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ABSTRACT 

The purpose of this research was to demonstrate the feasibility of using sensor networks 
in traffic monitoring applications, specifically a rapidly deployable network of traffic 
sensors (NOTS) for short-term monitoring and data collection.  A sensor network is an 
array of sensors attached to small computer nodes that have communications capabilities 
via wireless network. Our application problem is heavy duty truck data:  vehicle 
classification and reidentification, particularly under slow or varying speed conditions.  
An experimental sensor, the IST Blade sensor, is essentially a portable inductive loop 
sensor that provides high resolution data. We used the Blade sensor for our initial 
experiments. We conducted a field experiment on the USC campus in order to collect 
data for development of classification algorithms.  Our results are encouraging; 
classification accuracy is comparable to that of other recent research efforts. Once we 
have developed acceptable classification algorithms, two directions are apparent for 
future research: use of multiple sensors with the goal of improving classification results, 
and the use of vehicle signatures to allow re-identification of vehicles across multiple 
sensors.  
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1 INTRODUCTION 
 
An emerging and rapidly developing field in computer science is sensor networks – 

many sensors attached to small, low cost computer nodes that have communications 
capability via wireless network.  Sensor networks seek to exploit advances in computing 
power, battery power, and wireless communications to develop highly accurate sensing 
systems.  The purpose of this research was to demonstrate the feasibility of using sensor 
networks in traffic monitoring applications, specifically a rapidly deployable network of 
traffic sensors (NOTS) for short-term monitoring and data collection.   Our application 
problem is heavy duty truck data:  vehicle classification and reidentification. 

 

1.1 Background and Justification of Research 

There is an ongoing need for traffic data to validate and calibrate regional and local 
transportation models. Regional models are used to test hypotheses regarding human 
travel behavior, transportation and land use interactions, and the effectiveness of 
alternative investments or pricing policies.1  Local transportation models are used to 
evaluate changes in economic activity or transportation system characteristics at a more 
disaggregate level. Traffic management policies, congestion reduction strategies and 
impacts of new development (such as housing or commercial centers) are some examples 
of local transportation model applications (Hansen, et al, 1993; Banister and Berechman, 
2000; Transportation Research Board, 1995; Transportation Research Board 2002).  

Freight flows are of growing interest within metropolitan areas, due to their recent rapid 
increase.  As the impact of commodity flows has increased, government planners and 
system operators have a greater demand for commodity flow information and for better 
methods to track, analyze, and monitor these flows as they impact transportation 
networks and nodes.  Demand for better information and analysis tools is particularly 
strong at the metropolitan level, because access to disaggregate data is limited and 
analysis tools are not yet well developed (Gordon and Pan, 2001; Sivakumar and Bhat, 
2002). 

The lack of data on truck traffic is particularly problematic. We have surprisingly little 
information on the characteristics of truck traffic and its distribution across space and 
time.  State highway transportation departments have “weigh-in-motion” (WIM) stations 
at key locations on the interstate highway systems that provide truck traffic data, but 
there are relatively few such stations (there are only 104 stations in all of California), 
mainly due to their high installation and maintenance costs. In order to meet federal 
reporting requirements on heavy duty vehicles, additional WIM-type sensors are 
emplaced at other locations on the state highway system. Data on the arterial system is 
almost non-existent, because there is no easy way to collect such data.   

                                                 
1 See Meyer and Miller, 2001; Miller, Kriger and Hunt, 1999; Pas, 1995; Wegener, 1994. 
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There are also more localized problems that would benefit from a rapidly deployable data 
collection system that provides accurate vehicle classification and identification.  For 
example, SB 2650 may impose fines on terminal operators if trucks entering the terminal 
idle in queue for more than 30 minutes. The law is intended to reduce diesel emissions. 
At present, the law is enforced by a roving officer who estimates idle time based on his 
assessment of queue length.  A NOTS system that could be deployed on a random basis 
would allow for much more effective enforcement. The system could also detect queuing 
on the bridges or roads in the port area. Some other potential applications include parking 
lots in shopping malls, freeway ramps, airports, etc.  

The key problem of sampling relevant to our proposal is that current permanently 
installed traffic management systems (TMS) do not provide sufficient flexibility for 
occasional sampling needed for research and planning for goods movement. In addition, 
the current state of the art for portable sensors lags behind that of permanent systems.  
Vehicle classification capability is limited, and vehicle re-identification is just beginning 
to be explored.  Hence the purpose of this research is to develop new, more accurate 
approaches to collect freight data more efficiently and more flexibly by deployable 
sensors. Although data collection is the primary motivation for our work, other possible 
transportation applications include use of networks of traffic sensors (NOTS) around 
construction areas to manage traffic and improve worker safety, and to assist in traffic 
flow in emergency situations such as during a major evacuation.  

Our approach is to use an accurate, low cost and rapidly deployed Network of Traffic 
Sensors (NOTS) to improve the accuracy of vehicle information analyzing. This NOTS 
system will consist of a number of small, low cost computer nodes, each with one or a 
few sensors (such as pneumatic tubes or adhesive magnetic sensors), connected with a 
wireless network. Although individual sensors may be relatively inaccurate, we expect 
this research to develop algorithms that allow the combination of individual sensor 
readings in the sensor network to provide highly accurate vehicle classification and 
vehicle re-identification.  

1.2 Research Overview 

Our first task was to review the state-of-the-art in current sensor systems. Existing 
emplaced systems (such as inductive loops and video cameras) provide reasonably 
accurate vehicle counts, speed and density estimations.  Using inductive loops for vehicle 
re-identification is under research.  .  The state of the art in portable traffic monitoring is 
far less developed. Deployable systems tend to be large and expensive, or have limited 
functionality, and often require data to be downloaded and analyzed after-the-fact.  For 
vehicle classification and queuing studies, human counting is still the method of choice; 
human counting is labor intensive and can only be done when personal safety can be 
assured.   In addition, portable sensors today are often not tied in to central traffic 
management systems because of the cost of communication (the per-installation charges 
of a wired connection make regular telephone lines impossible, and the pay-per-bit cost 
makes cellular data connections undesirable).  We also consulted with leading California 
researchers at the UC Institute of Transportation Studies and PATH in order to learn 
about current research in progress.   
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Our preliminary research led to the discovery of an experimental sensor, the IST Blade 
sensor.  It is essentially a portable inductive loop sensor that provides high resolution data.  
The Blade sensor is far more advanced than state-of-practice portable systems (e.g. 
pneumatic tubes), and we therefore chose the Blade sensor for our initial experiments.   

A second observation from our preliminary research is that vehicle classification and re-
identification is more challenging at low speeds, because vehicles are more likely to 
change their speed or location as they move over the sensor, thus it is more difficult to 
normalize vehicle signatures.  We therefore redefined our research problem as how to 
improve the accuracy of vehicle classification and re-identification at lower and 
inconstant speed by using portable blade sensors.  

Our second task was a data collection experiment at the USC campus.  We had expected 
to obtain sensor data from other sources so that we could conduct a simulation study, 
focusing on correlated readings from multiple sensors and algorithms for self-
configuration, e.g. the potential of the network approach for improving accuracy. We 
were unable to obtain such data, however, and hence decided to generate our own.  
Working with Steven Hilliard of IST, we collected 1500 detections of vehicles at three 
locations on the USC campus on Aug. 6th when construction was underway on campus, 
allowing us to capture a mix of periodic traffic, including the USC shuttle bus, 
construction traffic, including cement mixers and 18-wheel trucks, and general 
automobile traffic. Our data collection design included multiple observations of some 
vehicles.  We supplemented sensor data with human observers and videotape to provide 
“ground truth”.  The observation data were checked with the video data to provide a 
ground truth data file. 

Our third task was the development of algorithms to interpret the blade sensor data, 
starting with simple vehicle counts, then proceeding to classification, while laying the 
groundwork for re-identification. Our results are encouraging; classification accuracy is 
comparable to that of other recent research efforts. Once we have developed acceptable 
classification algorithms, two directions are apparent for future research: use of multiple 
sensors with the goal of improving classification results, and the use of vehicle signatures 
to allow re-identification of vehicles across multiple sensors.  
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2 LITERATURE REVIEW 

Various sensors have been produced to collect traffic information such as volume, 
occupancy, speed, vehicle classification, vehicle re-identification on freeways, arterials, 
ramps, parking lot, etc. The data collected are widely used in planning, research, and as 
the source for real-time traffic information for Intelligent Transportation Systems (ITS). 
Sensors can be roughly divided into two categories:  emplaced and portable. Emplaced 
sensors are directly installed on road infrastructure and detect traffic information 
continuously. Once anchored, emplaced sensors are usually not removed.  Portable 
sensors are used for short-term data collection and are moved from place to place. The 
use of portable sensor also typically requires lane closures, as with emplaced sensors, but 
the period of traffic disruption is shorter. There is no absolute boundary between these 
two kinds of sensors. Inductive loops sensors are known as typical emplaced sensors, but 
“blade” sensors, which basically are also made of inductive loops, are portable. 
Piezoelectric sensors, which are used flexibly from place to place, can also be used in 
permanently installed Weight-in-motion (WIM) systems. Another example is magnetic 
sensors. They can be cut into the pavement surface, but pavement cuts are not always 
needed. 

Emplaced sensors, mainly inductive loops, are used to collect real time traffic 
information. See Figures 1 through 5. Inductive loop sensors are emplaced in the 
roadway (Figure 1) and connected to local processing units -- detection cards (Figure 2) -
- which are stored in fixed cabinets (Figure 3), by underground wires. The data collected 
are then transferred by cable or telephone transmission to computers in the traffic 
surveillance and control center (Figure 5). Traffic information such as volume, 
occupancy, speed, etc is generated by processing the data through software (Figure 4). 
Emplaced sensors are more sophisticated and stable than state of practice portable sensors.  
However, their installation and maintenance is costly, and consequently they are usually 
used where long-term data collection is required, such as signalized arterial intersections 
and freeways. 

           

      Figure 1: inductive loop sensors                                   Figure 2: detection card     
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               Figure 3: Cabinet                                       Figure4: data processing software 

 

 
Figure 5:  LADOT   Traffic Surveillance and Control Center 

Sources:  Figure 1  International Road Dynamics Inc., http://products.irdinc.com; Figure 2  
SURE-SE project; Figure 3 Diamond company, http://www.diamondtraffic.com; Figures 4 and 
5 City of Los Angeles, http://trafficinfo.lacity.org.                  

Portable sensors are typically deployed across a roadway, with the sensor data collected 
by a small CPU. See Figures 6 and 7. Sensor data is downloaded to a PC for processing 
after completion of the data collection period. Portable sensors are used for temporary 
data collection in locations without emplaced systems, such as un-signalized intersections 
or bridges.  Each type of sensor has advantages and disadvantages. The following section 
reviews the main types of sensor used in traffic data collection.  

  

           
         Figure 6: Piezoelectric sensor                              Figure 7: local data collection CPU 

Sources:  Figures 6 and 7 International Road Dynamics Inc.,http://products.irdinc.com. 
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2.1 Types of Sensors 

 
2.1.1 Emplaced sensors  

 

Inductive loops are the most widely used sensors at present. They are used singly or in 
pairs.  Single loops provide data on vehicle passage, presence and occupancy, but speed 
estimation is less accurate. Several recent research efforts are aimed at improving the 
accuracy of speed estimation with single loops. (Ritchie Park, Oh and Sun, 2002; Lin, 
Dahlgren and Huo, 2004; Neelisetty and Coifman, 2004; Wang and Nihan, 2003). New 
inductive loop and detection technology have resulted in more capable sensors. Several 
algorithms have been developed to classify vehicles by analyzing the waveform signature 
from these advanced inductive loops. Double loops can determine speeds more easily 
than single loops and are more easily used for vehicle classification.  However, double 
loops are not widely used due to their installation and maintenance costs. A major 
advantage of inductive loops is time-tested technology. Major disadvantages include 
reduced pavement life and required lane closures for installation and maintenance.  

Video image processors detect vehicles by analyzing the video imagery to determine 
changes between successive frames. Algorithms are available to generate count, speed 
estimation, vehicle classification, and identification data. They are better off in clear 
condition for getting direct information on many vehicle characteristics. Performance 
depends greatly on visibility conditions, and hence is affected by weather and shadow 
conditions. The algorithm is data and memory intensive.  Furthermore, the cost of video 
camera and image processing is high, and their energy requirements make battery 
operated imaging systems problematic.  

Weight-in-motion (WIM) systems use a piezoelectric polymer sensor that produces a 
voltage proportional to an applied pressure or load. WIM sensors are used for vehicle 
classification, speed, axle count and axle weight estimation. WIMs have significant 
disadvantages.  They are very high cost, require significant road construction to install, 
require regular maintenance, and their accuracy is sensitive to temperature and weather 
conditions and time, thus leading to larger uncertainty in data collection.2  

Existing emplaced systems (inductive loop sensors and video image processors) can 
accurately count vehicles. The accuracy of speed estimation and vehicle classification has 
been improved through research. However, vehicle re-identification remains a challenge.  

Emplaced sensors are used in Advanced Traffic Management Systems (ATMS) and 
Advanced traveler information systems (ATIS). For example, inductive sensors and video 
cameras are used in Los Angeles City’s Automated Traffic Surveillance and Control 
(ATSAC) system. Inductive sensors and video cameras gather information electronically 
on congestion and flow condition from many points of a highway network and local 
arterials. Information is fed to a control center, where it is analyzed and used to adjust 
traffic signals, ramp entry controls, and lane direction controls throughout the system to 

                                                 
2 According to Caltrans, a recent WIM installation in District 7 cost $700,000. 
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reduce delays. The information can also be fed to individual drivers through websites (see 
figure 8) and traffic gauge, a wireless on-time traffic information receiver (See figure 9).  

 
         Figure 8: LADOT online traffic information     Figure 9: Caltrans Traffic gauge 

Sources : Figure 8 http://trafficinfo.lacity.org, Figure 9  Trafficgauge,  
http://www.trafficgauge.com/ 
 

2.1.2 Portable sensors 

Pneumatic tubes remain among the most commonly used sensors for short-term traffic 
counting, vehicle classification by axle count and spacing. Some types gather data to 
calculate vehicle gaps, intersection stop delay, stop sign delay, saturation flow rate, spot 
speed, etc. They are installed perpendicular to traffic flow. They can be assembled 
quickly and have lower power usage. However, when trucks and bus volumes are high, 
axle counts become inaccurate. They are also prone to breakage due to vandalism and 
wear produced by truck tires. (Mimbela and Klein, 2000)  

The piezoelectric sensor works by converting between mechanical and electrical energy 
forms. When pressure is applied to a polarized crystal, the resulting mechanical 
deformation results in an electrical charge. Piezoelectric sensors are used to classify 
vehicles by axle count and spacing to measure speed (use of multiple sensors required). 
They are also frequently used as part of weight-in-motion (WIM) systems (Mimbela and 
Klein, 2000). However, piezoelectric sensors are quite sensitive to pavement temperature 
and vehicle speed.  

Ultrasonic sensors emit high frequency acoustic signal bursts beyond the audible range 
of humans and most animals. A vehicle moving into or through the detection area reflects 
the signals back to the detector; accurate timings of the return pulses allow determination 
of the distance to the target (much as bat and submarine sonar systems work).  Pulse 
energy transmitted at two known points at a closely spaced incident angle allows vehicle 
speed to be calculated by recording the time at which the vehicle crosses each beam. 
Some models of ultrasonic sensors feature multiple lane operation (Mimbela and Klein, 
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2000).  Problems include erratic results in turbulent air and temperature change. Large 
pulse repetition periods may degrade occupancy measurement on freeways with vehicles 
traveling at moderate to high speed.  
 
Acoustic sensors transmit pulses of ultrasonic energy toward the roadway. The energy is 
reflected back when a vehicle passes through. The pulse then is changed into electrical 
energy and it is sent to a controller notifying it of the presence of a vehicle. Two 
detection zones can be used in a speed trap mode to measure vehicle speed. Acoustic 
sensors are passive, unaffected by precipitation and consume every little power. When 
mounted over the center of the roadway and using a fully populated microphone array 
and adaptive spatial processing to form multiple zones, the acoustic sensor can detect the 
traffic information from up to 6 to 7 lanes (Mimbela and Klein, 2000).  Disadvantages 
include effects of extreme cold weather on data quality, purchase and installation costs.  

Multi-channel and multi-zone passive infrared sensors measure speed and vehicle length 
as well as the more conventional volume and lane occupancy. These models are designed 
with dynamic and static-thermal energy detection zones that provide the functionality of 
two inductive loops. Time delays between signals from the three dynamic zones are used 
to measure speed. Vehicle presence time from the fourth zone gives the occupancy of 
stationary and moving vehicles. The main disadvantage of infrared sensors is sensitivity 
to weather conditions, including fog, rain, or snow (Mimbela and Klein, 2000).  

Two types of Magnetic sensors are used for traffic flow parameter measurement. The 
first type, the two-axis fluxgate magnetometer, detects changes in the vertical and 
horizontal components of the Earth’s magnetic field produced by a ferrous metal vehicle. 
The second is the magnetic detector, more properly referred to as an induction or search 
coil magnetometer. It detects the vehicle signature by measuring the change in the 
magnetic lines of flux caused by the change in field values produced by a moving ferrous 
metal vehicle. Magnetic sensors can detect speed, traffic flow and classify vehicles. The 
advantage of this kind of sensor is that some models can be installed under the roadway 
without the need for pavement cuts. However, they can’t detect stopped vehicles as they 
measure the change in flux (Mimbela and Klein, 2000) . 
  
The state of the art in portable traffic monitoring is far less developed. Tube sensors 
continue to be widely used, because they are relatively low cost and robust, and they do a 
reasonable job of traffic counting.  If used in double configuration, they can also estimate 
speed.  The magnetic counters are less widely used due to higher cost and less robustness.  
Also, because they must be placed on the roadway, they are a potential hazard for 
pedestrians and bicyclists. Ultrasonic sensor and acoustic sensors are not capable of 
vehicle classification. They are more expensive than inductive loop sensors, especially 
when sufficient numbers of sensors are installed for speed estimation. Infrared sensors 
are expensive and sensitive to weather.  
 
Generally speaking, portable systems tend to be large and expensive, or have limited 
functionality, and often require data to be downloaded and analyzed after-the-fact (Klein, 
1999).  Although many systems tie sensors into a central TMS, it is quite difficult to 
incorporate easily deployable sensors into centralized systems.  Communications cost is a 

12 



SURE-SE Project Final Report  

major barrier, since the setup costs of wire line communication (for example, telephone 
lines) are prohibitive, and the per-byte costs of metro-area wireless (for example, cellular 
telephones, CPDP, etc.) are also quite expensive. The capabilities of each kind of sensor 
are summarized in Table1. 

 

TABLE 1: Summary of Sensor Capabilities 

Function 
Sensor Count Occupancy Speed Vehicle 

Classification
Vehicle Re-
identification 

Inductive 
loop sensor X X X2 X3 X5 

Video image 
processor X X X X3   

Weight-in-
motion 
(WIM) 

X X X X   

Pneumatic 
tube  X X X2 X4   

Piezoelectric 
Sensor X X X2 X4   

Ultrasonic 
sensor X X X     

Acoustic 
Sensors  X X X     

Infrared 
sensors  X X X X   

Magnetic 
sensors  X X X2 X4   

       
X2: double sensors required  
X3: software provided by vendors 
X4: Portable vehicle traffic classifier provided by vendors 
X5: Experimental 

Source: adapted from Klein, 2001 

2.2 Vehicle Classification 

The most widely used technology for vehicle classification is double inductive loop 
sensors. Since a dual-loop detector system is capable of time stamping each detection, the 
elapsed time for a vehicle traversing the two loops can be calculated.  Since the distance 
between the two loops is known, a dual-loop detector can calculate traffic speed fairly 
accurately. Vehicle classification is obtained by combining count and speed data. 
Accuracy breaks down under low speed/high flow density conditions, because vehicles 
are more difficult to distinguish when headways are short, or where speed is highly 
variable.   

13 



SURE-SE Project Final Report  

2.2.1 Vehicle Signature Approach 

Because single loop detectors are more numerous, research has aimed at improving single 
loop capabilities.  Advances in loop detector technology have resulted in higher 
resolution data.  Several recent studies have focused on using vehicle signature data from 
loop detectors.   

Sun, Ritchie and Oh (2000) used a Self-organizing Feature Map (SOFM) approach to 
classify about 300 vehicles chosen from approximately 2000 vehicles in moderate flow 
traffic (~1000VPHPL) drawn from a four lane section of the SR24 freeway. Ninety three 
equally spaced interpolations of vehicle signature were used in as input in the SOFM. 
Similar classes of vehicles were difficult to distinguish, because vehicles of similar size 
and shape have similar waveforms.  Classification was least accurate for vans, SUVs, and 
pickup trucks, and for large pickup and panel trucks.  

Ritchie, Park, Oh and Sun (2002) extended this work by testing three types of neutral 
networks: back propagation neutral network (BNN), probabilistic neutral network (PNN) 
and self-organizing map (SOM) Data were drawn from a major four-way intersection in 
the city of Irvine, California. Speed ranged from 5 to 30miles/hour.  .Using SOM resulted 
in the best overall performance of 82.6% correct classification. Accuracy varies by 
vehicle type: bus and trailer/vehicle with boat were correctly identified in all cases.  
Accuracy was much lower for van/minibus, pick up truck and SUV, again because the 
waveform signatures of the vehicles belonging to those three groups are similar to one 
another.  

2.2.2 Vehicle Length Approach 

Another approach is to use occupancy and speed data to impute vehicle length, and 
classify by vehicle length categories. Neelisetty and Colifman (2004) identified heavy 
duty trucks by comparing occupancy time across successive vehicles. Given constant 
speed, occupancy is proportional to vehicle length.  However, constant speed is a strong 
assumption, particularly under congestion.  Also, vehicle length only allows broad 
categorization 

Wang and Nihan (2003) developed a method to identify the composition of a vehicle 
flow so as to improve the accuracy of speed estimation by using single inductive loop 
data. Assuming constant speed, the ratio of effective vehicle length of one flow that 
contains long vehicles to that of a flow with only short vehicles can be estimated by 
comparing their occupancies. This ratio determined by the length distribution of short 
vehicles and long vehicles.  A ratio greater than a given threshold value indicates a flow 
with long vehicles. Although the estimation error for long vehicle volume in each vehicle 
flow was less than 10%, the method has two limitations. First, accuracy depends largely 
on whether vehicle speed is constant. Second, the two category classification is generally 
too rough for vehicle classification purposes. 

Kwon, Varaiya and Skabardonis (2003) estimated truck traffic volume from single loop 
detector data by using lane-to-lane speed correlation. They observed that the distribution 
of effective vehicle length is bimodal. Nominal representative lengths of 18.6 ft and 61.2 
ft are used as the typical length of the two vehicle classes. They develop an algorithm that 
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connects the relationship between the percentage shares of the vehicle classes, average 
effective vehicle length, flow and occupancy. The algorithm works for those freeway 
locations that have a truck-free lane and exhibit high lane-to-lane speed correlation. The 
overall accuracy is quite high but the accuracy of each lane is low, negative in some lanes 
and positive in some other lanes. 

2.2.3 Video Imaging 

Advances in computing power and image processing techniques make video imaging 
more feasible for vehicle classification. For example, Avery et al (2004) developed an 
image processing algorithm for length-based vehicle classification using an image stream 
captured by an un-calibrated video camera. Trucks were correctly identified 100 percent 
of the time. But the sub classification of trucks and other vehicles is still under research. 
The image processing program is fairly memory and processor intensive; it required a 
Pentium III GHz with 192 MB. The test dataset was collected on a sunny day from 
11:30AM to 12:30PM on I-5 at 145th street in Seattle. Thus conditions were ideal.  The 
extent to which imperfect weather conditions or peak hour traffic volumes would affect 
results is unknown.  

2.2.4 State of Practice 

Despite these research efforts, the state of practice for short-term vehicle classification 
counts among state DOTs continues to be pneumatic road tubes (Benekohal and Girianna, 
2003). Vehicle classification technologies in current use by state DOTs can be grouped 
into three major categories:  

(1) Axle based: classifiers measure the number of axles and axle spacing; Errors are 
caused by incorrect measurement of number of axles, a considerable change of vehicle 
speed over the sensors, etc;  

(2) Vehicle-length-based: classifiers use vehicle length to group vehicles into classes. A 
single sensor or combination of different types of length sensors normally are used, 
including loops, piezoelectric and electrical contact closures; 

(3) Machine-vision-based classifiers: a video camera is used to record video images that 
are taken at contiguous time instants spaced at regular time intervals. A digitizer converts 
the frame into digital signals that are sent to a computer for extraction of vehicle features. 
Visual based classifiers have problems with speed measurement and differentiating 
among closely spaced vehicles (Benekohal and Girianna, 2003).  

The same survey asked state DOTs about their satisfaction with vehicle classification 
products offered by vendors. Magnetic imaging and acoustic sensor technologies got the 
highest score (4.0/4.0). However, only one state DOT used this kind of sensor. Loop 
detector plus axle sensors were rated second highest (3.41), followed by the WIM device 
(3.31), and pneumatic road tube (3.31), loop detector only (3.09), video image and 
electrical contact closure (3.0), microwave (2.50), and fiber optic (1.50) sensors 
(Benekohal and Girianna, 2003). Pneumatic tuber sensors have a high failure rate 
(unclassified vehicles) in some jurisdictions, and they do not perform well in congested 
traffic conditions or where longer-term classification is needed along a high-speed 
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section of a freeway. The main problems with the tube systems are related to installation, 
level of accuracy, durability, and maintenance. Use of inductive loop detectors alone in 
congested traffic condition frequently overestimates the number of trucks, because 
passenger cars with light trailers are counted as single-unit trucks. The detectors can 
appropriately classify large trucks, but they misclassify small trucks. Piezoelectric 
treadles require extensive oversight during installation and maintenance once they are 
installed. During operation, they are very sensitive to temperature (Benekohal and 
Girianna, 2003). 

 

2.3 Vehicle Re-identification 

Several techniques exist for vehicle re-identification.  One can employ humans or 
cameras and automated image processing systems to record vehicle license plate numbers 
or some other identifying feature, but they are hard to read and very hard to automate.  

High-resolution inductive loops can generate vehicle signatures that have been used for 
re-identification on arterials (Oh, Ritchie and Jeng, 2004). The basic idea of vehicle re-
identification based on the inductive signature is to match a given downstream vehicle 
signature with an upstream vehicle signature amongst a set of candidate upstream vehicle 
signatures. Sun developed a lexicographic method to minimize mismatches between 
signature feature vector pairs (Sun, Ritchie, Tai and Jayakrishnan, 1999). Ritchie, Park, 
Oh and Sun (2002) added an optimization level to filter individual vehicle turning 
movements in order to expand the use of the lexicographic method to vehicle re-
identification at arterial intersection at peak hour. A Heuristic classification algorithm or 
PNN algorithm was first implemented for turning filtering. Then, three feature vectors of 
the signature: maximum signature magnitude, slew rate and duration were used as input 
in PNN to do vehicle re-identification. The accuracy in the turning filtering classification 
phase was as high as 93.6% using the Heuristic algorithm and 95% using PNN. However, 
vehicle re-identification accuracy was only about 35%.  

In related work vehicle re-identification was tested using two different types of sensors.  
Upstream inductive loop data was used in combination with downstream data from 
portable inductive loop blade sensors.  Both a mapping procedure for input features and a 
genetic algorithm were incorporated into a lexicographic optimization based vehicle re-
identification algorithm. Since each detector system has unique characteristics for 
representing vehicle images, re-identification is very challenging. The algorithm correctly 
matched only 50% of the vehicles, and the number of vehicles the algorithm could 
analyze was small due to data intensity. Blade sensors were reported to be more sensitive 
than other inductive loops and capable of capturing vehicle wheel locations due to their 
configuration and hence hold promise for improving accuracy of vehicle re-identification. 
(Oh, Ritchie and Jeng, 2004) 

The state of practice for vehicle re-identification is the use of human observers.  Workers 
are hired to record license plate numbers or California vehicle ID numbers at specific 
locations.  This method has many disadvantages.  First, cost is high. For example, a 
recent METRANS project required collection of data on truck queues at port terminal 
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gates.3  A team of 13 students was assigned to 6 locations at 2 terminals. Students worked 
3 hours per day for 4 days. Creating data files and verifying data took several months.  
Second, human counting is subject to error.  Worker attentiveness declines quickly after a 
few hours on the job; shifts of three hours are common to reduce this problem, making 
even one full day of data difficult to obtain. Third, manual observations are not effective 
at night, and can only be performed if worker safety is assured Logistics and cost 
constraints of deploying human observers limit this technique to only very valuable 
studies.   

                                                 
3 G. Giuliano and J. Maggadino, Evaluation of the Terminal Gate Appointment System and the Los 
Angeles and Long Beach Ports, METRANS project 04-06. 
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3 METHODOLOGY AND DATA 

Our research problem is how to improve the performance of portable sensors in  vehicle 
classification and re-identification.  We are particularly interested in classification and re-
identification under difficult conditions: low and variable speeds, variable weather and 
light conditions, and mixed traffic with a high proportion of heavy duty trucks. Our 
research goal is a rapidly deployable system, so we are interested in sensors that are 
easily installed and removed.  

3.1 Sensor Selection   

The literature review suggests that advanced inductive loop detectors (ILD) are most 
promising for our purposes. The unique signature data is determined by both vehicle 
characteristic information such as length, distance between axles, distribution of the 
metal mass along the body, etc. and contextual information such as speed, time, vehicle 
entrance angle into inductive field, etc.  

Signature length and magnitude are the two most important features. Signature length is 
related to both vehicle length and vehicle speed. Low speed classification and re-
identification is more difficult than high-speed, because vehicles are more likely to 
change their speed as they move over the sensor, making it more difficult to normalize 
vehicle signatures and compare them. Signature magnitude is related to inductance 
change which is proportional to the inverse of the distance of the vehicle body from the 
loop detector. High lateral offset (greater distance between the detector and the vehicle) 
results in low magnitude vehicle signatures, which leads to misclassification. We seek to 
improve the accuracy of vehicle classification and identification under conditions of 
varying vehicle speed and lane shifting.   

We selected the “blade” sensor as the most promising ILD for our purposes. The blade 
sensor was developed by IST Corporation. It collects data from two parallel ILDs 
separated by a distance of 6 inches and oriented at an angle of 20° to the direction of the 
traffic flow. This orientation allows for information on number of axles and wheel based-
vehicle length, as well as the other signature attributes described above. Axle and wheel 
base data should improve classification accuracy.  The blade sensor is also very portable.  
It is easily transported and installed. 

We requested test data from both IST and researchers at UC Irvine who had used the 
sensors in previous experimental work.  Unfortunately, we were unable to obtain any test 
data, and hence decided to conduct our own data collection experiment.4  Although the 
data collection considerably changed the scope of work for this project, it provides a rich 
data set for follow-on work. 

                                                 
4 IST’s available datasets were from an old sensor and consisted of high-speed traffic.  Stephen Ritchie 
declined to share his existing data until his group had completed their analysis, conducted under a research 
contract expected to end in late 2005.  
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Our research approach is incremental.  We first develop methods for interpreting data 
from a single pair of blade sensors.  This involves various data processing steps to 
identify vehicle signatures and then use of algorithms to classify.  We start with the 
simplest problem, counting vehicles, and then proceed to classification.  Later work will 
focus on re-identification and on the potential of multiple sensors for improving accuracy. 

3.2 Field Test  

On August 6th, from 7AM to noon, we undertook a data collection experiment at the 
USC campus.  Working with Steven Hilliard of IST, we collected 1500 detections of 
vehicles at three locations on the USC campus. Sensor data was supplemented with 
human observers and videotape to provide ground truth data.  We selected the locations 
to get a mix of low- and moderate-speed traffic.  We selected a data collection day when 
construction was underway on campus, allowing us to capture a mix of periodic traffic, 
including the USC shuttle bus, construction traffic, including cement mixers and 18-
wheel trucks, and general automobile traffic. In addition to general traffic, we selected 
two passenger cars and ran them over each sensor 10 or more times to provide a baseline 
known vehicle to evaluate re-identification.                              

Data collection locations are shown in Figure 10. Sites A (northbound) and C (westbound) 
were selected because they are near the USC parking kiosks and a stoplight exiting 
campus, allowing us to capture low-speed traffic. Site B (both direction) was selected to 
provide moderate-speed traffic. The combination of the three sites was selected based on 
vehicle routes so as to obtain multiple readings of the same vehicle. A large share of 
vehicles entering at A continue along Watt Way through site B northbound. Site B also 
captures trucks and other vehicles in both directions. We were informed by USC 
Department of Transportation Services that heavy trucks would exit at Site C; however, 
on the survey day most trucks exited either at A or another exit not covered by the data 
collection effort. 
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Figure 10: Sensor 
deployments for data 
collection 
experiment at USC. 

 

 

20 



SURE-SE Project Final Report  

3 
 

    

Figure11:  IST blade sensor 
cards (in plastic bag) 

 

Figure 12:  ILD being installed on 
the roadway 

The IST blade sensors were installed on the roadway using standard pavement tape.  Two 
loops 6 inches apart are laid across the roadway at approximately a 20° angle to traffic.  
The loops were connected to the IST detector cards, and the detector cards were 
connected to laptop computers (see Figures 11 and 12).  Video camera recorders were set 
up at Sites A and B.  We intended to place a camera at all three sites, but were unable to 
deploy the camera at Site C because of a tripod failure.  At each location, students 
recorded the license number, vehicle type and color of each vehicle passing through the 
blade sensor in a single direction.  Time was recorded to the nearest minute, and all 
watches were set to the laptop computer clocks. Student observations were input into a 
database file and checked with the video. Video-cross checks allowed correction of many 
errors and omissions.  

We selected this placement of sensors with several goals in mind:  

1) Observation of different vehicle speeds: Sites A and C were selected near the 
USC parking kiosks so that vehicles detected there would be slow-moving and 
stop-and-go, the most challenging conditions we expected. 

2) Re-detection of similar but non-identical vehicles: We chose site B beacuse we 
believed it would result in repeated observations of campus shuttles, allowing 
exploration of re-identificaiton algorithms.  

3) Many repeated observations of identical vehicles:  We ran two test vehicles 
(passenger cars) over all sensors repeatedly.  This approach allows us to compare 
sensor calibration across different sensors, and across the same sensor over time. 

4) Detection of large trucks:  In the port we must detect many similar tractor-trailer 
rigs.  We selected experiment dates so that construction was going on on the 
campus, allowing detection of a number of similar cement trucks. 

5) Detections of trucks before and after load removal:  Similarly, we selected 
locations A and C so that we could detect the same cement trucks when full of 
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cement and after dumping their load.  (Unfortunately, on the day of the 
experiment, the cement trucks were leaving by a different exit.)  

We are just beginning to explore this data as outlined in the next section 
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4 RESULTS 

This section presents our results in three parts. First, we conduct an analysis of manual 
count accuracy, made possible by our use of both human counters and video.  Second, we 
present our methodology for processing the raw sensor data and generating classification 
algorithms.  Third we present results for classification. 

4.1 Results of Manual Counts 

To validate our sensor-based results we collected vehicle records in two additional ways: 
manual counts by graduate students, and video cameras.  Although intended to provide 
“ground truth”, both manual and video counts had errors that we describe below.  Thus, 
in addition to providing an alternate count to compare sensor-based counts against, it also 
unexpectedly provided an alternate estimate of error rates to help put sensor-based errors 
into context. 

4.1.1 Expected Manual and Video Deployment Issues 

We did not expect any errors in our manual counts.  However, in practice we found that 
errors crept in for several reasons.  (1) At times, vehicles came too quickly to write down 
type, plate, and other information before the next vehicle arrived.  In some cases this 
resulted in missing subsequent records, or incomplete prior records.  (2) In some cases it 
was impossible to see the vehicle plate.  (3) Different manual counters sometimes used 
different indications of different vehicle types, particularly with unusual types, or with 
truck/SUV/station wagons.  (4) The manual counters were distracted when counters or 
video tapes were changed.  

Video collection losses were more predictable.  As described above, we were unable to 
deploy a video camera at Site C, and video deployments at sites A and B happened about 
30 minutes after we began collecting sensor data.    In addition, video resolution was not 
sufficient to note vehicle license plates, so we were unable to validate that data from 
manual counts.  Note that interpretation of the video data required careful analysis (and 
re-analysis) by a graduate student after the fact.  While essential for careful evaluation of 
our results, this cost is probably not warranted for typical counting experiments. 

4.1.2 Preliminary Analysis of Manual and Video-based Classification 

Nevertheless, both the manual counts and video data provide an important baseline to 
compare the sensor data.  Below we summarize our analysis of the Site B Northbound 
dataset. 

We prepared the B Northbound dataset in a manner similar to what we did for the sensor 
based analysis.  We discarded data for before 9:15 am to ensure that we had video data 
that matches the manual counts.  We discarded data after 10:50 am to match our analysis 
of the sensor data.  We chose not to discard entries between 10:40 am and 11:05 am.  
This segment was discarded for the sensor analysis because we had not yet completed our 
video analysis at the time and hence lacked ground truth for this period; that analysis is 
now completed.  We discarded 35 records of  motorcycles, electric carts, and bicycles, 
again to match our sensor analysis.  These changes left us with 263 manual observations.  
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This count is slightly higher than the 192 sensor records we used because of the addition 
of the 10:40 am to 11:05 am segment (26 records), as well as some records that appear 
only in manual or video data (28 undercounts, 2 overcounts). 

Accuracy of Manual Classification: We are examining two types of manual accuracy:  
vehicle classification and vehicle re-identification.  Since manual counts are considered 
appropriate for use today, accuracy of manual counts will provide an acceptable accuracy 
target for our automated classification system.   

Table 2 summarizes our comparison of manual classification.  First, Table 2 shows that 
for the vehicles that are counted, accuracy is quite good: only 8% of vehicles that have a 
recorded classification type are mis-classified.  That figure is a bit of an over-estimate as 
well, since it includes 10 errors where trucks (type T) had miscounted axles (6 cases) or 
where video revealed a different type of SUV-like vehicle (4 cases).  Second, the data 
shows the main problem with manual counting: inability to keep up when many vehicles 
are present.  This shows up as a large number of undercounts (28 cases, 11% of the 
records).  This was particularly a problem in the period around 10:40 am. Finally, we 
observe that there are two overcounts, vehicles recorded as present that were not there. 
We discuss how these results compare to computer sensors in a later section. 

 

Table 2: Accuracy of Manual Classification Compared to Post-facto Video 
Analysis 

    Incorrectly Classified 

 Total 
Con-
sidered 

Correctly 
Classified 

Unable to 
Classify 

Total 
Incorrect 

Under-
counts 

Over-
counts 

Incor-
rect as T 

Incorrect 
as S* 

Incor-
rect as 
P 

Total 263 
(100%) 

211 (80%) 0 52 (19%) 28 
(11%) 

2 (1%) 22 (8%) 

T 62 55 0 13 7 0 6 0 0 

S* 51  44 0 17 7 0 1 4 5 

P 126 112 0 22 14 2 1 5 -- 

S* = SUV, van, minivan, pickup truck 

Accuracy of Manual Re-identification:  Second, we wanted to judge the accuracy of 
manual recording of vehicle license plates.  In a manual system of re-identification, 
license plate numbers or vehicle identification numbers are ideal ways to identify the 
same vehicle at different locations.  Thus, this measure will provide an estimate on the 
target accuracy for a future automated re-identification system. 

Unfortunately we cannot directly measure the accuracy of manually recorded license 
plates because our video resolution is insufficient to check our manual entries.  Instead 
we must approximate correctness with completeness, a weaker metric since seemingly 
complete licenses may actually be incorrect for the given vehicle.  Thus we count any 
“well-formed” California license number (in the format NAAANNN for non-commercial 
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vehicles and NANNNNN for commercial vehicles, where N represents a digit and A a 
letter) as “complete” and any other license values as “incomplete”.  (We also accept 
custom license plates and some older patterns as complete as well.) 

Table 3 summarizes our ability to record license plates.  The majority of plates were 
completely recorded (199 records, 75%).  There were several kinds of errors: a large 
number (44 records or 17%) were incompletely recorded, and hence could not be used for 
re-identification.  About 5% were not counted.  As with vehicle type, when traffic is busy 
it can be difficult for a human counter to keep up.  There were two overcounts (vehicles 
that did not appear in the video).  Finally, 5 vehicles lacked plates of any kind.  Typically 
these were backhoes.  

Note that we cannot judge correctness because we could not compare these plates to 
ground truth.  Thus these estimates represent an upper bound on the accuracy of manual 
recording of license plates to re-identify vehicles.  We should expect a typical human-
based re-identification system based on license plates to have a 25% error rate.  A 
challenge for future work will be to see if a computerized, sensor-based system can do 
better than this level. 

 

Table 3: Number of License Plates Completely Recorded by Manual Counting 

 Total 
Considered 

Complete 
Plates 

Incomplete 
Plates 

Under-
counts 

Over-
counts 

No Plates 
on Vehicle 

Total 263 (100%) 199 (75%) 44 (17%) 14 (5%) 2 (1%) 5 (2%) 

  

4.2 Algorithms and Data Processing 

Our vehicle classification system has a typical architecture, consisting of preprocessing, 
segmentation, normalization, feature extraction, and matching, as shown in Figure 13.   

 

Wheels

Underbody

Preprocessing
Noise filtering and 
various corrections

Segmentation
Segment continuous 
record of sensor 
readings into 
individual vehicles;

Feature Extraction
Turn raw data into 
feature vectors

Classification
Apply various 
mathematical 
methods to derive 
result

filename umber_axleavg_speedwheelbase track
Bn2_0064983.d 3 15.49 428.59
Bn2_0065886.d 2 22.79 115.64 54.18
Bn2_0065939.d 2 20.41 114.93 52.63
Bn2_0066526.d 2 12.3 129.54 59.48
Bn2_0066970.d 1 -16.33 0 -318.4
Bn2_0067527.d 2 19.39 111.46 50.78
Bn2_0067585.d 2 18.37 116.37 54.77
Bn2_0067615.d 2 15.65 108.31 47.28
Bn2_0067653.d 2 13.6 113.33 49.34
Bn2_0067710.d 2 14.28 147.5 60.44
Bn2_0067877.d 2 27.21 197.94
Bn2_0068309.d 2 17.35 101.25 46.83
Bn2_0068509.d 2 13.6 137.28 53.72
Bn2_0068845.d 2 14.28 101.82 46.63
Bn2_0069129.d 2 18.37 128.76
Bn2_0069605.d 4 - - -
Bn2_0069750.d 2 16.67 148.61 55.07
Bn2_0069785.d 2 14.28 109.36 45.47

filename class
Bn2_00649T
Bn2_00658P
Bn2_00659P
Bn2_00665P
Bn2_00669P
Bn2_00675P
Bn2_00675P
Bn2_00676P
Bn2_00676P
Bn2_00677M
Bn2_00678T
Bn2_00683P
Bn2_00685M
Bn2_00688P
Bn2_0069 P
Bn2_00696T
Bn2_00697M
Bn2_00697P  

Figure 13  Structure of vehicle classification system 
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4.2.1 Noise removal 

Preprocessing in our system must eliminate crosstalk and environmental noise from 
multiple sensors.  In some cases we found the strength of crosstalk was much larger than 
the actual signal from the vehicle (for example, the sinusoid in Figure 14 is crosstalk 
while the spikes are vehicle detections); changes in temperature provide a known, low-
rate drift in sensor readings (in Figure 14, a gradual downwards drift can be seen).  In 
addition, the sensor sampled the channel at 1kHz; we observed about 14% of these 
samples were lost between the sensor and the PC due to interactions between the sensor 
card and the PC collecting data.  According to IST, this level of loss is not atypical. As 
recommended we correct for it by interpolating the missing data. 

 

 

 
Figure 14: Section of raw sensor data 
illustrating both crosstalk and environmental 
drift noise. 

 

 

4.2.2 Segmentation Algorithm 

When noise is eliminated, we are left with a continuous record of data readings. We must 
segment this data into individual vehicles to allow easy processing. We use a three-step 
approach to achieve stable segmentation. 

Extract active segments: This is a threshold-based approach for extracting active areas. A 
sliding window (based on experimental evaluation we selected a window size of 400ms 
or about 120 samples, we tried window sizes from about 100 to 800ms and found the 
results generally insensitive to variation) passes through the input stream and the standard 
derivation of samples within the window is calculated. This corresponds to the energy of 
the signal within the window without the DC component. 

The window advances one sample per iteration, and the output (standard derivation) is 
compared against a threshold.  For simplicity we chose a fixed threshold base on our 
experimental data. In the long run we need to select the threshold as a function of the 
signal returned by the sensor, one candidate selection would be twice the baseline noise. 
Segments where the output is greater than the threshold are recorded as active segments, 
otherwise they are recorded as inter-vehicle gaps. 
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The threshold is set such that all wheel signals will be recorded as active segments and 
body signals may be recorded as active segments or gaps.  With narrow blade sensors this 
criteria is easy to meet because wheels consistently show large deviation from the 
baseline signal.  In follow-on work we plan to explore the relationship between sensor 
width and readings from different vehicle parts. 

Combine active segments: In this step each gap segment is examined and a decision about 
whether the gap is part of a vehicle signal is made. By definition, the output of step 1 is 
an alternating series of active and gap segments. If a gap is shorter than a threshold, it is 
considered as part of the current vehicle signature. In our current work we set this 
threshold at 1.2s on the assumption that vehicles are typically more than this distance 
apart.  This value seems appropriate for the low-speed vehicles in our experiment.  This 
gap avoids accidentally splitting one actual vehicle into two vehicle partial signatures.  
This portion of the algorithm is particularly important with long vehicles (such as 18-
wheel trucks) with relatively featureless signatures.  

Thus we can combine several active segments and gap segments and produce a complete 
vehicle signature. The output of this step is a list of vehicle signature segments. 

Grow the size of signature segments: For results from last step, the signature segments 
may not be complete enough to include the full heads and tails of vehicle signatures. In 
this step is each segment is enlarged by a constant factor.  By default we grow the 
signature by half its length both at the front and the back, resulting in a signature of 
double overall length.  Our goal here is to ensure we capture the vehicle beginning and 
end. One special case is where two signatures are very close. If we enlarge both segments 
they will overlap. For this case we only enlarge two segments up two the midpoint 
between them. 

4.2.3  Feature Extraction 

Feature extraction is an important part of the vehicle classification system. Selecting 
features that are least affected by noise maximizes the effectiveness of matching by 
highlighting true differences between vehicles rather than sensor noise. At the current 
stage we use wheelbase and number of axles as basic features. In future systems we are 
going to add combinations of wheel timing and amplitude, and the general pattern of 
underbody detection. The physical meanings of the features are: 

Wheelbase: Trucks should have longer wheelbase than cars. This is a straightforward 
choice for vehicle classification.  

Number of Axles: Trucks can have more than two axles while almost all cars have two 
axles. Thus, signatures with more than two axles strongly suggest trucks. 

In a vehicle signature from a Blade sensor, wheels can be identified as significant peaks 
in vehicle waveform. The wheelbase can be derived from wheel timing and vehicle speed.  
Vehicle speed can be derived from time differences between two sensors of a known 
distance. Figure 15 gives an example of a vehicle signature. 
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 Wheels

Underbody

Figure 15  Vehicle Signature Example 

 

As blade sensors are deployed at an angle to the roadway, wheel(s) on each side of an 
axle will be detected separately. Ideally, we can derive the number of axles by dividing 
number of wheel detections by two. However, sometimes peaks for corresponding wheels 
on different sides of an axle can merge, resulting in only one wheel detection, and we can 
have either one or two peaks from a single axle. Thus we want a more robust algorithm 
for better accuracy. We observe that with a blade sensor, the wheels show up as large 
negative values, and the chassis results in values above zero, while gaps between two 
wheels on the same axle remain below zero. Thus we can use this characteristic to 
distinguish different axles: 

Detect all wheel related peaks in waveform 
If number of peaks != 0  (i.e., if it’s a signature that shows wheels) 
Axle count = 1 
For each wheel peak from 1 

Scan samples between the peak and previous peak: 
count values that are indicate presence of chassis (i.e., are > 0) 

if 20% of the values indicate chassis 
then conclude it’s a separate axle, and increment axle count 

Return axle count 

We found this algorithm to be effective in our initial results, but it must be reviewed to 
understand its accuracy with different configurations and widths of the Blade sensor. 

4.2.4 Classification Algorithm 

A classification algorithm makes the final decision on vehicle type based on feature 
vectors. At the current stage of our research we use a simple classifier based on a 
decision tree. It is defined as: 

If number of axles > 2          => commercial truck 
Else if wheelbase > 180 inches  => commercial truck 
Else wheelbase > 130 inches     => SUV-like vehicles 
Else                            => passenger car 
 
Where 
commercial truck = panel trucks, buses, tractor-trailers  
SUV-like vehicles = pick-ups, SUVs, vans, minivans  
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We selected these values (2 axles, 180 inches and 130 inches) based on the vehicles we 
observed in the field test.  A more refined algorithm would base these thresholds on 
statistics of expected vehicle types.  Another challenge is that some classes of vehicles 
overlap (some sedans are the same length as small SUVs), so a comprehensive 
classification algorithm to pre-determined classes must consider additional factors.  
Another potential area for future research is to consider what classes of vehicles are most 
relevant for traffic planners and how these map to vehicle sizes.  For example, if traffic 
planners are primarily concerned about road maintenance costs, then vehicle size or 
weight may be more relevant than traditional classifications. 

4.3 Classification Results 

As described above, during our experiments we collected vehicle signature data at three 
different sites inside the USC campus, which resulted in over 1500 vehicle detections. 
This large amount of information allowed us to capture data from a heterogeneous set of 
vehicles, including passenger cars, vans, sport-utility vehicles (SUVs), pick-up trucks, 
and commercial trucks. It is important to mention that we faced several challenges when 
analyzing our data. First, due to the low-speeds involved in our experiments, we noticed a 
very high variance in vehicle speed (including vehicles stopping over our sensors). 
Second, we observed a significant number of vehicles straddling multiple lanes, thus 
partially triggering our sensors. Third, as is the case with data collected from real 
deployments, we had to deal with noise and other factors.  Based on additional 
experiments taken following our August data collection, we now believe the sensors in 
our August deployment showed particularly bad kinds of inter-sensor interference. 

4.3.1 Classification Test Data 
While we used the algorithms described above to remove noise, segment individual 
signatures, and extract features from data collected from all three sites, for our 
classification algorithms we focused on the data collected at site B. This site enabled us 
to use our classification algorithms on a dataset comprised of only 48.6% of passenger 
cars (the remaining being trucks, SUVs, pick-ups, etc). 

We focus on the subset of data from Site B/Northbound traffic from 9:15 am to 11:50 am.  
We discarded data before 9:15 am because we had not yet set up video cameras and so 
we lack verified ground-truth results.  We discarded data after 11:50 am because at that 
point we began experiments where we intentionally stopped cars over the sensors to 
simulate “worst case” conditions and we have not yet extended our algorithms to deal 
with that case.  In addition, we temporarily deleted readings between 10:40 am and 11:05 
am.  Our manual records missed a dozen vehicles at this time and for our preliminary 
analysis we wanted to be able to verify our results against manual counts.  We have since 
reproduced this missing segment from video; re-analysis with this missing segment is an 
area of future work.   Finally, we also manually deleted 32 records of motorcycles, carts, 
and bicycles from the dataset.  It should not be hard to eliminate these automatically, but 
our current focus is on the harder problem of distinguishing cars from trucks, not the 
easier problem of  cars from bicycles.  Again, as future work we plan to automate this 
filtering.  After filtering we were left with 192 records.  Finally, 9 additional records 
exhibited segmentation problems.  Although we do not yet automatically detect these, we 
believe we can do so relatively easily.  We therefore report these values as “not 
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classified”, a category that represents failure to classify, but records that are not 
incorrectly classified. 

4.3.2 Results 
We started by classifying vehicles in two groups: trucks (including 18-wheelers, cement 
mixers, and panel-trucks) and non-trucks (includes everything else other than trucks). 
Results are shown in Table 4, 

With just two classes (trucks, type T, vs non-trucks), our classification rates are 
comparable to current, state-of-the-art published results from Sun et al (2003), and 
Kwigizile et al (2004). These results were particularly encouraging given that our system 
was not tuned to specifically deal with the high variability in vehicle speed that we found. 

. 

Table 4: Classification Results, Trucks vs Non-trucks 
 Total 

Considered 
Correctly 
Classified 

Unable to 
Classify 

Incorrectly 
Classified 

Total 183 (100%) 150 (82%) 19 (10%) 
(9 segmentation 
errors) 

14 (8%) 

T 33 25 4 4 

Non-T 150 125 15 10 

 
In addition to the two classes of vehicles mentioned above, we expanded our initial 
classification algorithm to include a third class, S*, comprised of SUVs, pick-up trucks, 
vans and minivans. Results are shown in Table 5.  Our results were not as good as with 
only two vehicle classes. Our algorithms depend primarily on vehicle length, but the 
vehicles in class S* and P overlap in length.  No classification algorithm based only on 
length will be able to separate these classes accurately.  This can be seen in the data in 
Table 5 where many “medium-size” vehicles are incorrectly classified as passenger cars 
(29 out of 61).  By comparison, classification of trucks is quite good, with very few 
trucks being misclassified as S* or P, and very few S* or P types being classified as T. 

This preliminary result suggests, first, that our approach is very appropriate if the goal is 
to classify trucks from non-trucks.  For studies about road damage, this level of 
classification may be sufficient.  It also suggests that very fine-grain classification of 
passenger cars, vans, pickups, SUVs will be quite difficult, given the blending of these 
vehicle types.  One promising approach we may consider in the future is comparison of 
vehicle signatures against pre-determined vehicle signatures.  Such an approach would 
exploit re-identification algorithms that we’re interested in exploring in future research.  
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Table 5: Three-way Classification Results 
    Incorrectly Classified 

 Total 
Considered 

Correctly 
Classified 

Unable to 
Classify 

Total 
Incorrect 

Incorrect 
as T 

Incorrect 
as S* 

Incorrect 
as P 

Total 183 (100%) 114 (62%) 19 (10%) 
(9 segmentation 
errors) 

50 (27%)    

T 33 25 4 4 -- 2 2 

S* 61 21 8 32 6 -- 26 

P 89 68 7 14 4 10 -- 

S* = SUV, van, minivan, pickup truck 
 

4.3.3 Comparison with Manual Counts 
 
It is useful to compare the accuracy of our sensor network-based classification system to 
manual (human) classification described in Section 4.1.  The first thing to compare is 
counting accuracy.  Manual classification was 80% accurate.  By comparison, our 
classification system had accuracy rates of 86% for two-way classification and 57% for 
three-way classification.  From this we conclude that our sensor system can actually be 
better than humans for two-way counts, largely because our system can handle vehicles 
as rapidly as they occur, while humans can become overloaded and make errors when too 
many vehicles appear quickly. 
 
We also must state that for three-way classification, humans remain more accurate when 
compared to our current system.  This result is because, even though manual counts miss 
many vehicles, humans are much better at distinguishing "SUV-like" vehicles (type S*) 
than our system which uses simple length-based measures.  It also suggests several areas 
for future work:  certainly improving our sensor-based approach, possibly using multiple 
sensors to validate readings in different ways (for example, to handle cases where a 
vehicle was only half-way in the lane with the sensor). 
 
Finally, we make one comment about the kinds of errors that manual counting and our 
automated system make.  Our systems errors are typically misclassification, representing 
a passenger car as an SUV. Manual errors are typically omission---missing a vehicle.  
This suggests that we can get tighter error bounds and much better vehicle counts with 
automated systems. 
 
In addition to our quantified results, we have two qualitative observations.  First, 
classification can be successful, even with low-speed vehicles.  To our knowledge we are 
the first group to consider low-speed vehicle classification. Second, preliminary 
evaluation of vehicle signatures for re-identification suggests that reidentification is 
possible, but it will require care in sensor calibration. 

Our analysis of the dataset is ongoing; we have several directions for additional analysis 
and algorithm development as outlined in the next section. 
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5 PLANS AND FUTURE WORK 

This report summarizes what we have done in the SURE-SE project.  We have several 
directions outlined for work next year as part of the SURE-FT proposal: 

Designing highly robust algorithms.  As part of SURE-SE we are currently evaluating a 
set of classification algorithms.  In SURE-FT we plan to investigate the stability of these 
algorithms across a broader range of vehicles, sensors, and environments.  Classification 
algorithms such as ours have many parameters; an important research direction will be to 
automate selection of these parameters so that a NOTS can be deployed with as little 
effort and training as possible. 

Complete prototype implementation.  As part of SURE-SE we have evaluated specific 
sensors, computers, and algorithms, each by themselves.  In SURE-FT we plan a 
complete integration of these components to provide a field deployable system. 

Validate the algorithms through greater testing.  Our current algorithms are based on a 
specific set of measurement data taken at USC.  A major focus of SURE-FT will be 
validation of the algorithms, configuration, and integrated system through additional 
controlled experiments and a port-area field test. 

Generalize the techniques.  To demonstrate a complete and working system, most of our 
work so far has been focused on building and evaluating a specific system for vehicle 
classification and observation of vehicle queueing.    We plan to focus initially on vehicle 
classification and move to re-identification as the techniques become more mature. 

We anticipate that the techniques that we have developed will also be applicable to 
related problems, such as measuring transaction times at facilities or monitoring truck 
traffic on arterials.   
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