclethemdadjacent sensors compare
their values to select the most accurate classification.

In addition to research, planning, and system monitoring needs, themgaaseother potential applica-
tions that would benefit from a rapidly deployable data collection systemexanple, SB 2650 imposed
fines on terminal operators if trucks entering the terminal idled in queue foe than 30 minutes under
certain conditions [11]. This law was intended to reduce diesel emissidribeAorts of Los Angeles and
Long Beach,the law was enforced by a roving officer who estimated idle tisedban his assessment of
gueue length. Because of the size and extent of the port complex,\ang afficer had limited opportunity
to systematically observe queues at terminal gates. A NOTS system thatbeodibloyed on a random
basis would have allowed for frequent and much more accurate olisesjaand hence more effective
enforcement.

A second example is monitoring truck diversion from congested facilities agahe 1-710, or truck
diversion to avoid vehicle inspection. Local residents are increasiraigezned about truck traffic. It
would be helpful to understand the patterns and extent of truck diveirsi@sponse to congestion in order
to develop better estimates of the costs of congestion. A third example is mgasansaction times, such
as container movements at ports or truck movements at large warehoiliséedacThe key problem of
sampling relevant to our proposal is that current static traffic managesystgms (TMS) do not provide
sufficient flexibility for occasional sampling needed for research daning for goods movement (topic
area l).

Although data collection is the primary motivation for our work, other applicatioclude use of net-
works of traffic sensors (NOTS) around construction areas to matnaffie and improve worker safety
(topic area 4), and to assist in traffic flow in emergency situations suctrasych major evacuation (topic
area 4).

1.2 Limitations of Current Approaches

Our research plans to address the lack of flexibility in current, static TMBebgloping new, redeployable,
networked vehicle monitoring systems. We have previously reviewed the limsgatibourrent portable
vehicle traffic monitoring systems [15]. We briefly summarize those limitations here



Permanent monitoring systems: Extensive research exists on improving the performangeohanent
monitoring systems, including better performing inductive loops, improvingasiga analysis, supplement-
ing loop data with video sensing, and developing better sensors. We ysivieviewed this work ([15],
Section 2.1). The fundamental limitation of these systems is that, because quég rgermanently em-
placed sensors, they cannot be easily be deployed around sitesdtathwet-term data collection. Yet data
collection for research and traffic modeling, planning for the traffic impékical construction, or study of
short-term phenomena (sporting events or traffic diversions due &iraation) all requireshort-termdata
collection.

Deployable systems: The state-of-the-art in short-term deployable traffic monitoring is far legsldped.
While individual sensors such as tubes or tape-down inductive loep®ktively easy to deploy, an entire
system is required to collect data.

Some semi-mobile traffic monitoring systems exist: A field operational test wakicted using a mo-
bile surveillance and wireless communication system. The system was instaliettaler that could be
placed at roadsides. The core of the system was video image proc@gMgused for vehicle detection,
traffic volume, speed, and occupancy. Wireless radio allowed commumsatith the local TMC. The
system was powered by a propane-powered generator [17]. AbpodMC was developed by the Min-
nesota DOT as part of a Smart Work Zone project. The system is mounfeckrtable skids and includes
vehicle detection and surveillance, traffic control, driver information ¢Wiangeable message signs) and
communications. Although relevant, these systems are orders of magnityeledad more expensive than
the approaches envisioned in our research and so they do not allogpnede use.

2 Literature Review

A careful review of current work was a major focus of the SURE-S&jgqut. Chapter 2 of the SURE-SE
final report considers current work on novel sensors, appesaio vehicle classification, and approaches to
reidentification [15]. (We briefly summarize this above in Section 1.2.)

The focus of SURE-FT is to evaluate the use of multiple small sensors to caltalety classify vehi-
cles. We therefore review related work in sensor networks belowjdnirsg prior work in vehicle tracking,
classification, and sensor fusion.

2.1 Sensing for Vehicle Tracking in Constrained Environmensg

In-road traffic sensors are ubiquitous in most urban environments.nébe for efficient traffic flow has
sparked significant investment in novel uses of both existing and nesoisenA number of sensor tech-
nologies have been considered. Pneumatic tubes and piezoelectricssiatsat wheel crossings; inductive
loops and magnetic sensors detect vehicle mass; and infrared, uldasadar or laser ranging, and video,
employ different levels of imaging. We survey these elsewhere [15]. ftapbodifferentiators here are ease
of deployment, robustness, and cost. In-roadway inductive loopsidedy used and quite robust, but re-
quire construction to deploy. Video approaches remain relatively ek@ermsth in use and deployment
(which may require elevation).

In spite of the large amount of research done on traffic sensorspsyfte temporary deployment often
fall back on simple pneumatic tubes, or manual, human observers, eittgcalhypresent or interpreting
videotape. For our work we use portable inductive loops becausedteay the deployability of tubes but
can provide much greater information.

Closest to our work is that of Oét al. [21], Sunet al. [24], and Cheunget al. [4, 5]. Ohet al. use
the same IST Blade sensor we do, but targeted at arterial speed$@ihirather than slow speed. In



addition, they select a very different set of features, use a neetabrk for vehicle re-identification rather
than classification, and so do not explicitly estimate vehicle speed or lengtlet 8uadd a neural network
to loop sensor output, explicitly trying to differentiate a custom set of categancluding cars separate
from SUVs, as well as larger vehicles. They report good accuB2:y87%, although they do not indicate
if their errors are in the difficult-to-distinguish categories or not. Cheeing. instead use custom sensor
nodes with magnetometers, measuring the change in the Earth’s magnetic fistduserboth length-based
classification and a novel “Hill Pattern Classification”. While they obtain higldgurate vehicle counts
(98%), their classification accuracy (82% into 5 FHWA classes correlipg to different axle-count large
trucks) [5] is slightly better than ours (74% into 3 FHWA classes correspgno passenger cars, small
trucks, and large trucks). However, it is important to note that their damse quite distinct and can be
distinguished by axles counts and large differences in the length. We dnfsteas on FHWA classes 2
and 3, difficult to distinguish cars vs. small trucks We also explore the usriltiple features in a single
signal, as well as multiple independent sensors to improve classificatioraagcnaian use a small sized
wireless node to count vehicles as well as monitor road conditions with emhbeaperature and moisture
sensors [18]. But it lacks the classification feature, which is the mostwlifforoblem.

2.2 Sensor Networks for Vehicle Tracking in Unconstrained Exmironments

Vehicle tracking was one of the first problems for distributed sensor mke$W§8, 13, 29]. In general, these
approaches focus on tracking relatively sparse (clearly distinct)tsavgighout assumptions about target
motion. To cope with these challenges they exploit multiple sensors for datedifterent viewpoints and
use information theoretic techniques to estimate the vehicle path [3, 29]. Moeatrwork has focused
on less powerful nodes [7] and approaches to accommodate indigensbr noise [13], but still addresses
relatively sparse targets. By contrast, our work focuses on denaekegd vehicles on a busy roadway, and
we exploit the capabilities of powerful cross-road sensors to make tiéepn tractable.

2.3 Sensor Fusion for Improved Accuracy

Sensor fusion is an important approach to exploit multiple sensors. @halouse information theoretic
techniques to coordinate cooperation in a multi-sensor environment, seldgisgnsor based on maximum
information gain [29]. Brooket al. explore collaborative signal processing and identify the level of senso
independence (how correlated or uncorrelated each is with othens)rapartant issue [3]. Gat al.exploit
cluster-based processing to correlate readings from multiple sen8grs [1

3 System Description

Our long-term goal is to develop sensor networks that allow automaticatecuehicle classification and
re-identification. This section describes the hardware we propose lmydepaccomplish this task. In the
next section we describe the algorithms we have developed for classiiieatioto support deployment.

3.1 System Components

Our focus is a sensor network that is rapidly deployable, low cost, dfidiently accurate. Our basic sensor
network consists of several individual sensor nodes, each ctathteca IST-222 high-speed detector card
and a pair of Blade inductive loop sensors [16]. We selected the ISTtdetard because of its potential for
sampling at high resolutions (up to 1.2 kHz), and the Blade inductive locgusef its sensitivity to vehicle
features. The IST detector can be integrated with sensor network phati&uch as the Intel Stargate [6]
via USB, and we expect to use networks such as 802.15.4 for low-pshant-range communication. The



Figure 1: Deployment of a narrow inductive loop for a blade sensor.
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Figure 2: Deployment of three sensor nodes and six sensors aloagway

systems as a whole should be relatively inexpensive (currently less ®&4000). The complete system is
easily deployable since both the sensor nodes and the Blade sensqrecate @n battery power. Pairs of
inductive loops must be taped down across traffic lanes using asprelthap requiring a brief interruption
of traffic. Figure 1 shows deployment of a pair of loops as part of aal. tiFigure 2 shows the logical
configuration of our array of traffic sensors: each individual sem®de connects two closely separated
blade sensors (a car is shown approaching the middle pair of sensors).

We report here on analysis conducted with data from two locations. Fiestlisguss our single sensor
algorithms using data from one location. We then address multi-sensor usiiog data from two loca-
tions. We have not yet integrated our multi-sensor algorithms with communicatiotacols; currently we
manually process multi-sensor data at a central site. We believe a distributediempation is not difficult,
and plan to exploit sensor deployment information to make the system lardieboaéiguring, as in prior
work [27].

3.2 System Integration

Most of the evaluation described in this report was carried out with off-[post-facto analysis of stored
traces. This approach has been essential to refine and improve orithahgowith a consistent dataset.
However, we are working towards developing an on-line system capél#al-time vehicle classification.

To this end we began integration of our software into a package suitate-fare operation. We have
completed integration of all single-node processing, including data colledémmentation, and single-
node classification. It also includes our new autoconfiguration algoritkeswitbed in Section 4.3. This soft-
ware is freely available from the our project website p: / / ww. i si . edu/i | ense/ sure/i ndex.
htm .

Although we planned to use embedded computers running Linux as owrsesdes, device drivers



action time required
physical deployment 30 minutes
probe vehicle collection 10 minutes
auto-configuration execution < 1 minute

Table 1: Approximate deployment times of integrated system.

for the IST blade sensors are currently only available for Windows. ddtrent system therefore runs on
Windows laptops. IST informs us that they are working on Linux drivansl our code should easily port to
an embedded platform when drivers are available.

We tested both classification and auto-configuration algorithm with a shmetiexent conducted on July
28, 2006 at the roof of ISI parking structure as described in SectioWs.8ollected 36 vehicle signatures
of three different vehicles. This experiment confirmed that automatic geyglot was effective and that our
integrated algorithms work well.

Deployment required several steps: first we physically deployed teose We then ran our probe
vehicle across the sensors. We run the probe vehicle over the seresor dwo times to run our auto-
configuration algorithms. Approximate deployment times of each phase ene1sh Table 1. Physical
deployment of the a pair of sensors required 30 minutes, during which timedkdevay must be closed or
partially closed. We expect that could be reduced with more deploymeatierpe. Additional configura-
tion (primarily probe vehicle data collection) can be done after the roadwapeised (although with a mix
of vehicles, the operator must currently manually select which signattees the probe vehicle).

In addition, we confirmed that our integrated system worked well. All 36ckelerossings resulted in
positive detections and accurate classification in real time.

Although promising, this experiment is quite preliminary. We must complete integraticommunica-
tion betweemodes and support for multi-node collaboration. In addition, this expetiwiémthe integrated
software involved only three vehicles and was done in a parking spateadhef a real road. Additional
experience, including deployment on real-roadways and with a widestgglef vehicles is needed to more
fully evaluate the system.

3.3 System Availability

The software we developed as part of our system and to analyzesulisris available on request from the
authors.

4 Algorithms for Vehicle Classification

The SURE-FT project has revised the stand-alone classification algonthrok is described in previous
SURE-SE project and improve the accuracy with collaborative senseories. We also develop an au-
tomated configuration to achieve easy and quick deployment. This sectionbessthese classification
algorithms (Section 4.1), the types of error we expect and how we re¢Beetion 4.2.1), and how we
automate system configuration (Section 4.3).

4.1 Classification Algorithms

We first review our basic classification algorithms, with single sensors &eglvase as the classification
feature. We then consider the benefits of multiple sensors.



4.1.1 Single-Sensor Classification

Signal processing at an individual sensor is fairly traditional: we be@immoise removal, segment the data
into individual vehicles, extract features pertinent to our analysis, ¢tessify vehicles; we examine each
of these steps next.

Noise elimination: In some cases we have observed significant crosstalk, environmeigal and
signal drift in our measurements. In addition, communications from the 18T toathe host computer is
not perfect. Crosstalk arises when inductive loops driven by diffesensor cards are close to each other,
and also due to slightly different sensor clock rates in the case that multierseards are attached to the
same sensor node.

Drift and noise occur due to temperature change and other environreéfietas. We filter each of these
out using standard techniques. We observe around a 14% data lossW@8Bhbus between the sensor and
the host (this behavior is a known problem of the specific model of detegtds we were using); we correct
for this by interpolating the missing data.

SegmentationWhen noise is eliminated, we are left with a continuous signal. We next isolaveinal
vehicles with a three-step process. We first detect active segmentsénwivly large signal deviations from
a running mean. We then merge temporally close active segments to allow fdegahat have “flat” areas
between wheel wells. Finally, we grow segments by half their length at &nmhback to ensure we capture
a complete segment, including leading and trailing features. As a specialvdase growing a segment
would cause overlap with a neighboring segment, we grow to the midpoint etsegments. Ideally, after
segmentation, each segment corresponds to exactly one vehicle. tingovee find that occasionally (about
5% of the time, see segmentation errors in Table 9) vehicles that are veryoneach other appear in a
single segment.

Feature extractionWe experimented with several possible features for vehicle classificatmuading
axle count, body width, and wheelbase (axle-to-axle distance). Wemew on a two-level set of features.
We directly extract the edges of wheels (70% wheels points, descritmt)bthen figure these and estimate
speed and wheelbase. Our first goal is to determine wheel edgese Bighows a sample signature of a
two-axle car crossing a sensor. Wheels show up as large dips in théusgrnhe underbody as bumps
between the wheels. Because the vehicle crosses the inductive loograglaneach wheel of the same axle
produces a distinct dip located near the other. We experimented with difigorithms to reliably extract
each wheel. Our two main approaches were to identify peaks and to idemtjé/ ¢hanges in direction.
Although peak identification is attractive, consistent results are difficafilige peaks tend to be rounded,
particularly at higher sampling frequencies (because wheels are)rdaratidition, depending on the angle
the car crosses the sensor, we may get two clearly distinct peaks olarsieiged peak. Because of these
difficulties we adopted the “steep slope” algorithm shown in Algorithm 1.

It is important that our algorithm adapt to a wider range of vehicle speg@dsdo so, we adjust the
parameter based on vehicle speeds. First, we start with a defavkilue 240 (2R, whereR is the
sampling rate) to estimate the vehicle speed, since it is not necessary tatsegaoh wheel well to get
speed estimates. Then, we adjustcording to the estimated speed as shown Algorithmisltoo large,
we cannot separate the wheel wells; on the other hand, if it is too small,metceapture the all wheels in
the wheel well. In case of extremely low speed (less than 5mph), we us@@&) for v to prevent from
collapsing every wheel well into one. The other parameters are somavitiaary. We initially chose th8
value as 70%, with the goal of identifying a point on the steep part of thaign We studied values from
30-80% and found they did not affect classification accuracy, asrshoFigure 4.

Speed Estimatiorifo estimate vehicle speed we compare the time difference when a wheelipsses
each of the two closely placed loops. Figure 5 shows a time-correlated sBiomplboth of the paired loops
for one signature. We compare pairs of shapes (squares or ciameks$jmilar observation at the front and
back of the first and last wheel wells. Since the loops are a known déestgart, a speed estimate is simply



wheel well underbody wheel well
—_———

mean

individual 30% well edge

wheel
cffects

70% wheel points

Figure 3: Sample signature indicating vehicle parts (signature #280, site BN)

Algorithm 1 The steep-slope algorithm for wheel edge extraction.

Normalize the signature values from 0.0 (lowest underbody) to 1.0 (Highe=el peak)
Computem, the mean of all sensor readings over entire signature
Identify wheel wells by finding the first value greater thran- (L « m) through the last value greater tham (L «m),
allowing up tov consecutive values belom+ (L «m)
For the first and last wheel wells:
Find the maximum value M in the well
Define the start-wheel-point as the first value in the well greater $xgivl — m)
Define the end-wheel-point as the last value in the well greaterShghki — m)
Parameters:
v: 2/(VehicleSpeedk SamplingRatenumber of samples allowed belon+- (L xm) in a wheel well
(between wheel peaks)
L : 0.3, wheel well start threshold (fraction of mean)
S: 0.7, target for steep slope (fraction between mean and peak)

the distances divided by the time between the same feature at each adjapeibloeduce error, we match
the wheel-points for the start and end of the first and last wheel wellsyggus four estimates of speed.
We then average these values. We discuss how this approach addiiffesent errors in Section 4.2.2, and
guantify these benefits in Section 6.2.1.

WheelbaseTo estimate wheelbase, we observe the front of the first and last wiedlel wolid shapes
(squares or circles) in Figure 5. With two paired sensors, we cange¢fimates front and back of sensors
1land2.

Classification:Given a speed estimate, we classify vehicles by wheelbase length, thedistam the
first to the last wheel axle. Given our wheel-points on the first and laetlwells, we have four wheelbase
estimates on each of our two paired sensors. As with speed estimates rageabvese four readings.

Finally, we map length to vehicle classification as described in the next section.

Clearly our classification algorithm is quite simple. A much more sophisticatednsystauld, for
example, match the entire signature against a database of known vehide Hgveever, even this simple
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Figure 5: A signature with paired sensors (signature #130, site BN)

classification system is sufficient to explore the use of multiple sensors togesiror. In Section 7 we
describe future directions defining more appropriate classification ssheme

4.1.2 Classification by Wheelbase

Table 2 shows our mapping from length to our two- and three-categorsifatation systems and the re-
lationship to the FHWA classes. We selected the two-category system bematosnatic classification of
truck vs. non-trucks is relatively easy, while we will show that distinguigluars from SUVs (P from S*)
is much more difficult and thus represents a “worst case” for automatssifatation systems.

A critical problem with the FHWA system is that the boundaries between d&saad 3 are indistinct.
In fact, the FHWA website says “because automatic vehicle classifiersdifficalty distinguishing class
3 from class 2, these two classes may be combined into class 2" [8]. Thikepr@pplies also to human

11



Table 2: Length-based vehicle classification

FHWA wheelbase
classes meaning symbo| length
Two-category system
2and 3 non-trucks non-T < 170"
41013 commercial trucks T > 170"
Three-category system

2 passenger cars P <118

3 small trucks/SUVs  S* 1181to0 170"
4t013 commercial trucks T > 170"

Table 3: Two-category classification with perfect sensors

Correctly Incorrectly
Class Total  classified classified
non-T 42 41 1
T 5 4 1
Total | 47 (100%) 45 (96%) 2 (4%)

Table 4: Three-category classification with perfect sensors

Correctly Incorrectly
Class Total classified classified
P 24 24 0
S* 18 12 6
T 5 4 1
Total | 47 (100%) 40 (85%) 7 (15%)

observations (we quantify human accuracy in the SURE-SE); we negtdar how length relates to classes.

To evaluate the wheelbase-based classification with perfect sensetgveyed wheelbase lengths of
47 vehicles from Ford [9] and government sources [1]. Tables 3asftbw classification accuracies based
on wheelbase assuming perfect length determination. Even though wiyclesscles with their exact
lengths, not all surveyed vehicles are correctly classified: 96% dthkeemodels are correctly classified
in two-category classification. In three-category classification only 8bféoalels are correctly classified,
since there are many SUVs on either side of our threshold, regardles®od it is placed.

These results assume static analysis, in that the percentages are basetbers of vehicle types. In
practice, the population of vehicles of each type varies, as does thaifmrtet of vehicles observed at any
site. Therefore, dynamic measurements may differ depending on the mis@fvaltions.

4.1.3 Using Multiple Sensors

A defining characteristic of sensor networks is the use of many relativekpansive sensors. We therefore
wish to explore if multiple sensors can improve the best-possible classificasofts of a single sensor.
Our hypothesis is that classes of errors are independent, so combaliregs from moderately separated
sensors can eliminate these errors.

As shown in Figure 2, we place several pairs of sensors at sevacabpn a roadway. We expect sensors
to communicate through a local, low-power, wireless network such as g 802.15.4 or similar net-
works. Sensor nodes will not share raw sensor readings, butdnisidigidual evaluations of vehicle type,
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Table 5: Types of errors in vehicle classification

Type of error Generality Dependence Addressed Observed
Environmental noise, General Either (In-sensor) or post-facto Yes
Sensor failure General Independent (Multi-sensor) No
Insufficient sampling  General Independent (Design) Yes
Vehicle type Application  Dependent (Multi-sensor) No
Mis-channelization | Application Independent Multi-sensor Yes
Imprecise speed Application  Dependent Single sensor Yes
Changing speeds Application Independent Single sensor Yes
Mis-segmentation | Application Independent Multi-sensor Yes

coupled with data about their confidence in the classification. Such a sgaistrhave several components:
a configuration system to automate initial deployment, communications protocdiare®isformation be-
tween sensors, a signature matching algorithm to identify which signatu@seasensor correspond to
signatures at another sensor, and a classification preference afgtwiielect which classification is best.
We plan to exploit the simple, constrained topology of the road, so confignrand communications are
straightforward as each sensor interacts with its immediate neighbors. S$@natching and classifica-
tion preference are the keys to improving accuracy with multiple sensordistfess these algorithms in
Section 4.2.3 after reviewing potential types of error.

4.2 Types of Errors and Error Recovery

To consider how multiple sensors might improve accuracy, we first evalwatypes of error that arise in
this application, then consider how to make a single sensor as effectiessiblp, and finally how multiple
sensors can further improve accuracy.

4.2.1 Types of Error

We review the types of errors we expect in Table 5. There we evalueleegsor for its generality, if it is
specific to this application or applies to all sensors; dependence, if wacerpltiple sensors to exhibit
this error consistently or independently; how we address it, in-sensomwittiple estimates or multiple
sensors; and if we observed it in our examples.

We observed significant amountsearivironmental noisen our data, both due to temperature drift and
sensor cross talk. A later revision of the IST Blade sensor handlese&loigaation in the sensor itself, but
for our data collection experiment we filtered noise manually post-factaictive loops respond to vehicle
mass relative to its distance from the sensor, thus they are less sensitet@dies that are higher off the
ground. Loop sensitivity can be controlled by adjusting width, so potentialljipfeiloops of different
widths could detect a wide range of vehicles. For our main experiments @teaukoop width of about 4
inches.

We did not observe amgensor failurén our system, but it would be an issue for larger deployments.

An insufficient sampling rater too close placement of sensors can result in imprecise speed and length
estimates, since a change of a single sample interval corresponds to aletideange in estimate. Sam-
pling rate or sensor distance must be adjusted to expected speeds,qdoseia Section 6.1.

Vehicle typeerrors, refer to different distances of vehicles from the ground.difeobserve distance
affecting the quality of sensor signatures, however it was not a majeeagunisclassification.

Mis-channelizationis when only part of the vehicle crosses the loop because it is changieg. lan
Changing speedsccur when a vehicle alters its speed over the sensor, making estimationliiffitis-
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Figure 7: A signature with channelization error (signature #251, site BN)

segmentatiommccurs when two cars travel so close that they appear to the sensoa &irfgge vehicle. All

of these errors are specific to vehicle classification, but each ocaepéndently at different sensors and
so should be correctable in the sensor network. We observe andtcsgveral mis-segmentation errors as
described in Section 6.2.1.

4.2.2 Single-Sensor Error Recovery

We used three general technigues to improve individual sensor rsadihgrp feature detection, internal
consistency checking, and cross-checking with multiple features .

Our early approach identified speed and wheelbase by using pealessiftiature to estimate the exact
wheel locations. This approach proved inaccurate at high samplingb@tesise wheels provide rounded
features to the inductive loop, since the loop has an effective low-déss &nd wheels are round. To
address these problems, we shifted to identifying the sharp slopes thedpamd to the edges of the wheel
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peaks, as determined by tBdhreshold, a fraction of the distance from mean to the peak value (currently
70%). Since the slopes on the edges change rapidly, slopes tolerate mechrrmothan peaks. In fact, we
experimented with thresholds corresponding to 30-80% of the distancedietive mean and maximum
sensor values and found classification accuracy unchanged.

Second, we check the features for internal consistency. Our prinpgrpach is to evaluate where de-
tected wheels are placed inside the wheel well. We expect to get two pezdchimvheel well, corresponding
to the left and right wheels. However, if one of the peaks is much smallerttieaother, sometimes it is
missed by the steep-slope algorithm. For example, in Figure 6, if we miss a fiigati vn the first and the
left wheel in the last, the estimate will be longer than the proper estimate. Ored nvhg be omitted from a
wheel well when channelization errors occur (Section 4.2.1). Igndhiege errors can result in significant
inaccuracy in wheelbase estimation. Figure 7 shows a signature in chatioeligrror.

To solve this problem, we take several steps to examine wheel placemantefoial consistency. (We
explored adjusting the steep slope tarfg&t catch low peaks, but in general one cannot catch all low peaks
and be robust to noise.) We count the number of wheels in each wheelfwadlbelieve a wheel is missing,
we identify which wheel is present, or perhaps determine that we carinehieh wheel we observe. There
are four possible wheel placement states: both wheels present, |l&ftevhigght wheel missing, and unable
to determine which wheel is missing. There are 16 possible combinations efdasss when we consider
detection at the first and last wheel wells.

When both wheels are present we get two wheelbase estimates per lagghdél is missing but we can
identify which wheel is present we calculate a single wheelbase estimate wjthettent wheel. However,
when we cannot determine which wheel is present, or if different whagelpresent in the front and back
wells, we know that our wheelbase estimate will be incorrect. In these easesport our best estimate
along with a lower confidence value in this estimate, potentially allowing multi-sesrsor recovery to
select a better estimate at another sensor as explained in the next Sec8on 4.2

Finally, we obtain multiple estimates of each feature in a single signature. Wenddodir wheel-points
for each signature in the beginning and ending of the front and backlwledls. (These are indicated by
stars in Figure 5, in addition to the squares and circles.) This gives ug$tiamates of speed and length.
Although these estimates are not completely independent, averaging thddepnmuch less variance than
any individual reading. This approach also partially corrects for Vesitat change speed over the sensor.
We quantify the benefit of this in Section 6.2.1. Although reduction in varidones not necessarily translate
into improved accuracy, it does imply less susceptibility to noise. We quantifsethection in variance in
Section 6.2.2.

4.2.3 Multi-Sensor Error Recovery

To use multiple sensors to reduce errors we must identify when multiple sigeatarrespond to the same
vehicle and then which classification is most accurate: signature matchirgjeasdication preference.

Signature matchingWe plan to exploit the constrained topology of a roadway to simplify signature
matching. If sensors are placed on a roadway without intersectionstsy tven the order of vehicles and
signatures is fixed and so signatures can be matched based on timing ardgordMissing signatures
can be inferred by gaps, and mis-segmentations by a very long signature sensor followed by a short
signature at the next.

Classification preferenceGiven two matched signatures with different classifications one must ehoos
which classification is more likely to be correct. We are experimenting with twaithgos: quality-best
and shortest-best.

Thequality-bestalgorithm favors sensors that are able to consider multiple estimates thetaepsis-
tent values. This approach addresses speed variability, since anargber of speed and length estimates
reduce the impact of variability and allow the sensor to estimate its confidence éstihated speed and
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length (more variance indicates less confidence in the estimate). We alstthéjosnfidence according to

the internal consistency of the signature by considering where we believels are placed in a signature.
If there are missing wheels and their placements are inconsistent, we thduwmnfidence value to half of

what we get from the variance.

Theshortest-besalgorithm is much simpler. In our experiment we found some errors werédues-
segmentation. We can detect mis-segmentation as a long signature at amrengtirisvo short signatures at
the other. Our system is more likely to merge two adjacent signatures thanleplif signature, therefore in
these cases the shortest-best algorithm selects the two-signature tatep@ver the single long signature.

Finally, for analytic purposes, we consider@maclealgorithm. The oracle algorithm assumes a perfect
classification preference algorithm that always chooses the cotesdifecation if it is present at either
sensor. Such an algorithm is impossible to realize in a real system—we can impieomy because we
already have ground truth. We present it to provide an upper bouhdwmnvell sensor fusion can do.

Current Status:We have implemented classification preference based on sensor quality i
sensor comparison. We have not implemented a complete matching algorithmnsiucalata collection
experiment sensors were separated by a large distance and an tiaersecfor our preliminary analysis
we manually associated signatures at two sensors.

4.3 Automatic Configuration

A goal of our system is that it be easily and rapidly deployable. This gotivated our choice of hardware
platforms (small, wireless devices) and sensors (inductive loops thabeamply taped down on the
roadway). However, in addition to physically deploying the system, the aoftwequires configuration as
well.

We therefore designed automatic configuratiosystem to easily determine any software parameters
required for system operation. Automatic configuration involves drivimgode vehicleover the sensor
multiple times. The probe vehicle can be any vehicle; in our experiments weausadll passenger car.

The system collects data to determsegmentation thresholdeeeded to determine where signatures
begin or end. We also automatically determine sbasor separation distanca value needed to compute
vehicle speed. We describe each of these below.

4.3.1 Segmentation Thresholds

Segmentation is an early step in classification where raw sensor data is spheintehicle segments (see
Section 4.1.1 for a complete description of the algorithm). Segmentation regufresshold to separate the
active vehicle signal from background noise.

Ideally we could assign a fixed segmentation threshold based on labodatary Unfortunately, we
found that the threshold used varied based on the version of sensot dard, and the loop construction
(type of wire, number of turns, etc.). While we manually configured it fargreliminary experiments, we
do not expect end-users to hand configure it and therefore desigin@utomatic procedure.

Algorithm 2 shows the algorithm we developed. We use a known numbeiobgprehicle detections
as “ground truth”, then iteratively adjust an initial value until we get a matchimmber of detections from
the sensor. The initial threshold factor is decided by the heuristics frardudy 2006 rooftop experiment
(Section 5.3).

We report on this algorithms effectiveness in Section 6.3.

4.3.2 Sensor Separation Distance

Knowing the exact distance between loops is crucial to get the proped symel length estimation, since we
use a pair of loops to calculate the speed of a vehicle as described in SkétibnTherefore every pair of
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Algorithm 2 Automatic segmentation threshold

Observe signal of the probe vehicle.
Record the stream of signal during this period without any segmentation.
While observing the stream, calculate windowed standard devi&i¢signal energy).
After the probe vehicle runs over the senBlg 4 times, findMax(E).
Set the temporary thresholds
Thyi = T *Max(E)
Th|_o = 0.5*ThHi)
Run the segmentation algorithm with above thresholds on the recorded signal.
Initialize the threshold adjustment size
IF Nsignature< Nactual THEN A = Ajnc
IF Nsignature> Nactual THEN A = Agec
IF Nsignature== Nactual THEN set the thresholds for the classification
ELSE adjust the thresholds:
IF Nsignature< Nactual THEN increases thresholds By
IF Nsignature™> Nactual THEN decrease thresholds By
UpdateA =A/2
Iterate above steps until matches to actual count.
If it doesn’t match within two iterations, then declare “Failed to find thresholds”
Parameters:
T : Initial threshold factor, 0.25
Nsignature: Number of signatures
Nactual : Actual vehicle count
Ainc : initial increment size of threshold1—T) « Max(E))/2
Agec: initial decrement size of thresho(d@ « Max(E))/2

loops should be measured exactly or they should be separated by plistasee when deploying the loops
on the road. Either way could require a long interruption of traffic. Thpeerent described in Section 6.1
shows that the distance between two loops affect the accuracies of sgt@aation and length estimation.
Hence, a small error in measuring sensor separation distance coutdmesunsistent and significant error
in vehicle classification.

To eliminate this measurement error we calibrate the sensor separationelissamg the probe vehicle
length. This procedure inverts our regular algorithm: given a knowicieefength and a measured time
to cross two loops, we back-compute the physical distance between [dbsscomputation is possible
because we know the exact length of the probe vehicle. In addition, wesmmultiple readings of the
probe vehicle to correct for measurement error.

Auto-configuration of sensor separation give two benefits: First, it sirapldeployment, since sensor
distance is not critical. While loops must be parallel to each other, theirat@gpacan be arbitrary, since
we measure it and correct for variation in a given deployment. Secontbn there are multiple pairs of
sensors, each may be deployed with different separation distandhjs/gariation can be correct for by
auto-configuration. Finally, if the system is to operate for long durationsdith@n a few days), potentially
we can easily re-calibrate the sensor separation to account for anynman/éue to vehicle traffic. (We
have not yet tested this case.)
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Figure 8: Placement of sensors for data collection.

4.3.3 Other kinds of automatic configuration

The approaches described above show the principles of automaticuwatifig needed for the algorithms
developed in this paper. Additional future automatic configuration may incleileos location and relative
position of sensors. For example, we could automatically infer which seaserdeployed in which traffic
lanes, the direction traffic flow, and which sensors are downsteantbfather.

5 Data Collection

In SURE-FT we used several datasets to draw our conclusions. nargrdataset is a collection of 1500
vehicle signatures taken in August 2004 at USC as part of the SURE<3€ch To this we added two
additional, small scale experiments taken on a parking garage rooftopCit&ISNe describe each of these
below.

5.1 USC August 2004 Data Experiment

From 7 am to noon, August 6, 2004, we collected traffic data at the Ug@us Working with Steven
Hilliard of IST, we collected 1500 detections of vehicles at three locatioars& data was supplemented
with human observers and videotape to provide ground truth data. Weeskthcee locations on internal
campus streets to get a mix of low- and moderate-speed traffic. We seledtdd eollection day when
construction was underway on campus, allowing us to capture a mix of petiaffic, including the USC
shuttle bus, construction traffic, including cement mixers and 18-whes{drand general automobile traf-
fic. In addition to general traffic, we selected two passenger carsaantiem over each sensor 10 or more
times to provide a baseline known vehicle to evaluate re-identification andrssorssistency.
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Details about exact deployment locations are available in a technicat {&ptirhere we report on two
locations: site A, near the campus entrance, and site B northbound (¢raBbdl)t 100m north of site A,
past an intersection. Figure 8 shows this layout. Site A is next to a parkisg &mwd has two lanes. Typical
vehicle speeds are quite slow (mean speed 8mph); stops in lane #1 (immediately the kiosk) were
frequent. Here we report only data from lane #2, further from thekki&te B consisted of north (BN)
and southbound (BS) lanes, mid-block. Mean speeds were 16mph. Bbiofmmur analysis we consider
site BN. We use site A to confirm our BN results and see how our approadtswn slower traffic, and to
examine multi-sensor fusion for vehicles that pass through both sites ANMNWB use the data from 9:15
am to 10:50 am, discarding earlier data because of incomplete video grotimchind later data because of
numerous records from our two test cars.

Our re-analysis of this data with updated algorithms appears in Section 6.2.

5.2 USC/ISI Rooftop December 2005 Experiment

To examine the accuracy of a single-sensor regarding the sensoati@pand speed of vehicles, we con-
ducted an experiment on the roof of ISI parking structure. We took daf2zesember 7, 2005.

Our goals were several: to collect data to calibrate sensor speed detagdiost “ground truth” from
a radar gun, to collect data to evaluate alternatives about sensor lacipgpto verify tradeoffs in sensor
spacing and sampling frequency.

The experiment involved two blade loops, an IST detector card drivieof @f laptop computer, with a
video camera to record activities, and a radar gun (Model: BushndlB1Q; accuracy:1mph, precision:
1mph) to establish ground truth.

Our basic blade sensor loops were deployed with a 1.5 inch loop width, theMoond one time. We
looked at two separations of loop pairs: 18 inches and 36 inches. Wetwsetest vehicles:J (a 2000
Toyota Celica GT) andl (a 2001 BMW 330ci).

Both targets were tested at 10 and 20mph , with each vehicle tested 1020 ticwketd data to
evaluate repeatability. Results of this experiment are described in SectiDat from this experiment is
on the 061206 CD-ROM ifir af f i cSensor _v1/ dat a/ 2005_12 07 directory.

5.3 USCI/ISI Rooftop July 2006 Experiment

We tested both classification and auto-configuration algorithm with a shpetriexent conducted on July
27, 2006 at the roof of ISI parking structure. We collected 36 vehicleasiges of three different vehicles.
We deployed blade sensor inductive loops constructed of 4 winds of@2vare. Sensors were deployed at
a 25 degree angle to traffic with an 18 inch separation between pairs &f loop

For these experiments we configured the IST card in automatic configurgfidre IST card has a
dip-switch to change sensor sensor sensitivity according to attachesltigmgs. When standardized, con-
ventional loop are attached, it should use the preset sensitivity. Sincsaveustom loops, we chose the
“automatic” mode so that it could determine the proper sensitivity based ontédohed loops.) These ex-
periments involved three vehiclekt, a 2001 BMW 330ci, wheelbase 107.5 inché&sa 2000 Celica GT,
wheelbase 102.5 inches; abgda 2000 Acura TL 3.2, wheelbase 108.1 inches.

We used each vehicles as a probe vehicle (as described in Section dr3gptiected 8—11 signatures
of each vehicle. Results from this experiment are described in Sectiob&t& from this experiment is on
the 061206 CD-ROM iffr af fi cSensor _v1/ dat a/ 2005_07_27 directory.
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Table 6: Single sensor accuracies for speed from the 18” and 36bseeparation distance with 300Hz
sampling. Standard deviations are given in brackets.

Sensor Target # Achieved Estimated Absolute Relative
separation | speed (mph) samples speed (mph) speed (mph) error (mph) error
10 5 13.5[1.97] 15.6 [1.36] 2.1 17.1%

18" 20 6 19.0[1.87] 21.6 [2.94] 2.6 13.3%
Overall 11 16.0[3.40]  18.3[3.73] 2.3 15.4%

10 10 12.6 [0.84] 13.2 [1.54] 1.3 10.4%

36" 20 10 19.3[0.94] 20.2 [0.69] 0.9 5.0%
Overall 20 16.0[3.55]  16.7 [3.77] 1.1 7.7%

Table 7: Single sensor accuracies for wheelbase from the 18” argkB80r separation distance with 300Hz
sampling. Standard deviations are given in brackets.

Sensor Actual Estimated Absolute  Relative
separation | length (inch) length (inch) error (inch)  error

18" 107.5 113.4[2.80] 6.0 5.6%

36" 107.5 107.7 [1.98] 2.6 1.6%

5.4 Survey of Vehicle Models and Wheelbases

Finally, to evaluate the effectiveness of perfect sensors, we sov&y vehicle models of a single manu-
facturer (Ford) in comparison to the FHWA classification system. The resthss evaluation are found in
Section 4.1.2.

5.5 Data Availability

Complete copies of the data described in this paper are available on régueshe authors, with infor-
mation available on the project websktet p: / / www. i si . edu/ i | ense/ sure/index. ht m . This
includes both the new experiments done as part of SURE-FT (availablaeo€D-ROM), and from the
USC experiments done as part of SURE-SE (provided as one CD-R@stafand several DVDs of video
ground truth).

6 Experimental Evaluation

This section summarizes our new experimental results: verification of spetedtion (Section 6.1); re-
analysis of our USC dataset with our updated algorithms (Section 6.2), cwosinrbr handling at a single
sensor, comparison to human counting, evaluation of the features thabse, @and use of multiple sensors.

6.1 Single-Sensor Calibration Experiment

To examine the accuracy of a single-sensor regarding the sensoats@pand speed of vehicles, we con-
ducted an experiment on the roof of ISI parking structure as desadnlfgection 5.2. We tested two sensor
separation distances: 18" and 36” at 300Hz sampling rate. We alsoirgmeed with two target speeds:
10 mph and 20 mph to demonstrate that different speeds affect estimatima@ccGround truth vehicle
speeds are established by using a radar gun (Model: Bushnell I0-d&dracy=x1mph, precision: 1mph).
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Table 6 and 7 shows detailed results. Speed estimation (Table 6) indicatesrtbart readings are within
5-17% error. Linear regression of the correlation of estimated spebichdar gun speed shows an r-square
of 0.85-0.90, indicating a very strong, but not perfect correlation éetmspeed and ground truth speed.
Although this accuracy is good, for speed we have a very poor referground truth”: the precision of
the radar gun is only 1mph, so we believe some of this error corresporntle fmor precision of those
measurements. In fact, with the wide-spaced sensors (36"), error iswhils precision. With narrow-
spaced sensors, errors are around 2.3mph, confirming that agfaltaoff with narrow-spaced sensors at
these sampling rates. Finally, we observe that absolute error in speegyjidyraonstant for these speeds,
and the relative error actually decreases.

When we turn to length (Table 7), we see much higher accuracies. Thi lestimation error is less
than 6% which indicates that we can accurately estimate length using a singe. 3&% also observe that
the wide-spaced sensor is again more accurate. Note that length estirediasent on speed estimates, so
we expect these results to be dependent. The main difference is thatevadtarrate ground truth of length.

We didn'’t investigate exhaustively the effect of distance and samplingorathe accuracy, but we at
least confirmed the configuration we used is appropriate for speed ragith lestimation. In Section 6.2,
we experimented with 4.5” separation distance and 1200Hz sampling rate idweeakplicitly examine
this configuration, but the accuracy would be roughly equal to the amaflign of 18” and 300Hz, because
accuracy is proportional to the product of distance and sample rate.

6.2 Re-analysis of USC Data

We evaluate new algorithms with the data set collected at USC campus on Stiguad04. A description
of our prior analysis of this dataset can be found in Chapters 3 and € &UWRE-SE final report [15] and
summarized in Section 5.1.

6.2.1 Error Recovery in a Single Sensor

We first evaluate single-sensor techniques to improve estimation consistency

To evaluate the benefits of multiple features we compare the amount of \@viensee across multiple
readings. In Section 4.1.1, we show that we can determine up to four estiofisgsed and length from
each sensor pair. We expect that two classes of error, imprecisdssfikee to sensor inaccuracy), and
changing speed (if cars alter their speed over the sensor), can tasseid by exploiting multiple estimates
at a single sensor.

Figure 9 shows how variance changes when we consider 1, 2, 3, #eatimates of each speed and
length for data from both sites A and BN. Unfortunately we do not havergtéruth about speed and length
for our main experiment, so we computed our best-estimate of speed and grtg#ting the mean of all
four measurements. For each signature, we compute the differenceraiegrsor estimate against this best
estimate. We consider all possible combinations sensors for each signature, so the 1-estimate values
consider 4 measurements per signature, the 2-estimate considers 6 combipetisignature (combinations
of estimate 1-2, 1-3, 1-4, 2-3, 2-4, and 3-4), and the 3-estimate cosgideer signature (estimates 1-2-3,
1-2-4, 1-3-4, 2-3-4).

For Figures 9(a) and 9(b), we first estimated speed and length forsea@dture using the mean of all
four estimates. As can be seen, use of multiple estimates greatly reducesameadwariance. Variance is
larger when speeds are faster at the BN site. Finally, variation in length éssiiseconsiderably less than
variation in speed. Three-category classifications are affected bysevall variations, however, since there
are many vehicles near the dividing line between P and S*.

To test against ground truth, we took an additional, custom experimem wheaan a vehicle with
known length across sensors spaced at 18 and 36 inches (details efpdnr@ment are in Section 6.1).
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Figure 9: Comparison of the use of multiple estimates from a single signatuedfir$thtwo use data from
sites A (white bars) and BN (gray bars) of the USC experiment, while thifiiuae uses data from the first
ISI rooftop experiment.
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Table 8: Classification Results, Trucks vs Non-Trucks

Total Correctly Unable to classify Incorrectly
Site considered classified [segmentation errors]  classified
Total 164 (100%) 133 (81%) 16 (10%) [9 SE] 15 (9%)
T 8 6 2 0
Non-T 156 127 14 15
Total 248 (100%) 212 (85%) 18 (7%) [13 SE] 18 (7%)
BN T 37 30 3 4
Non-T 211 182 15 14
Table 9: Three-category Classification Results
Total Correctly Unable to classify Incorrectly classified
Site considered classified [segmentation errors]  Total WrongasP WrongasS* WrongasT
Total 164 (100%) 94 (57%) 16 (10%)[9 SE] | 54 (33%)
A P 101 72 9 20 - 9 11
S* 55 16 5 34 30 - 4
T 8 6 2 0 0 0 —
Total 248 (100%) 174 (70%) 18 (7%)[13 SE] | 56 (23%)
BN P 127 90 13 24 - 17 7
S* 84 54 2 28 21 - 7
T 37 30 3 4 0 4 —

Figure 9(c) shows these results. The trend in the right graph agaiastkground truth matches the trend
in the middle graph: more estimates reduce variability. However, this experatsmmtonfirms that less
variability corresponds with more accuracy.

6.2.2 Sensor-Based Classification

We next consider sensor-based classification using data collectedhétbrd and BN sites.

As we discussed in the SURE-SE final report, we manually deleted recbrdstorcycles, carts, and
bicycles from the dataset. It should not be hard to eliminate these automatialiyur current focus is
on the harder problem of distinguishing cars from trucks, not the eadetem of cars from bicycles. As
future work we plan to automate this filtering. After filtering we were left with t€édords on site A and
248 records on site BN. In addition, we found 22 records (9 on site Al8rah site BN) were missing from
sensor data set, due to segmentation errors. Although we do not yet sintdindetect these, we believe
we can do so relatively easily. We therefore report these values gsésgation error (SE)” on Table 8
and 9.

We started by classifying vehicles in two groups: trucks (including 18ebene, cement mixers, and
panel-trucks) and non-trucks (includes everything else other thaksjtu®kesults are shown in Table 8.
With just two categories (trucks, type T, vs. non-trucks), our classificaates are comparable to current,
state-of-the-art published results from Satral. [24]. These results were particularly encouraging given that
our system was not tuned to specifically deal with the high variability in vehpeed that we found.

In addition to the two categories of vehicles mentioned above, we expanddditial classification
algorithm to include a third category, S*, comprised of SUVs, pick-up sugkns and minivans. Results
are shown in Table 9. Our accuracy with three categories is not as highiraenly two categories. Our
algorithms depend primarily on vehicle length, but the vehicles in class S* amaifap in length. No
classification algorithm based only on length will be able to separate thegmigateaccurately. This can
be seen in the data in Table 9 where many “medium-size” vehicles are inttpkssified as passenger
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Table 10: Effect of careful feature extraction (single sensor)

simple careful feature (edges)
Site  (peaks) without consistency with consistency
Two-category classification

A 110 (67%) 133 (81%) 133 (81%)
BN 202 (81%) 209 (84%) 212 (85%)
Three-category classification

A 55(34%) 93 (57%) 94 (57%)
BN 157 (63%) 164 (66%) 174 (70%)

cars (51 out of 139). By comparison, classification of trucks is quitedgadth very few trucks being
misclassified as S*, and very few S* or P types being classified as T.

This experiment suggests, first, that our approach is very approjitia¢egoal is to classify trucks from
non-trucks. For studies about road damage, this level of classificatigrbenaufficient. It also suggests
that very fine-grain classification of passenger cars, vans, piclBpgs will be quite difficult, given the
blending of these vehicle types.

It is useful to compare the accuracy of our sensor network-basssifatation system to manual (hu-
man) classification described previously. First, considering just coymtiagual classification was 83—87%
accurate. By comparison, our classification system had accuracyfé@&s85% for two-category classifi-
cation and 57—-70% for three-category classification. From this we adathat our single-sensor system is
comparable to humans for two-category counts, because our systémarmdie vehicles as rapidly as they
occur, while humans can become overloaded and make errors when tgwvemécies appear quickly.

We also must state that for three-category classification, humans remairmocorate when compared
to our current system. This result is because, even though manuds¢oigs many vehicles, humans are
much better at distinguishing “SUV-like” vehicles (type S*) than our systdntivuses simple length-based
measures.

Finally, it is important to note that these experiments evaluate classification lmetineemost challeng-
ing FHWA classes (cars from trucks). Future work might include evalonaifmur approach over simpler
FHWA classes, such as different kinds of semi-trailer configurations.

6.2.3 Effect of Careful Feature Extraction

We earlier discussed the importance of using distinct features, and atidgteommon problems such as
channelization error (Section 4.2.2).

To quantify the benefits of our improved feature detection Table 10 compaegall classification accu-
racy of two and three-category analysis with and without these improvenmdmghree columns compare
detection of simple peaks only, with detection of careful features (edggt) and without consistency
checking.

As can be seen, the shift from peaks to edges is helpful at both siiegditticularly helpful at site A
(improving accuracy 14% for two-category and 23% for three-caj@dmcause there speeds are generally
lower (8mph compared to 16mph at site BN), making wheel peaks much lesstdigtause of longer time
spent over the sensor.

Consistency checking is most helpful at site BN (improving accuracy 14#&t) because that sensor
suffered from a number of missing wheel cases. Site A suffers frommdbar of channelization errors which
we detect but cannot correct. This detection does alter the quality estirnateydr, allowing multi-sensor
techniques to select the estimate without channelization error as descgibed b
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Table 11: Multi-sensor classification accuracy.
Total vehicles at both A and BN: 39 (100%)

Two-category classification
single sensor:

A alone: 36 (92%)

BN alone: 36 (92%)

multi-sensor combining A and BN:

oracle: 38 (97%)

shortest-best: 38 (97%)
guality-best: 38 (97%)

Three-category classification
single sensor:

A alone: 24 (61%)

BN alone: 27 (69%)

multi-sensor combining A and BN:

oracle: 32 (82%)

shortest-best: 25 (64%)
quality-best: 29 (74%)

6.2.4 Use of Sensor Fusion

Finally, we wish to investigate our hypothesis that multiple sensors can ha@jveeadependent errors.
In our experiment, 39 vehicles passed through both sites A and BN. Weateropr two sensor fusion
algorithms from Section 4.2.3, shortest-best and quality-best, with an atgolithm. Recall that the oracle
algorithm takes the correct classification if either individual sensor isecgrthus providing a theoretical
upper bound on performance.

Table 11 summarizes the results of this comparison, showing that our des&or algorithms can
correct several kinds of independent errors such as mis-segmardatiomis-channelization (described in
Table 5). For two-category classification, both shortest- and qualitydb&ays select the correct classifi-
cation, matching the oracle. We cannot achieve more than the oracle udlesthance individual sensor
accuracy.

In three-category classification, the quality-best algorithm improves thaacy by 5-14%. This im-
provement suggests that the confidence value we used for qualitglgesthm captures accuracy of the
individual sensor’s estimation and helps us to select the better classificaii@nshortest-best algorithm
does not do as well as quality-best because it is designed to cortgctemmentation errors and does not
attempt to consider other kinds of errors.

Reviewing the errors from Table 5, we addressed mis-channelization lgyrdetecting it at single
sensors (Section 6.2.3), then selecting the best quality single-sensoruality-dpest (Section 6.2.4). We
handled imprecise speeds by selecting an appropriate sensor spatsanguiing frequency (Section 6.1).
Changing speeds are best handled in single sensors. Segmentatismerraddressed by the shortest-best
and guality-best sensor fusion algorithms (Section 6.2.4).

6.3 \Verification of Autoconfiguration Algorithms

We wanted to verify the effectiveness of our autoconfiguration algoritessribed in Section 4.3. To do
this we set up a small experiment on an ISl rooftop (Section 5.3). In thegrEment, the initial threshold
works perfectly after a single pass of auto-configuration.
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We plan to exercise this algorithm further in future experiments to furtheratalithis algorithm.

7 Plans and Future Work

This project has demonstrated that automated systems can classify vebialasueately as humans pro-
vided a sensor network can combine readings from multiple sensorsintriphe, such a system could be
assembled from parts costing only a few thousand dollars, and depldtredny a few minutes of traffic
interruption.

However, several open challenges remain before such a systembeogiden to students, researchers,
or traffic engineers. First, we must understand how to connect a chfstethe-field traffic sensors to each
other and to a researcher’s central database or traffic managerstarhsyith moderate cost. Second, we
must integrate and automate deployment of the system as a whole. Finallycsiginifiork is required to
move from demonstrating the principle behind a sensornet for traffic mongtée having an integrated
system that can be taken into the field.

We must to develop approaches to economically connect traffic senseeshoother and to central
researcher or traffic management systems. The key constraints on ithigial work are to do seco-
nomicallywith traffic sensorsn-the-field.

Custom industrial wireless networks are widely used today for many apiphsan specific locations,
but the need to lease radio spectrum and develop or purchase cudgiommake custom approaches very
costly. Cellular telephone and data networks also provide wide covevag#je cost is quite high, often
$80 per computer per month, making their use uneconomical for dozeessirs in a sensor network. In
addition, they are quite energy hungry, running only a few days on ideadew hours of use.

We also must understand the unique demands of a network of trafficrsefdte requirement that a
traffic sensornet be easily deployed means we wish to allow computersrad@pa battery power, suggest-
ing the use of low-power radios and network protocols, such as 802ahf.8-MAC. These radios provide
throughput of only 50kb/s or less, comparable to telephone modems.

Our second goal is to automate deployment of the system as a whole. Gumn®IURE-FT helped
define the parameters that need to be automatically configured in our ttaffgification network: basic
sensor calibration, loop width, spacing between pairs of loops, relatiatidms of loops that will see the
same traffic, and several parameters relating to signature interpretatonuftiber of samples allowed in
a wheel-well “dip” and the thresholds for wheel start and steep-sltay8.sThis work also indicated that
classification results are relatively insensitive to starting thresholdsidewe use algorithms that detect
and handle partial signatures. The physical loop layout parametesslbiraportant, so calibrating these is
essential.

Finally, significant work is required to move from demonstrating the principleirz a sensornet for
traffic monitoring to developing an integrated system that can be taken int@lthe fi

These areas are potential directions for future research.

8 Conclusions

This report summarizes the research tasks of the SURE-FT project. Tihecorlusions of this work
were to verify that one can effectively use multiple sensors to reduoe mtes in vehicle classification,
and to begin the process of developing an integrated system that casilgedeployed and automatically
configured to collect such data.
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