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Disclaimer 

The contents of this report reflect the views of the authors, who are responsible for the 

facts and the accuracy of the information presented herein. This document is 

disseminated under the sponsorship of the Department of Transportation, University 

Transportation Centers Program, and California Department of Transportation in the 

interest of information exchange. The U.S. Government and California Department of 

Transportation assume no liability for the contents or use thereof.  The contents do not 

necessarily reflect the official views or policies of the State of California or the 

Department of Transportation. This report does not constitute a standard, specification, or 

regulation.  
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Abstract 

The Los Angeles/Long Beach (LA/LB) port complex is the intermodal gateway to Pacific 

Rim trade and the busiest container port complex in the United States. Comprising of 

fourteen individually gated terminals, during 1999 alone, the combined ports handled 8.2 

million 20-foot equivalent units (TEUs) containers. This figure implies that almost 4.43 

million full containers were handled during 1999 in the LA/LB port complex (at the rate 

of 1.85 TEU/container).  

Usually the arriving loaded containers at ports are picked up and transported by trucks to 

their destinations. Having been unloaded at the importers, the emptied containers are 

returned to the port. At the same time, empties are picked up by trucks from the ports and 

brought to the export firms, where they are loaded with export goods. The loaded 

containers are then, transported to the port to be loaded on the ship for export.  In this 

procedure the empty containers are handled twice at marine terminals i.e. the first time 

when they are recycled from importers, and the second time when they are trucked to 

exporters. It is clear that a system, which facilitates the interchange of empties outside the 

ports, is not only desirable but also necessary. This system will reduce the truck trips to 

and from container terminals, and as a consequence, will reduce the traffic congestion 

around the ports. In addition to saving time for both truckers and port operators, the 

system will significantly reduce noise and emissions around container terminals.  

In this report, the empty container interchange problem is investigated in both 

deterministic and stochastic transportation environments. In stochastic networks the 

problem is modeled analytically and optimization techniques are developed. In 

deterministic environments, the empty container substitution problem, in which the 

request of one type of containers could be fulfilled with another type, is investigated. The 

simulation experiments are used to demonstrate the efficiency of the developed 

optimization techniques and approach. 
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1 Introduction  

The Los Angeles and Long Beach (LA/LB) port complex, located in San Pedro Bay, is the 

largest U.S. ocean freight hub and the busiest container port complex. It consists of fourteen 

individually gated terminals, and serves as a crucial node in the regional supply chain [2]. Over 

the period of 1990 to 2000, the growth in container traffic in the LA/LB port was significant. 

With an average annual growth of 9.2%, this figure surpasses the forecasted annual growth of 

6.2%, which had been the basis of the 2020 Seaport Plan and much of the regional economic and 

infrastructure planning [1, 2]. Assuming a modest 6.2% annual growth, the estimated container 

traffic in 2020 will be around 28 million TEUs or almost 15.1 million containers. Thus, by 2020 

the volume of containers moving through the combined LA/LB ports will be at least three times 

the current volume [2].  

As a consequence of this unanticipated growth, port generated traffic has emerged as a major 

contributor to regional congestion. Traffic congestion and long queues at the gates of the LA/LB 

terminals are the main source of air pollution (especially diesel toxins), wasted energy, driver 

inefficiency, and increasing maintenance cost imposed by the volume of trucks on the roadway 

[3]. Moreover, a study by the California Highway Patrol in southern California freeways reveals 

that the main artery to the LA/LB terminals, the I-710 freeway, topped the list of freeway 

collisions on two measures, the highest proportion of truck-involved collisions, 31%, and truck-

caused collisions at 16% [4]. 

There are numerous ways to improve traffic congestion at ports, and therefore reduce transport 

times associated with container movements. Options include developing new facilities and 

expanding current ones, deploying advanced technologies, and improving operational 

characteristics at ports. The scarcity of land at major ports, however, has made the option of 

developing new facilities, if not infeasible, significantly costly. Feasible options are therefore 

those that rely on more intelligent decision making to make current operations more efficient.  

The purpose of this research is to investigate a more intelligent way of handling empty 

containers which will lead to more efficient operations of container transport. In particular we 

1 



  

investigate the possibility of interchanging empty containers outside the container terminals in an 

effort to reduce traffic congestion in and around the container terminals. 

At marine terminals, containers are typically handled twice. Once as loaded containers, and the 

second time recycled as empties. Thus, the empty container movements can be divided into two 

major categories: import and export movements. The import container movements, demonstrated 

in Figure 1, can be briefly described as follows: a truck is dispatched to pick-up a loaded import 

container from the terminal (move 1); the truck then delivers the loaded container to its 

designated local consignee (move 2); the truck may return without any container if the empty 

container is not available immediately for pick up (move 3); another truck may be dispatched to 

pick up the empty container (move 4); the truck returns the emptied container to the terminal 

(move 5), and goes back to its trucking company (move 6). Note that, moves 3 and 4 in Figure 1 

can be eliminated if the truck delivering the loaded container in move 2 returns an emptied 

container to the terminal.  

Container Terminal
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2

3 4

5

6

Container Terminal

Local Consignee
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6

Container Terminal

Local Shipper
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Figure 1: Import container movement. Figure 2: Export container movement. 

Likewise, export container movements, shown in Figure 2, are as follows: a truck is dispatched 

to pick up an empty container (move 1) from the terminal; the empty container is trucked to 

designated local shipper for loading (move 2); the truck may return without the loaded container 

if it is not available immediately (move 3); another truck may be dispatched to pick up the 

loaded container (move 4); the loaded container is returned to the terminal (move 5), and finally 

the truck goes back to its trucking company (move 6). Similar to import container movements, 
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moves 3 and 4 in Figure 2 can be eliminated if the truck delivering the empty container in move 

2 returns the loaded container to the terminal. 

It is predicted that by 2020 the number of empties trucked back from local consignees to the 

LA/LB container terminals would be more than 4,585,000 containers (i.e., 63% of all empties 

trucked to the terminals). At the same time local shippers will be in need for 1,900,000 empty 

containers (i.e., 72% of all empties moved by trucks out of the terminals) for loading export 

goods [1]. These numbers indicate that the local businesses (local consignees and shippers) will 

be the largest contributors to empty flows in the region, and consequently, to the congestion at 

and around the LA/LB container terminals.  

It is clear that a system, which facilitates the interchange of empties outside the ports, is not only 

desirable but also necessary. Such a system will be a dual use system for both military and 

civilian users. The idea of empty container “reuse” consists of using empty import containers for 

export loads without first returning them to the marine terminal. Generally speaking, two major 

methodologies can be considered for reusing empty containers (a) depot-direct, and (b) street-

turn [1, 5]. 

In the depot-direct case, in addition to the marine terminals, empty containers are stored, 

maintained, and interchanged at off-dock container depots. In this methodology, the off-dock 

empty depots let drivers drop-off or pick-up empty containers without waiting in marine terminal 

queues. Such depots are usually located very close to the ports. The concept of off-dock empty 

depot may be more attractive and promising in the long term rather than in the short term. In the 

short term the concept may be costly to all parties involved. In the long-term, however, 

congested marine terminals and the high capital cost of expanding on-dock container would 

justify the higher operating cost of empty depots [1]. In places such as Hong Kong, the shortage 

of space has already forced operators to shift as many operations as possible off-dock. Most 

likely similar practices will emerge in other countries, once the major economic and institutional 

barriers are addressed. 

In the street-turn case, the empty container is directly moved from local consignees to local 

shippers. This movement is represented in Figure 3, where two empty container moves (from the 

consignee to the terminal and from the terminal to the shipper have been eliminated and have 

been replaced by a single local move from consignee to shipper, i.e. move 3 in Figure 3). 
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Figure 3: Street-turn empty container reuse. 

Despite the importance of the empty container reuse problem, the research efforts in this area 

have been scant. As noted by Dejax and Crinic, even the work on developing models related to 

the container transportation problems is very limited [6]. Crainic et al. [7] proposed dynamic and 

stochastic models for empty container allocation in a land distribution and transportation system. 

Cheung and Chen [8] formulated the dynamic container allocation problem as a two-stage 

stochastic network model. The model assists liner operators to allocate their empty containers 

and consequently reducing their leasing cost and the inventory level at ports. In another related 

work, Choong et al. [9] addressed the effect of the length of the planning horizon on empty 

container management. They used the intermodal container-on-barge operation in Mississippi 

river as the case study to investigate the advantages of using a long rolling horizon.  

The empty container allocation problem was also considered and studied by Jula et al [5], [19]. 

In [5], the authors proposed a model and an optimization technique for the dynamic allocation of 

empty containers in the LA/LB port and its vicinity, and showed that the empty container reuse 

can yield a significant reduction in the number and cost of truck trips.  

In this research, and in an effort to further reduce the cost of empty container interchange, we 

investigate the possibility of fulfilling the request of one type of containers with another type. 
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This problem is sometimes referred to as the multi-commodity empty substitution problem. In 

addition, in this work the empty container reuse problem in stochastic environments is 

investigated. The objectives of this research are three-fold: 

a) to develop analytical models and optimization techniques that will minimize the cost of 

empty container interchange in stochastic environments, 

b) to develop analytical models and optimization techniques for the multi-commodity empty 

container substitution problem, and 

c) to develop realistic simulation scenarios using past, current and projected data in the Los 

Angeles/Long Beach port area to evaluate the developed optimization methods in parts 

“b” and “c” above. 

This report is organized as follows. In Section 2, the multi-commodity empty interchange 

problem with substitution is investigated. The problem is formulated analytically and an 

optimization technique is developed. In Section 3, the stochastic empty container interchange 

problem is studied. The problem is modeled as a stochastic problem with recourse. Different 

optimization techniques are developed and compared. Sections 4 and 5 consider the 

recommendations for future work and implementation considerations.   
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2 Multi-commodity Empty Interchange: Modeling and Optimization 

In an attempt to further reduce the cost of the empty container allocation problem, this study 

investigates the substitution between empty containers. The substitution allows the possibility of 

fulfilling a request for one type of empty containers with another available type.  

In this section, we propose models and an optimization algorithm for the empty container 

allocation problem with substitution in deterministic networks by following a similar procedure 

as in our earlier work [5], [19]. The developed optimization algorithm divides the problem into 

dependent and independent parts and applies a branch-and-bound type procedure to the 

dependent part.  

2.1 Container Types and Substitution Rules 

This subsection describes the substitution mechanism in the multi-commodity transportation 

problem. We first define the types of containers followed by the substitution rules between 

different container types. Throughout this section, we may use the terms “commodity” and 

“container” interchangeably. 

2.1.1 Container types 

Containers can be classified into separable types (classes) according to their intended use, 

external dimension, ownership, etc. For instance, if the types of containers can be determined by 

only three attributes: purpose, dimensions, and ownership, a type t  container can be expressed as 

type { }purpose, dimension, ownership t = . 

The purpose indicates the intended use of containers such as general (dry cargo) or specific 

purpose (refrigerated, specialized, etc.) containers. Most containers are sized according to the 

International Standards Organization (ISO). Based on ISO, containers are described in terms of 

TEU (Twenty-foot Equivalent Units) in order to facilitate comparison of one container system 

with another. A TEU is 8 feet wide, 8 feet high and 20 feet long container. An FEU is an 8-foot 

high,  40-foot long container and is equivalent to two TEUs. Containers with height of 9.5 feet 
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are usually referred to as high cube containers. The most widely used containers are general 

purpose FEU containers. In this report, we will only consider standard dry cargo containers with 

the following standard dimensions: 

 : ,     : 1D 40' 8' 8.5'× × 2D 20' 8' 8.5'× × ,      : 3D 40' 8' 9.5'× ×  (1) 

2.2 Substitution Rules 

The substitution rules are the rules specified for substituting each ordered pair of container types. 

These rules may be symmetric or non-symmetric. For instance, suppose that there are three types 

of containers, 

 { }1 1 General, D , Hanjin t = , { }2 2 General, D , Hyundai t = , and { }3 3General, D , Maersk t =  (2) 

where , , and  are standard dimensions defined in Subsection 1D 2D 3D 2.1.1. The possible non-

symmetric container substitutions between , , and  could be as follows. 1t 2t 3t

• Non-symmetric in type for (t1,t3): One request for  could be fulfilled by one supply of 

, but the reverse substitution is not permitted. This case may happen when certain 

customers do not accept the high cube containers  due to their facility limitation. 

3t

1t

3t

• Non-symmetric in number for (t2,t1): One request for  can be fulfilled by two supplies 

of . However, sometimes, two requests for  can only be satisfied by two supplies of 

. This case happens when export cargos in a shipper location have two different 

destinations or when it is desirable to have two small containers because of the weight 

limitation. 

1t

2t 2t

1t

Generally speaking, the substitution rules come from differences in the handling capacity of the 

loading/unloading facilities, the destination of cargos, the weight of cargos, or the nature of 

cargos. Other factors may include operational regulations or limitations set forth by freight liners 

or trucking companies. 
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Let T  be the set of container types and  be the number of requested empties of type tt
kv T∈  at 

shipper . We assume that the request consists of two parts: (a) exact, and (b) substitutable 

requests. The exact request for container type t  at shipper , denoted by , must be fulfilled 

by the exact type t , whereas the substitutable request, denoted by , can be satisfied by any 

type. Hence, we have 

k

k ,
t
k ev

,
t
k sv

, ,
t t t
k k e kv v v= + s

s

. 

We define the extra request at shipper k  with respect to an FEU as  

,
t t

k k
t T

e a v
∈

=∑  

where 1/  indicates the number of containers of type t  needed to substitute one FEU container. 

For instance, if the extra request is for one container of type , where  is defined in 

ta

1t 1t (2), the 

request can be either substituted by two  containers (i.e.,  )or by one  or  (i.e., 

).  

2t 0.5ta = 1t 3t

1ta =

Expanding on the above concept, let  be the substitution rule coefficient between container 

type  and 

i jt t
kr

it jt  at demand node k . Then, 1/  indicates the number of containers of type  

needed to satisfy one extra request originated from the requests for 

i jt t
kr it

jt  at . For instance, k Table 1 

represents the possible substitution rules between two container types  and  defined in 1t 2t (2) at 

demand node .  k

Table 1: Possible substitution rules between type  and  1t 2t

substitution flows 1 1t t
kr  2 1t t

kr  1 2t t
kr  2 2t t

kr  substitution rule 

1t → 2t  &  2t → 1t 1 0.5 0.5 0.5 symmetric in type 

1t → 2t  & 2t →/ 1t  1 0 1 0.5 non-symmetric in type 

1t →2  & 2  2t 2t → 1t 1 0.5 1 0.5 symmetric in number 
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1t →2  &  2t 2t → 1t 1 1 1 0.5 non-symmetric in number 

 

2.3 Empty Container Allocation Problem 

This subsection describes the empty container allocation problem as a typical transportation 
problem. First the analytical model of the empty container allocation problem without 
substitution is briefly reviewed. Then, a model and an approximation method are proposed for 
two-commodity substitution problem. Finally, we develop a model and a decomposition method 
for substituting multiple types of containers. 

2.3.1 Single commodity problem (Problem P1) 

When there is no substitution allowed, the multi-commodity allocation problem can be 
decomposed into a series of single commodity transportation problems for each empty container 
type. The single commodity transportation problem is presented below, which, hereafter, is 
referred to as problem P1. 

Problem P1: 

 Minimize:   (3) 
1 1

m p n p
t t
ij ij

t T i j
c x

+ +

∈ = =
∑∑∑

 Subject to  
1

,   
n p

t t
ij i

j

,x u i I
+

=

P t T= ∀ ∈ ∈∑ U  (4) 

 
1

,   
m p

t t
ij j

i

,x v j
+

=

J t T= ∀ ∈ ∈∑  (5) 

 0,  integer,  ,  ,  t
ijx i I P j J t T≥ ∀ ∈ U ∈ ∈  (6) 

where 

I : the set of consignees, | |I m= . 
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J : the set of shippers, | | .  J n=

P : the set of depots including terminals, | |P p= . 

T : the set of container types, | | . T q=

t
ijc : the cost of transporting a type t T∈  container from supply node i I P∈ U  to demand node 

. j J P∈ U

 t
ijx : the decision variable that represents the number of type t T∈  containers transported from 

supply node i I  to demand node P∈ U j J P∈ U . 

t
iu : the number of available empties of type t T∈  in supply node i I P∈ U . 

t
jv : the number of requested empties for type t T∈  in demand node j J∈ . 

 

In problem P1, constraints (4) ensure that the total number of empties moved from each 
consignee is equal to the number of supply of empties at that location. Constraints (5) guarantee 
that the number of empties arrived at each shipper is the same as the demand of empties at that 
location. Finally, constraints (6) are the integer constraints. 

In this report, the total number of available containers of type t  in supply nodes I PU  is 

assumed to be greater than or equal to the total number of requested empties of type  in demand 

nodes . In other words, we assume that all the demands can be satisfied by internal supplies, 
rather than exogenous resources. Hence, we have 

t

J

  (7) 
1 1

,          m p nt t
i ji j

u v t+

= =
≥ ∀∑ ∑ T∈

Since it is assumed that depots do not request any empty containers, depots can be viewed as 
both dummy supply and demand nodes. This assumption allows us to manipulate the two 
commodity substitution problem, presented in the next subsection, as a balanced transportation 
problem. 
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2.3.2 Two-commodity substitution problem  (Problem P2) 

When we focus exclusively on the length of containers (i.e., 20′  and ), the substitution 
problem can be considered as a two-commodity transportation problem. The two-commodity 
substitution problem is presented below and is referred to as problem P2 hereafter. 

40′

Problem P2: 

 Minimize:  
1 1

m p n p
tt tt
ij ij

t T t T i j

c x
+ +

′ ′

′∈ ∈ = =
∑∑∑∑  (8) 

 Subject to  
1 1

,  ,  , ,  
n p n p

tt tt t
ij ij i

j j

x x u i I P t t T t
+ +

′

= =

′ ′ t+ = ∀ ∈ ∈∑ ∑ U ≠  (9) 

 
1 1

0,  ,  , ,  
m p n

tt tt
ij k

i k
x s j J t t

+
′ ′

= =

T t t′ ′− = ∀ ∈ ∈∑ ∑ ≠  (10) 

 
1 1

,  ,  
m p n

tt tt t
ij k j

i k

x s v j J t T
+

= =

− = ∀ ∈∑ ∑ ∈  (11) 

 ,tt tt
k k k

t T t T
r s e k J′ ′

′∈ ∈

 = ∀ ∈∑∑  (12) 

 
0,  integer,  ,  ,  ,  
0,  ,  ,  

tt
ij
tt
k

x i j t t
s k

′

′ t t
′≥ ∀

′≥ ∀
 (13) 

where 

T : the set of container types having two distinct lengths, { }1 2,  T t t= . 

J : the subset of shippers that allow substitution, J J⊆  and | |J n= . 

 tt
ijx ′ : the number of type t  containers transported from i IT∈ P∈ U  to , which is to 

satisfy demands for type  containers. 

j J P∈ U

t T′∈

tt
ijc ′ : the cost of transporting a type t T∈  container from i I P∈ U  to , which is to 

satisfy demands for type  containers. 

j J P∈ U

t T′∈
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tt
kr
′ : the substitution coefficient (with respect to a 40′ container) between container types t T∈  

and t  at demand node T′∈ k J∈ . The variable 1 i jt t
kr  represents the number of containers 

(based on a 40′ container) of type  that is used to satisfy a request for type it jt  at demand 

node . k

ke : the sum of extra requests in demand node k J∈ . The extra request is the request which is 

unspecified in type; i.e., either types of  can satisfy it. T

tt
ks ′ : the slack variable that represents the extra supply of type t T∈  containers transported to 

satisfy extra request originated from the request for t T′∈  at k J∈ . 

 

In P2, constraints (9) specify that the total number of empties moved from each consignee is 

equal to the number of supply of empties at that location. The slack variables  in constraints tt
ks ′

(10) represent the number of substituted containers. Constraints (11) and (12) together guarantee 
that the number of empties arrived at each shipper is the same as the demand of empties at that 
location. Constraints (12) specify the demands which are satisfied using substitution containers. 
Finally, constraints (13) are the integer constraints. 

To represent the substitution constraints in P2, we introduce a set of four slack variables for each 
demand node that allows substitution. These variables are corresponding to inter-connecting 
flows between two single commodity transportation networks. After augmenting two sets of 

inter-connecting flow variables ( 12
ijx  and 21

ijx ), the incident matrix is partitioned into four row 

blocks to eliminated inequalities caused by the introduction of the sets of four slack variables.  

Dantzig and Thapa described the integer solution property of transportation problems in [10]. In 
the Simplex method, it follows that all the basic variables have integer values if all row and 
column sums of coefficients in the incident matrix are integers and the elements of the demand 
vector are also integers. However, due to the non-symmetric rules in P2, some row and column 
sums may be non-integers. Hence, an optimal solution to the relaxed problem does not always 
yield an integer solution. That is the Simplex method cannot guarantee the integrality for P2. 

To find an integer solution to P2, we consider a branch-and-bound (BNB) based algorithm. It 
should be mentioned that the BNB algorithm finds the optimal integer solution at the cost of 
requiring a great deal of memory space and computational time. To ameliorate the running time 
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of the BNB algorithm, a forced integer programming (forced IP) method, as an approximation 
algorithm, is proposed. It follows from the fact that fractional coefficients of the substitution rule 
constraints force the slack variables and, subsequently, the other decision variables to be 
fractional. Hence, the forced IP method modifies the slack variables to be integers by re-
allocating the slack variables. It takes advantage of the problem structure where there is a 
relatively few number of fractional coefficients which might cause a slight perturbation over an 
optimal integer solution. 

For the sake of notational simplicity, let us define the optimal slack vector for demand node 

k J∈  as 

1 1 2 1 1 2 2 2
1 2[ ,  ,  ,  ] ,         ,  { ,  }t t t t t t t t

k k k k ks s s s k J T t t′= ∈s =  

which consists of corresponding four slack variables from an optimal non-integer solution. By a 
simple adjustment, the optimal slack vector can be modified to be an integer vector which is 

referred to as the modified slack vector and is denoted by , kw

1 1 2 1 1 2 2 2[ ,  ,  ,  ]t t t t t t t t
k k k k kw w w w ′=w . 

Hence, constraints (10) in P2 can be written as 

 k k k k ke′ ′= =r s r w  (14) 

where  is comprised of the substitution coefficients. 1 1 2 1 1 2 2 2[ ,  ,  ,  ]t t t t t t t t
k k k k kr r r r ′=r

 

Forced IP Procedure for P2 

1. Construct a set of  for all ks k J∈  and initialize it with 1k = . 

2. If k n> , then go to step 7. 

3. If , then  and go to step 2. k k− =⎢ ⎥⎣ ⎦s s 0

k

1k k= +

4. Construct a set of modified slack vectors, { :  }k k k kW e′= =w r w  

5. Find the best modified slack vector ( )min
kk Wi if∗ =w . 

6. Replace  with  and go to step 3. ks k
∗w
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7. Solve the relaxed version of P2 (referred to as P2R) after removing slack variables. 

 

Where in the above procedure, the floor function ⋅⎢ ⎥⎣ ⎦  returns the largest integer equal to or less 

than its argument and ( )kW if  represents the objective function values to problem P2R when  is 

replaced with th entity of .  

ks

-i kW

Since all the slack variables in step 7 are modified into integers, they can be removed from P2 by 
adding their values to the corresponding elements of the demand vector. The maximum number 

of modified slack vectors for each k J∈  is 4
22 C 12× =  where  is the number of different 

combinations of size k  from a set of size n . Each pair of variables in a modified slack vector, 
which has at least one fractional value, is modified by a simple adjustment,  

n
kC

 k k k= + Δw s ,  

where  is determined by modifying the optimal fractional slack vector into an integer vector. 

For example, if 

kΔ

[2,  1.75,  0.5,  3]k ′=s  and [ 1, 1, 0.5, 1]k ′=r , then there could be two candidates 

 and [ 0, -0.75, 1.5, 0]k ′Δ = [ 0, 0.25, -0.5, 0]k ′Δ =  which results in vectors [ 2, 1, 2, 3]k ′=w  

and  and satisfying [ 2, 2, 0, 3]k ′=w 7k k k k ke′ ′= = =r s r w . Since several variables are fractional 

and they inherently have the second or third power of 0.5 in their decimal places, this 
approximation algorithm yields a suboptimal integer solution in a polynomial number of 
iterations. 

2.3.3 Multi-commodity substitution problem  (Problem P3) 

The multi-commodity substitution model is represented in Figure 1. Similar to the inter-
connecting flow variables appeared in problem P2, dummy sets of demand nodes are introduced 
to represent substitution flow variables. These spawned sets of demand nodes complicate the 
problem structure and deteriorate the running time of a solution procedure. However, it provides 
a scalable structure to deal with substitution between multiple commodity types. 
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Figure 4: Multi-commodity substitution model, where 1m = , 2n = , and 1p = . 

The multi-commodity substitution problem is presented below and is referred to as problem P3.  

Problem P3: 

1 1 1 1

 minimize    
m p n p m p n

t t t t
ij ij ik ik

t T i j t T i k

c x c x
+ + +

∈ = = ∈ = =

+∑∑∑ ∑∑∑                                                                    (15) 

1 1

subject to                 ,             ,  
n p n

t t t
ij ik i

j k

x x u i I P t T
+

= =

+ = ∀ ∈∑ ∑ U ∈                                   (16) 

1

                                            ,              ,  
m p

t t
ij j

i

x v j J
+

=

t T= ∀ ∈ ∈∑                                         (17) 

1

                                    ,              
m p

t t
ik ik k

t T i
r x e k J

+

∈ =

= ∀ ∈∑∑                                                  (18) 

                               ,  0,  integer,              ,  ,  ,  t t
ij ikx x ≥ ∀ i j k t                                             (19) 

where 
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T : the set of container types, | | . T q=

J : the subset of shippers that allow substitution, J J⊆  and | |J n= . 

t
ikc : the cost of transporting a type t  container from supply node i I P∈ U  to demand node 

k J∈ . 

t
ikx : the number of type t  containers transported from supply node i I P∈ U  to demand node 

k J∈ . 

ke : the sum of extra requests in demand node k J∈ , which is unspecified by a certain type. 

 

Constraints (16) specify that the supply  can be shipped to satisfy both the exact type of 

requests from real nodes and the extra requests from dummy nodes. Constraints (17) indicate that 
the exact requests should be met. Finally, Constraints (18) indicates that the extra requests should 
be met without violating the substitution rule constraints. In this multi-commodity substitution 

problem, the overall demand on a demand node 

t
iu

k J∈  can be expressed as 

( )1 2;  ;  ; ;  q
k k k k kv v v v e= L . 

Therefore, the substitution coefficient  in problem P3 represents the number of container of 

type  to satisfy one extra request in demand node 

t
ikr

t k J∈ . 

Due to the introduction of the substitution mechanism which is allowed to distribute 
commodities without passing through the depots, the substitution variables augmented by the 
sets of dummy nodes are highly dependent to each other. However, the original decision 

variables ( t
ijx ) are nearly independent to the substitution ones ( t

ikx ). Therefore, after acquiring the 

optimal solution to the relaxed version of problem P3 (P3R), problem P3 can be decomposed 
into two problems. To do so, the decision variables of P3 are divided into three sets. 

1. the set of the original flow variables whose values are integer (non-fractional) 

{ }( , , ) :  integer          ,  ,  t
ijN i j t x i j t∗= = ∀  

2. the set of the original flow variables whose values are non-integer (fractional) 

{ }( , , ) :  non-integer          ,  ,  t
ijF i j t x i j t∗= = ∀  

16 



  

3. the set of the substitution flow variables  

{ }( , , ) :           ,  ,  t
ikS i k t x i k∗= ∀ t  

where t
ijx ∗  and t

ikx ∗  are the corresponding values in an optimal solution to problem P3R. 

Accordingly, problem P3 can be decomposed into two parts. Since only several out of several 
hundreds variables are fractional, it has less possibility to deviate from the optimal integer 
solution as long as it starts with the optimal relaxed solution. Using above defined notations, two 
sub-problems may be written as 

Problem P3F: 

( )
( , , ) ( , , )

( , , ) ( , , )

( , , )

 minimize    

         subject to        ,             ,  

                                                 

t t t t
F ij ij ik ik

i j t F i k t S

t t t
ij ik i F

i j t F i k t S

t
ij

i j t F

z c x c x

x x u i I P t

x

∈ ∈

∈ ∈

∈

= +

T+ = ∈

∑ ∑

∑ ∑

∑

U

( )

∈

( , , )

  ,             ,  

                                                ,                   

                                                        ,  0,  integer,   

t
j F

t t
ik ik k

i k t S

t t
ij ik

v j J t

r x e k J

x x
∈

= ∈

= ∈

≥

∑
    , , , .i j k t∀

T∈  

Problem P3N: 

( )

( )

( , , )

( , , )

( , , )

 minimize    

         subject to         ,             ,  

                                 ,             ,  

t t
N ij ij

i j t N

t t
ij i N

i j t N

t t
ij j N

i j t N

z c x

x u i I P

x v j J t T

∈

∈

∈

=

t T= ∈ ∈

= ∈ ∈

∑

∑

∑

U  

where ( ) ( )t t t
i i iF N

u u u= −  and ( ) ( )t t t
j j jF N

v v v= − . 

 

Decomposed IP Procedure for P3 

1. Calculate an optimal solution to P3R.  

2. Decompose into P3F and P3N and combine the set of non-integer variables. 

a) { } { }:  ( , , ) :  0,  ( , , )t t t t
ij ik ik iky x i j t F x x x i k t S⎢ ⎥= ∈ − ≠⎣ ⎦U ∈  

3. If y φ= , go to step 6. 
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4. Solve P3F by applying the BNB method only on  variables. y

5. Update  and go to step 3. { }P3F: 0,  l l l ly x x x x ∗= − ≠ ∈⎢ ⎥⎣ ⎦ x

6. Combine the solution { } { }P3F: ( , , ) :  t
ij l lx i j t N x x ∗∈ ∈xU , where  is an optimal 

solution to P3F. 

P3F
∗x

 

As explained in the two commodity substitution problem, this decomposition algorithm yields a 
suboptimal integer solution in a polynomial number of iterations since several variables are 
fractional and they inherently have the second or third power of 0.5 in their decimal places. 

2.3.4 Time complexity 

For all solution methods presented here, the Simplex algorithm is repeatedly applied to solve the 
relaxed linear programming (LP) problem. This algorithm is defined by the pivot rule. This rule 
defines the way that decides which vertex of the polyhedron is selected when there are many 
basic feasible solutions (BFSs) to choose from [11]. Suppose that the pivot rule is always to 
move to the adjacent BFS which there is at lease increase in the objective function value. Under 

this pivoting rule, the Simplex algorithm requires 2 1N −  pivoting steps before terminating. More 
precisely, in a standard form, the time complexity of the LP is  

( 2 ) ( 2 ) (2N NO MN O N O= = )N , 

where M  is the number of rows and  is the number of columns of the incident matrix. N

 

Let n n= , then the time complexity of the relaxed LP is  for P2 and 

 for P3. Due to the iterative employment of the LP, the complexity of the forced 

IP is  for P2. Likewise, the complexity of the decomposed IP is 

 for P3F, where 

4( )( ) 4(2 )m p n q nO + + +

( )(2 )(2 )q m p n pO + +

4( )( ) 4(12 2 )m p n q nO n + + +⋅
( )( )( 2 )q m p nO βα + +⋅ 2 20α≤ <  and n pβ + . 

For the exact methods, unlike other pure IP problems, only slack variables or dummy variables 
need to be branched. In a worst case, since the branch-and-bound method could generate all leafs 
on the branch-and-bound tree and it performs the LP relaxation on every leaf, it takes 

exponential time  for P2 and  for P3. As described 4 4( )( ) 4(2 2 )n m p n q nO + + +⋅ ( ) ( )(2 )(2 2 )q m p n q m p n pO + + +⋅
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above, the Simplex algorithm has exponential time complexity. Its average behavior and worst 
case behavior have been studied and explained by Borgwardt [12] and Klee and Minty [13], 
respectively. There is no deterministic pivot rule under which the Simplex algorithm is known to 
take a sub-exponential number of iterations. However, the numerical behavior is in conflict with 
theoretical analysis [14]. That means that it is efficient in practice, while having no polynomial 
time worst-case complexity, although there are no satisfactory theoretical explanations of its 
excellent performance.  

Therefore, for solving P3, the difference in the running time can be explained by the fact that the 
decomposed method is governed by the polynomial term α  while the exact BNB method is 

governed by the exponential term . Furthermore, as it might be expected, optimal 
solutions to a branched two sub-problems will be obtained relatively faster than its ancestor, 
unless they are non-convergent. 

( )2q m p n+

2.4 Simulation Experiments 

In this section, we perform a series of simulation experiments to evaluate the developed 
approximation methods. The simulation experiments were coded in MATLAB ver. 7.0 (R14) 
with Optimization Toolbox ver. 3.0 and tested on a Pentium 2.53GHz PC. 

2.4.1 Experiment 1: Two-commodity substitution 

In this simulation experiment, the developed optimization method for the two-commodity 
substitution problem (P2), discussed in Subsection 2.3.2., is evaluated. Recall that the P2 is 
about substituting two types of containers having two different dimensions. Here, we assume that 

the lengths of containers are 40′ and 20′. Without loss of generality, in this simulation 

experiment, we also assume that the total number of 40′  containers is three times more than 20′  
containers and that among all the demands for the empties at shippers, 25% can be satisfied by 
using substitutable containers.  

Table 2 shows the simulation results when the number of supply nodes m , and the demand 
nodes n  are varied from 9 to 19 and 10 to 20, respectively. As seen, the number of depots is 

assumed to be one, =1, and q=2 in indicates that the number of substitutable containers is two. 

The cost  in P2, which is the cost of transporting a type t  container from node i  to node 

p
tt
ijc ′ j  to 
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satisfy demands for type t  container, is assumed to be the sum of the traveling time between 

nodes i  and 

′

j  and the empty handling time at nodes i  and j . We assume that the cost tt
ijc ′  is 

randomly generated between 0 and 1 using a uniform random generator. 

For each simulation scenario (i.e., each row) in Table 2, three different solution methods are 
applied and the results are compared. The first is the relaxed LP, in which integer constraints in 
Equation (11) are relaxed. The relaxed LP solution is found by applying the Simplex method. 
Obviously the optimal relaxed LP solution may not be feasible. The branch-and-bound (BNB) 
method, which uses bounds on the optimal cost to avoid exploring certain part of the feasible set, 
is used to find the optimal feasible integer solution. Finally, the developed forced IP method is 
used as an approximate solution method to find the solution to each simulation scenario. 

Each simulation scenario in Table 2 is generated twenty times by randomly generating the cost 

 discussed above. For each scenario, the running time and the relative gap of the simulation 

results are found and averaged over 20 trials. The relative gap is defined as the difference in the 
objective function values of the integer solution and the relaxed LP solution.  

tt
ijc ′

Table 2: Performance of IP methods on P2 w.r.t. the number of nodes 

relaxed LP forced IP exact BNB 
m n p q 

time (sec) time (sec) gap (%) time (sec) gap (%) 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

0.7741 

0.9725 

1.2133 

1.5532 

2.2512 

2.5958 

3.1235 

3.8726 

4.6552 

5.8399 

6.7768 

2.1666 

2.7239 

3.0345 

3.8896 

5.5008 

6.6575 

7.9711 

10.9282 

12.0875 

14.3486 

17.2153 

0.0491 

0.0391 

0.0383 

0.0234 

0.0199 

0.0221 

0.0185 

0.0247 

0.0135 

0.0199 

0.0150 

13.9641 

10.8824 

10.6219 

19.9265 

19.1534 

25.5214 

27.5277 

51.0298 

44.5260 

68.9145 

80.3998 

0.0451 

0.0188 

0.0200 

0.0178 

0.0129 

0.0175 

0.0127 

0.0086 

0.0079 

0.0096 

0.0088 

 

Table 2 indicates that the relative gap of the forced IP method is very close to that of the BNB 
method while the forced IP method is significantly faster than the BNB exact method. Note that 
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the forced IP method takes the advantage of the problem structure where there is a relatively few 
number of fractional coefficients. For instance, for row 8 (i.e., m=15 and n=16) it can be 
observed that, in average, the forced IP method yields around 0.018% increase in the objective 
function value from the relaxed optimal solution and 0.006% increase from the exact BNB gap, 
while the time to generate the forced IP solution is about 3.5 times faster than that of the BNB 
solution.  

2.4.2 Experiment 2: Multi-commodity substitution 

In this simulation experiment, we assume that there are three container types (i.e., q=3) with 
different dimensions as given by (1). We use the decomposed IP method, which was developed 
in Section 2.3.3 as an approximation algorithm, to solve the multi-commodity substitution 
problem (P3).  

Table 3 shows the simulation results of the decomposed IP method to problem P3 with three 
different container types. For each simulation scenario, 10 instances of problem are generated 
randomly, as described in Experiment 1, and the results of the 10 trials are averaged and shown 
in the table.  

Table 3: Performance of IP methods on P3 w.r.t. the number of nodes 

relaxed LP decomposed IP exact BNB 
m n p q 

time (sec) time (sec) gap (%) time (sec) gap (%) 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

3 

3 

3 

3 

3 

3 

3 

3 

3 

3 

3 

0.5030 

0.7309 

0.8842 

1.1641 

1.5296 

1.7561 

2.3610 

2.7701 

3.4971 

4.3968 

5.0031 

0.9891 

2.0214 

2.9404 

4.4844 

4.0404 

15.2653 

8.8890 

5.2608 

11.0797 

9.1123 

10.2890 

0.1287 

0.1349 

0.0995 

0.0912 

0.0781 

0.1356 

0.1220 

0.0627 

0.0690 

0.0679 

0.0464 

14.2919 

13.1345 

22.6860 

23.4359 

23.4640 

21.0688 

81.7626 

N/A 

N/A 

N/A 

N/A 

0.0373 

0.0481 

0.0161 

0.0164 

0.0210 

0.0104 

0.0174 

N/A 

N/A 

N/A 

N/A 

N/A: the solution couldn’t be found 
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As indicated by Table 3, while the difference in objective function values between the 
decomposed IP and the exact method shows more than 0.1% difference in some cases, the 
decomposed IP method could yield an integer solution even if  and . In other words, 
while we faced the memory limitation in the BNB method as the number of consignees and 
shippers increase, the decomposed IP method constantly found the approximate integer solution 
with a little gap. Note that, in our simulation experiments, if any of the ten trials of each scenario 
had failed to yield a solution, the solution is marked unavailable (N/A).  

16m ≥ 17n ≥

Table 4 presents the sensitivity of the decomposed IP method with respect to the number of 
container types. In this simulation experiment, the container types are differentiated not only by 
their lengths and dimensions but also by their attributes, and the simulations were carried out on 
the network developed in [5]. The simulation network, which is developed for the Los Angeles/ 
Long beach port area, is explained later in Simulation Experiment 3 in detail. The cost is still 
assumed to be the sum of the traveling times between nodes and the container handling times at 
nodes. Table 4 shows the averaged results based on 10 independently generated trials. 

Table 4: Performance of IP methods w.r.t. the number of types 

relaxed LP decomposed IP exact BNB 
m n p q 

time (sec) time (sec) gap (%) time (sec) gap (%) 

12 

12 

12 

12 

12 

12 

12 

12 

12 

12 

12 

8 

8 

8 

8 

8 

8 

8 

8 

8 

8 

8 

3 

3 

3 

3 

3 

3 

3 

3 

3 

3 

3 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

1.5515 

2.1016 

2.7298 

3.6547 

4.5422 

5.6922 

6.4374 

7.8875 

8.8940 

10.1999 

11.5842 

3.2641 

8.2891 

9.0843 

5.6202 

11.5796 

11.7563 

17.2186 

14.7546 

14.2740 

30.4641 

30.1839 

0.0673 

0.0496 

0.0501 

0.0277 

0.0332 

0.0132 

0.0234 

0.0069 

0.0078 

0.0102 

0.0091 

24.2282 

83.4062 

59.2800 

126.8018 

N/A 

N/A 

N/A 

N/A 

N/A 

N/A 

N/A 

0.0145 

0.0092 

0.0044 

0.0072 

N/A 

N/A 

N/A 

N/A 

N/A 

N/A 

N/A 

N/A: the solution couldn’t be found 
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As seen from Table 4, the maximum difference in objective function values between the 
decomposed IP and the exact methods is about 0.05%, which shows that the decomposed IP 
method was able to find a very good solution in significantly less amount of the time.  

2.4.3 Experiment 3: Multi-commodity substitution in the LA/LB port area 

In this simulation experiment, a case study is generated in the San Pedro Bay area located in 

Southern California containing the twin ports: Los Angeles and Long Beach. Current and 

Projected data are used to generate a scenario and to evaluate the costs associated with the empty 

container substitution methodologies developed in Section 2.  

The geographical area shown in Figure 5 bounded from the West and South by the Pacific 

Ocean, from the East by freeway I-15, and from the North by freeway I-210 is considered for the 

case study simulation scenario. For the sake of simplicity, the area is referred to as the LA/LB 

port area. 

Figure 5: Transportation network and the basic layout for the empty container 

movement in the LA/LB port area. 
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The LA/LB port area, including the transportation network, was created in the ArcView 

Geographic Information System (GIS). On top of the ArcView GIS, we employed the “ArcView 

Network Analyst” to find the shortest distance and associated path between each pair of origin 

and destination (OD). In our study, origins are places where the empty containers are picked-up 

and destinations are those where empties are dropped-off. Shown in Figure 5 is the transportation 

network in the LA/LB port area, which consists of regional freeways, major avenues and main 

streets. Freeways I-110, and I-710 are the two arterial freeways carrying almost all containers 

into and out of LA/LB ports. 

The case study consists of 12 consignees (supply of empties), 8 shippers (demand for empties), 2 

local container depots, and one container terminal. The various symbols in Figure 5 represent the 

following entities:  

• Consignees: The consignees are represented by circles in Figure 5 and labeled one to 

twelve. Many consignees were chosen to represent existing businesses. For instance, the 

first five locations (i.e., consignees 1 to 5) are the most active local importers in the 

LA/LB port area according to [1]. The other consignees’ locations were distributed 

randomly throughout the region under study.  

The degree of activity among the consignees is variable. To each consignee i a weight 

wci, is associated which indicates its relative activity at that location compared to other 

consignees in the region. Vector WC, below, shows the degree of activity at each 

consignee relative to other consignees.  

  (20) 15 9 7 7 13 3 2 1 2 1 2 3[ ]CW =

For instance, vector WC indicates that the degree of activity at Consignee 1 is 15 times 

more than that of Consignee 10. For the first five most active consignees in (20), the data 

were acquired from the terminal surveys conducted by Tioga Group [1]. Since the Tioga 

Group study does not include the low-active consignees, the degree of activity at 

consignees 6 to 12 was randomly assigned by generating a random number between 1 to 

3.  
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Shippers: The shippers are represented by squares in Figure 5 and labeled one to eight. 

Likewise, to each shipper j a weight wsj, is associated which indicates its relative activity 

at that location compared to other shippers. The degree of activity at shippers is shown in 

vector WS below.  

  (21) 5 4 1 2 1 1 1 2[SW = ]

Similarly, the data of the most active exporters were acquired from the Tioga Group [1]. 

These data indicate that the first two locations are the most active local exporters in the 

LA/LB port area. For the other locations (i.e., shippers 3 to 8), random numbers were 

assigned.  

It should be noted that the difference between the higher number of consignees and the 

lower number of shippers represents an imbalance between the number of import and 

export containers in the region. 

• Inland container depots. The inland container depots are represented by pentagons in 

Figure 5 and labeled one to two. According to the Tioga Group[1], most existing 

container depots are located about 4 miles from the twin ports and 1 to 2 miles from 

freeways I-110 and I-710. The study identifies 10 depot locations in this area, among 

which we selected two without loss of generality. Depot 1 is the location of the 

Intermodal Container Terminal Facility (ICTF) located in the Los Angeles area. 

• Container terminal. The container terminal’s location is shown by a star in Figure 5 

which represents the physical location of Pier G terminal which is one of the most active 

container terminals in the LA/LB port complex.  

In this experiment, we generate a case study using current and projected data for the Los Angeles 

and Long Beach port area [1, 2]. 

According to [2], during 2000, almost 45% of trucks passing through the inbound gates of the 

LA/LB container terminals were delivering or picking up empties. Among all empties delivered 

to the LA/LB terminals, 24% were trucked from local shippers [1]. At the same time 49% of all 

empties picked up at terminals were destined for local consignees. In an extremely busy day in 
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2000, almost 5000 trucks were served at the inbound and outbound gates at a LA/LB terminal 

[2]. This translates to 267 empties trucked to local shippers and 547 empties delivered from local 

consignees. 

Case Study (2010 projection): In this scenario, we use the projected figures for the empties 

demand and supply for 2010. It is expected that in 2010 the number of export and import loads in 

the LA/LB port area will be about 2.0 and 1.8 times more than those in the year 2000, 

respectively [1]. Thus, the number of empties demanded by shippers will be around 534, and the 

number of empties supplied by consignees will be about 985 containers per day in 2010. These 

figures are used as the case study. 

We assume that the above total daily numbers of empties are distributed among the consignees 

and shippers according to their degree of activity presented in (20) and (21), respectively. We 

also assume that there are only three classes of containers , , and , which are given by 1t 2t 3t (2), 

in the LA/LB port area, and that the frequency of containers in each class is 50%, 25%, and 25% 

of the total number of containers, respectively.  

The number of empties from each class of containers demanded by each shipper is then assumed 

to be divided into two parts: the exact and substitutable requests. The exact requests are the 

requests for the exact types of containers which cannot be substituted by any other types. The 

substitutable requests are those which can be substituted by other empties and are chosen, with 

equal probability, from one of the following substitution rules: 

• Requests should be satisfied by exactly one specified types. 

• Requests could be satisfied by any type with the same dimension. 

• Requests could be satisfied by any type. 

Table 5 shows the results of the simulation when the ratio of the number of substitutable requests 

to the total number of requests at shippers is varied from 0% to 100%. When this rate is selected 

to be 0% the problem is, in fact, reduced to three single commodity problems (P1s), each for one 

type of containers. Since the exact BNB method is very slow in finding the solutions and 

experiences out-of-memory frequently, the method is not considered here.  
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Here, the cost  is chosen to be the traveling distance between consignee i I  and shipper 

. 

t
ijc P∈ U

j J P∈ U

Table 5: Performance of IP methods in Experiment 3 

multi-commodity substitution problem 

relaxed LP decomposition IP substitutable 
requests ratio 

cost [miles] time [s] cost [miles] time [s] 

0% 

20% 

40% 

60% 

80% 

100% 

18535.8300 

18104.5300 

18033.9400 

17971.3700 

17923.5650 

17918.7200 

1.5120 

1.3820 

1.1810 

1.2420 

1.3020 

0.4010 

D/N 

18110.8300 

18035.6200 

17972.5900 

17929.5800 

17924.8400 

D/N 

46.7570 

49.3010 

44.6840 

54.1280 

16.4640 

D/N: don’t need to run the IP method since the LP has the integer solution 

As reported in Jula et al. [5], [19],  the empty container reuse scenario results in more than 50% 

reduction in the empty trips activity around the port and depots in the LA/LB port area, as 

compared to the base scenario, which represent the current practices (i..e. no street-turn exchange 

of empties). Since in [5], the authors considered only one class of containers, their findings 

correspond to the 0% substitution scenario in Table 5. As seen from Table 5, the total empty 

traveling costs decreases as the total substitutable requests increases at shippers. Therefore, the 

cost of empty container reuse can be further reduced by allowing the substitution between empty 

containers in the region. This can be translated into further reduction in the traffic and congestion 

around the port and therefore, further reduction in noise and emissions. 

27 



  

3 Empty Interchange in Stochastic Environments: Modeling and 
Optimization 

As discussed in Section 2, when all the information about the demand and supply of empty 

containers is available a priori, the empty container interchange problem can be modeled as a 

deterministic transportation problem. In the real world, however, one does encounter many 

sources of uncertainty, which could be related to spatial (location), temporal, or quantitative 

aspects of the future demand and supply.  

In this section, we investigate the stochastic empty container interchange problem in which the 

supply and demand of empties follow known probability distributions. These probability 

distributions can be easily extracted from available historical data. We assume that the traveling 

costs between demand and supply nodes are deterministic and that no substitution is allowed. 

That is, we consider the single commodity transportation problem with stochastic supply and 

demand of empties at consignees and shippers, respectively.  

3.1 Empty Interchange with Stochastic Supply and Demand 

We start this subsection by assuming that the supply of empties is deterministic and that the 

probability distributions of demands are known and consist of finite sets of scenarios. We will 

see that the single commodity empty interchange problem with stochastic demand of empties can 

be modeled as a two-stage stochastic program. Later, we will study the empty interchange 

problem with both stochastic supply and demand of empties. We will model the problem as a 

one-stage stochastic program, a special case of the two-stage stochastic program.  

3.1.1 Empty interchange with stochastic demand 

Let the triplet (  be a probability space, where F  is a collection of events,  is an 

event (the set of all possible scenarios), and P  is the probability measure. Let 

), ,F PΩ FΩ∈

ω  be an outcome 

28 



  

(i.e. a scenario) of event Ω  which is a random experiment. Given the cost vector c , the modified 

problem P1 with stochastic demands can be expressed in the matrix-vector form as 

 Minimize:   (22) Tc x

 Subject to  U =A x s  (23) 

 ( )L ω=A x d  (24) 

  (25) ≥x 0

where s  is the supply vector, and ( )ωd  is the stochastic demand vector of all scenarios ω . 

It should be noted that for a given decision vector  and a realization x ω , constraints (24) should 

be met. To compensate for any constraints violation, we will provide a recourse vector y, that 

after observing the realization of ω , will affect the choice of x . In other words, since the 

decision vector x  in (22) must be made before the realization of ω  is known, a second-stage 

linear program is introduced, whose values are uncertain but will influence the choice of x . 

Therefore, the stochastic form of problem P1 is modeled as a two-stage stochastic program  

min  
. .                       

             ( )
                    , ,

T T T

U

L

s t
ω

+ + − −

+ −

+ −

+ +
=

+ − =
≥

c x q y q y
A x s
A x y y d

y y x 0

, (26)  

where exogenous variables +y  and −y  are the second stage vectors, and  and +q −q  are the 

recourse cost vectors. The vector T T T
+ −⎡ ⎤= ⎣ ⎦q q q  is introduced to penalize constraints violations, 

therefore it is required that . 0T ≥q

Since every scenario may involve a different set of constraints, a more reasonable objective is to 

choose the decision variables so that the expected cost of the following recourse formulation is 

minimized. 
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  (27) 

min  [ ( ) ( )]
. .                                         

                ( )   ( ) ( )        
                                      ,  ,  

T T T

U

L

E
s t

ω ω ω

ω ω ω ω

+ + − −

+ −

+ −

+ +
=

+ − =
≥

c x q y q y
A x s
A x y y d

y y x 0
∈Ω

where Eω  stands for the mathematical expectation, that is the weighted average over all ω . For 

notational simplicity, the model (27) is rewritten as 

  (28) 

min  [ ]
. .                 

            ( )        
                      ,  

T T

U

L

E
s t

ω

ω ω

+
=

+ = ∈
≥

c x q y
A x s
A x Wy d

x y 0
Ω

where [ ] m m= −W I I  is the recourse matrix;  is an identity matrix, and m  is the number of 

shippers. 

mI

3.1.2 Empty interchange with stochastic supply 

When both supply and demand of empties are stochastic, the stochastic empty interchange 

problem can be expressed by 

 

1 1 2 2

1 1

2 2

1 2

min  

. .                  ( )        
                       ( )        
                            ,  ,  

T T T

U

L

E

s t
ω

ω ω
ω ω

⎡ ⎤+ +⎣ ⎦
+ = ∈Ω

+ = ∈
≥

c x q y q y

A x W y s
A x W y d

x y y 0
Ω

 (29) 

where [ ]1  n n= −W I I  and [ ]2  m m= −W I I .  and  are the number of consignees and shippers, 

respectively. The stochastic problem in 

n m

(29) is a one-stage stochastic program, hence, a subset of 

the two-stage stochastic program in (28). Therefore, in the rest of this report we will only 

consider and investigate the empty interchange problem with stochastic demand of empties. 
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3.2 Expected Value of the Stochastic Transportation Problem 

In subsection 3.1.1 we modeled the stochastic transportation problem P1 as a two-stage 

stochastic program. Using the deterministic equivalent, the two-stage stochastic program can be 

solved by linear programming techniques. For instance, suppose that Ω  is a small set such that 

 and | | 2Ω = 1 2,ω ω ∈Ω . Suppose that 1p  and 2p  are the probability of 1ω  and 2ω , recursively, 

such that . Then, the deterministic equivalent of the model in 1 2 1p p+ = (28) can be expressed as 

 

1 2
1 2

1

2 2

1 2

min  
. .                              

                        
                        
                            ,  ,  

T T T

U

L

L

p p
s t

+ +
=

1+ =

+ =

≥

c x q y q y
A x s

A x Wy d
A x Wy d

x y y 0

, (30) 

where the superscripts  for demand vectors d1, 2k = k and exogenous vector yk are the scenario 

index corresponding to scenario kω . It should be noted that even for a moderate number of 

possible scenarios, the deterministic equivalent could result in a huge linear programming 

problem. For example, in the case of the stochastic transportation problem P1, we have assumed 

demands in the form of finite sets of scenarios. Since P1 includes a set of depots which can be 

considered as super sources, every realization scenario (ω∈Ω ) will be feasible, and hence, the 

number of feasible scenarios will be 

 
1

( )
n

j
j

d ω
=

Ω =∏  (31) 

where  is the number of shippers, n { }1( ) , ,
jj jd d dω = L js  is the finite set of demands (scenarios) 

at shipper j , and js  is the cardinality of the set ( )jd ω . 

In other words, although Ω  is a finite set, the number of realizable scenarios is too many to 

enumerate all. One way to overcome this problem is to use decomposition methods, such as 

Bender’s decomposition method [15]. Unfortunately, although a decomposition method could 

reduce the number of variables substantially, the method still generates extremely large number 
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of constraints [15]. For this reason, in this report, we use a sampling method technique called 

Monte Carlo simulation method to estimate the expected value of the stochastic program [16] 

3.2.1 Monte Carlo simulation method 

Consider the stochastic transportation problem P1 in (28). Let v∗  be the optimal expected value 

of (28), which can be expressed as the following two-stage stochastic program. 

 ({ ) }min ( ) , ( )
x S

v f E gω ω∗

∈
= ≡ ⎡ ⎤⎣ ⎦x x d  (32) 

where { } ,  0US ≡ =x A x s x ≥  and ( ) { }
0

, ( ) min  ( )T T
Lg ω ω

≥
≡ + = −

y
x d c x q y Wy d A x . 

Let random samples  be  realizations of the random vector 1, , Nd dL N ( )ωd , and 

 be the sample average approximation (SAA) of 1

1

ˆ ( ) ( , )
N

k
N

k

f N g−

=

≡ ∑x x d ( )f x . By replacing 

( )f x  with  in ˆ ( )Nf x (32), we find the optimal expected value of the approximated stochastic 

problem by 

  (33) 1

1

ˆˆ min ( ) ( , )
N

k
N Nx S k

v f N g−

∈
=

⎧= ≡⎨
⎩ ⎭

∑x x ⎫
⎬d

Since the random realizations  have the same probability distribution as 1, , Nd dL ( )ωd , it 

follows that  is an unbiased estimator of ˆ ( )Nf x ( )f x  for any  [x 17]. By generating M  

independent sample sets { }1, ,, ,j j N=D d dL j , j=1,…,M, each of size N , and solving the 

corresponding SAA problems in (33), the sample average of the optimal values of the 

approximated stochastic programs can be computed by 

 1
.

1

ˆ
M

j
N M N

j

L M v−

=

= ∑  (34) 
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where ˆ j
Nv  is the optimal value of SAA problem in (33) for each sample set . It can be shown 

that  is an unbiased estimator of 

jD

1
.

1

ˆ
M

j
N M N

j

L M v−

=

= ∑ [ ]ˆNE v  [17]. 

In stochastic optimization problems, the value of the stochastic solution (VSS) is defined as the 

difference between the optimal values of the stochastic problem and the deterministic problem 

computed by replacing stochastic variables by their mathematical expectations. The former is 

called the stochastic solution (SS) which is the solution of (32) and the latter is called the 

expected value (EV) solution. VSS indicates the benefit of knowing the distributions of the 

stochastic variables [18] 

In particular, EV can be computed by taking the following procedure. During the first stage, a 

super-model solution is computed using the expected demand. Subsequently, with the first stage 

values fixed, each sub-model solution is independently computed and averaged over all sampled 

scenarios. 

Let x  be the solution to the supermodel which is constructed by replacing random variables by 

their expectations. Hence, the expected value (EV) is obtained by 

 [ ]( ){ } (min ( ) , ( ) ,E x S
v f g E gω )ω μ

∈
= = =x x d x  (35) 

where ( )Eωμ ω⎡ ⎤⎣ ⎦= d .  

We generate N independent random samples  of 1, , Nd dL ( )ωd . For each , k=1,…,N, we 

compute 

kd

 ( ),kv g= x dk  (36) 

where ( ) { }
0

, min  k T T k
Lg

≥
≡ + = −

y
x d c x q y Wy d A x . The expectation of the EV (EEV) can be 

estimated by obtaining the sample average of ( ),kv g= x dk  over all the sampled scenarios, i.e., 
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 [ ] (1

1

ˆ ,
N

k
E

k

E v N g−

=

= ∑ x d )

E

 (37) 

Usually, if the difference  

 ˆEEEV EV E v v⎡ ⎤⎣ ⎦− = −  (38) 

is small, EEV is said to be a reasonably good solution to the stochastic program [18]. 

Furthermore, the value of the approximated stochastic solution (VSS) is computed by 

 [ ] [ ]ˆ ˆEVSS EEV ESS E v E v= − = − N  (39) 

This value of VSS in (39) indicates the price of using naive EV model instead of SS. 

3.3 Simulation Experiment 

In subsection 3.2, we modeled the empty container allocation problem with stochastic demand as 

a two-stage stochastic program. Furthermore, we used the Monte Carlo sampling method to 

obtain an estimate of the stochastic solution. In this section, we perform a series of simulation 

experiments to evaluate the stochastic solution (SS) and the expected value solution (EV) of the 

stochastic empty interchange problem. We assume that the distributions of empty demands are 

known and that they consist of finite sets of scenarios. These stochastic demands include the last-

minute empty requests and cancellations within the working day. 

Consider the simulation experiment 2.4.3 developed for the LA/LB port area. We use the 

projected figures for the empties demand and supply for 2010, and assume that the total daily 

numbers of empties are distributed among the consignees and shippers according to their degree 

of activities given in (20) and (21), respectively. Let jd  be the number of empties needed at 

shipper j obtained by applying the aforementioned procedure. We assume that the actual number 

of empty requested at shipper j is a discrete random number given by 

 ( )j jd dω ω= +  (40) 
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where ω  is assumed to have the discrete uniform distribution, which can take any number with 

equal probability from the integer set 

 { }0,1, ,nI n= K . (41) 

Table 6 shows the optimal value for the expected value solution (EV) for different demand sets 

generated from different nI . The Monte Carlo sampling method discussed in (36) and (37) is 

used to determine the expectation of the EV (EEV) when N is varied from 100 to 10,000. The 

third column in Table 6 presents the worst-case solution which is sometimes referred to as a fat 

solution. The fat solution will be the feasible solution for all possible realizations of ω  in (40). 

More precisely, we let nω = , where  is the maximum possible realization of n ω  and is given in 

(41). The worst-case scenario is, then, solved as a single-commodity deterministic transportation 

problem [5]. 

In Table 6, similar to simulation experiment 2.4.3, the cost of moving an empty between a 

consignee and a shipper is assumed to be the traveling distance between these two nodes, thus 

has a deterministic value. 

Table 6: Expected value solution of the approximating stochastic program 

Expected value solution 
Demand Set N  

worst-
case 

[miles] EV [miles] EEV [miles] 
EEV - EV

EV
 [%] 

100 10514.43 2.1676 
200 10516.71 2.1898 
300 10518.57 2.2079 

1000 10519.66 2.2185 

Set 1 

5 {0, ,5}I = L  

10000 

10614.81 10291.35 

10515.41 2.1772 
100 10505.59 2.5891 
200 10505.38 2.5871 
300 10505.59 2.5891 

1000 10503.82 2.5719 

Set 2 

10 {0, ,10}I = L

10000 

10633.98 10240.45 

10504.32 2.5767 
100 10460.43 4.4083 
200 10471.15 4.5153 
300 10469.01 4.4940 

1000 10466.62 4.4701 

Set 3 

15 {0, ,15}I = L  

10000 

10727.65 10018.77 

10469.62 4.5001 
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Table 6 indicates that the worst-case solution is very expensive, and that the difference between 

EEV and EV is fairly small about 2 to 5%. Usually, if the difference is small, the EEV is 

reasonably good approximation to the solution of the stochastic problem [18], we will discuss 

this issue later.  

Table 6 also indicates that the difference between EEV and EV is not sensitive to the sampling 

size . Therefore, even the smallest independent sample size (N 100N = ) can be considered 

sufficient to capture the stochastic behavior of the demand in our stochastic transportation 

problem. 

In Table 7, we calculate the estimated stochastic solution (ESS) using the Monte Carlo sampling 

method in 3.2.1 for different demand sets generated from different nI .The EES is compared with 

the EEV when the sampling size  is 100, 200, and 300. N

Table 7: Stochastic solution of the approximating stochastic program 

confidence interval 
[miles] Demand Set N  EEV 

[miles] 90% 95% 

ESS [miles]
(M=10) 

VSS 
[miles] 

VSS

ESS
 [%] 

100 10514.43 ±16.45 ±19.66 10503.62 10.81 0.1029 

200 10516.71 ±11.84 ±14.14 10508.21 8.50 0.0809 
Set 1 

5 {0, ,5}I = L  

300 10518.57 ±9.62 ±11.47 10512.62 5.95 0.0566 

100 10505.59 ±20.35 ±24.32 10489.42 16.27 0.1551 

200 10505.38 ±14.46 ±17.26 10499.50 5.88 0.0560 
Set 2 

10 {0, ,10}I = L  

300 10505.59 ±10.92 ±13.03 10497.46 8.13 0.0774 

100 10460.43 ±34.56 ±41.30 10453.63 6.80 0.0650 

200 10471.15 ±24.35 ±29.06 10454.39 16.76 0.1603 
Set 3 

15 {0, ,15}I = L  

300 10469.01 ±21.38 ±25.50 10452.77 16.24 0.1554 

 

The iteration number M  for samplings is chosen to be 10  so that the ESS does not pass the 90% 

confidence interval. Table 7 shows the value of the approximated stochastic solution (VSS) 
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given by (39). The VSS is very small relative to the total travel miles (about 0.2%). Therefore, 

one can approximate, with relatively small error, the expected value solution (EEV) as the 

optimal solution that minimizes the expected cost of the stochastic program. 
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4 Summary and Conclusions 

In this study, we addressed the operational issues regarding the empty container reuse. In 

particular, we investigated the multi-commodity empty substitution problem, in which one type 

of containers can be substituted with another container.  We modeled the problem analytically 

and proposed optimization techniques to find near optimal solutions. In order to investigate the 

efficiency of the proposed optimization techniques we developed realistic simulation scenarios 

using past, current and projected data in the Los Angeles/Long Beach (LA/LB) port area. 

Compared to single commodity empty container reuse problem studied in [5], the results of the 

simulated scenarios demonstrate that the cost of empty container reuse can be further reduced by 

allowing the substitution between empty containers in the (LA/LB) port area. This can be 

translated into further reduction in the traffic and congestion around the port and, therefore, 

further reduction in noise and emissions. The results of the simulation studies also indicate that 

the total empty traveling costs decreases as the total substitutable requests increases at shippers.  

In addition to multi commodity container reuse the effect of uncertainties associated with 

demand and supply requirements on our approach has also been investigated by studying the 

stochastic empty container interchange problem where the supply and demand of empties follow 

known probability distributions. In this case we modeled the problem as a stochastic problem 

with recourse and developed optimization techniques to minimize the cost of empty container 

interchange in stochastic environments. The results showed that our approach can also perform 

as well as in a stochastic environment.  
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5 Implementation 

The empty container interchange is beneficial to all parties involved in empty movements. The 

results of this report demonstrate that the operational issue (i.e., empty container mismatch, lack 

of perfect information about the number of requests) can be overcome using the developed 

methods. The implementation of the proposed approach however requires additional efforts 

which involve overcoming barriers which may include policy, collaboration, competition, legal, 

insurance and other issues that are outside the scope of this study. The benefits of empty 

container reuse demonstrated in this report present a strong motivation for overcoming whatever 

barriers exist to make the proposed approach implementable. 
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