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Abstract 

Congestion affects the trucking industry on three major service dimensions: travel time, 

reliability, and cost. Trucking is a commercial activity, and trucking operations are driven 

by the need to satisfy customer demands and the need to operate at the lowest possible 

cost. This industry is highly competitive, with easy entry into almost any market, 

relatively little differentiation between operators and slim profit margins. 

However, most of the developed techniques and models for planning, routing and 

scheduling in the trucking industry assume ‘known’ static data as their input. For 

instance, in the Vehicle Routing Problem (VRP) the customer demands, travel costs, and 

travel times are known in advance.  In this case, the fundamental problem is to determine 

the optimal route that minimizes a certain objective such as fleet size and travel distance.   

The built-in assumption of these approaches is that there will be small deviations on the 

realization of the demand and travel times from the plan so that the pre-determined routes 

form a basis for either the pickup or delivery schedule.  In the real world, however, 

operations in any traffic network contain a fairly high degree of uncertainties including 

variable waiting and travel times due to traffic congestion, arrival of new orders, and 

cancellation of existing orders.  In a highly dynamic and stochastic environment, the pre-

planned optimal routes are no longer of practical use.  In this case, most of the research 

effort has focused on easy to control dispatching rules.  The drawback with these 

techniques is that they do not make use of pre-planned and known information.  

There is a gap in the routing literature for systems that operate between the two ends of 

the spectrum, which is the most realistic condition for trucking operations. Our research 

on partial route development addresses this gap by developing a new approach within an 

area that has received little attention. In a simulation study, we demonstrate the benefits 

of the partial routing approach over the pre-planned and dispatching methodologies. 

ii 



  

Table of Contents 

 

DISCLAIMER............................................................................................................................................... I 

ABSTRACT ................................................................................................................................................. II 

DISCLOSURE............................................................................................................................................ VI 

ACKNOWLEDGMENTS........................................................................................................................ VII 

1 INTRODUCTION............................................................................................................................... 1 

2 LITERATURE REVIEW................................................................................................................... 4 

3 PARTIAL ROUTING IN DYNAMIC STOCHASTIC NETWORKS ........................................... 7 

3.1 PREDICTING THE TRAVELING TIMES ON ARCS ............................................................................. 8 
3.1.1 Single-Stage Predictor............................................................................................................ 9 
3.1.2 mth-Stage Predictor.............................................................................................................. 11 
3.1.3 State Filter ............................................................................................................................ 12 

3.2 ESTIMATING ARRIVAL TIMES AT NODES.................................................................................... 14 
3.2.1 Estimating the arrival time at the second node .................................................................... 16 
3.2.2 Estimating the arrival time at other nodes ........................................................................... 17 

3.3 PARTIAL ROUTING ..................................................................................................................... 28 
3.3.1 Dynamic Programming ........................................................................................................ 28 

3.4 MOVING ALONG THE BEST ROUTE ............................................................................................. 30 

4 SIMULATION EXPERIMENTS .................................................................................................... 32 

4.1 SIMULATION SCENARIO 1 (DETERMINISTIC ROUTING)................................................................ 33 
4.2 SIMULATION SCENARIO 2 (STATIONARY STOCHASTIC ROUTING) ............................................... 34 
4.3 SIMULATION SCENARIO 3 (SENSITIVITY ANALYSIS) ................................................................... 37 
4.4 SIMULATION SCENARIO 4 (DYNAMIC STOCHASTIC ROUTING) .................................................... 40 

5 CONCLUSIONS AND RECOMMENDATIONS .......................................................................... 45 

6 IMPLEMENTATION ...................................................................................................................... 46 

REFERENCES ........................................................................................................................................... 47 

 

iii 



  

List of Figures 

 

Figure 1: A typical transportation network.................................................................................................... 7 

Figure 2: A typical route r in graph G. ........................................................................................................ 15 

Figure 3: Simple transportation network G used in the simulation experiments. ........................................ 33 

Figure 4: The assumed mean travel time on arc (i,j) when σij(k) and qij(k) are zero. .................................. 41 

 

iv 



  

List of Tables: 

 

Table 1: Comparing NDA and FRA for deterministic networks................................................................... 34 

Table 2: Comparing different routing algorithms in a stationary stochastic network. ................................ 36 

Table 3: Sensitivity of the PRA to changes of parameter β. ......................................................................... 37 

Table 4: Sensitivity of the PRA to the changes of the maximum level of routing (MLV). ............................. 38 

Table 5: Sensitivity of the PRA to changes in the maximum number of nodes visited on partial route (MN).

........................................................................................................................................................ 39

Table 6: Comparing different routing algorithms in a dynamic stochastic network. ................................... 43 

 

v 



  

Disclosure 

Project was funded in entirety under this contract to California Department of 

Transportation. 

vi 



  

Acknowledgments 

We would like to thank Metrans for funding this research.   

vii 



  

1 Introduction  

The ability of a trucking company to succeed economically rests on its ability to move goods 

reliably and efficiently, with minimal delay. In many traffic networks especially in major cities, 

traffic congestion has already reduced mobility and system reliability, and has increased 

transportation costs. In addition to contributing to truck-drivers’ inefficiency, traffic congestion 

is a major source of air pollution (especially diesel toxins), wasted energy, increased 

maintenance cost caused by the volume of trucks on roadway, etc. (Barton, 2001). 

With the expected substantial increase in the volume of international and national cargos 

entering and moving through the U.S. highway system, together with the anticipated growth in 

the number of personal vehicles in use, it is expected that the condition of traffic congestion will 

only get worse, unless careful planning is initiated. For instance, according to the Federal 

Highway Administration, currently nearly half of the California’s urban highways are 

congested1. It is expected that, between 2000 and 2025 in California, personal vehicle trips will 

be increased by 38 percent (CalTrans 2004), and the volume of containers moving in and out of 

the major California ports will be tripled (Mallon and Magaddino, 2001). 

There are numerous ways to improve traffic congestion, and therefore reduce transport times 

associated with goods movements. Options include developing new and expanding current 

facilities, deploying advanced technologies, and improving operational characteristics and 

system management practices. It should be noted that the scarcity of land in major cities has 

made the option of developing new facilities if not infeasible significantly costly.  

Goods movements, in nature, are time-dependent and contain uncertainties. For instance, the 

customer demands, travel costs, and travel times are uncertain, time-dependent variables. In the 

transportation industry, it is widely expected that the deployment of advanced technologies such 

as the use of information technologies can reduce the level of uncertainties to a manageable level 

and makes the use of dynamic formulations and solutions feasible. These technologies include: 

                                                 

1 Federal Highway Administration defines congestion as when an Interstate highway exceeds 13,000 vehicles per-lane-mile daily, or 5,000 

vehicles per-lane-mile on principal arteries. 
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• Vehicle tracking, such as global-positioning-systems (GPS), which allow vehicle locations 

to be determined within a few meter level accuracy. 

• Wireless communication, via satellite, cellular and paging networks, which enable 2-way 

communication with mobile fleets. 

• Navigable map databases, from which point-to-point distances can be calculated. 

• Real-time information services, which allow for dynamic calculation of travel speeds.  

Whereas in the past, it was difficult for a company to control or route vehicles once they left the 

terminal, these technologies make accurate dynamic real-time routing a possible reality. 

The focus of this report is to investigate dynamic methods to improve the operational 

characteristics of goods movements by developing techniques that can be easily implemented 

using new but currently available computer and information technologies. The use of 

information technologies in goods movements can narrow the gap between highly uncertain 

systems in reality and the assumed known static systems in theory. It is known that for static 

systems, where the network parameters are known a priori, the well-established routing and 

scheduling algorithms lead to optimum solutions. On the other hand, in a highly uncertain and 

dynamic system, heuristic dispatching techniques work reasonably well. As recently observed by 

Powell et al. (2000), in the presence of high degree of uncertainties, it is widely expected that 

optimal solutions for goods movements will be outperformed, over time, by algorithms that are 

more local in nature. 

Thus, on one end of the spectrum are route planning techniques when it is reasonable to assume 

the system is deterministic, and on the other end are dispatching heuristics when the system is 

highly dynamic and uncertain. There exists a gap in the literature for situations that are in 

between the two ends of the spectrum. The purpose of this study is to address this gap. The 

objective of this study is to identify the level of route planning in the freight transportation 

techniques. In these situations a technique that builds partial routes and has capabilities for 

dynamic adjustments in real-time may be the most suitable approach.  
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In this report, we introduce the concept of partial routing to address the gap between routing in 

deterministic static networks and dispatching in dynamic stochastic networks. The length of the 

partial route indicates the suitable level of route planning that is needed to account for the 

uncertainties. We investigate the benefits as well as methods for generating partial routing 

techniques for goods movements in uncertain and dynamic environments. Furthermore, we 

develop a dynamic routing methodology, which has the capability for dynamic route adjustments 

by incorporating updated information of traffic conditions.  

The report is organized as follows. Section 2 is devoted to the literature review. In Section 3,the 

partial routing methodology for dynamic stochastic networks is developed. In this section, we 

first investigate methods to estimate traveling times on arcs and arriving times at nodes of the 

network. Then, these estimations are used to generate partial routes, which guarantee some level 

of service. Simulation experiments are discussed in Section 4. To evaluate the developed partial 

routing method and to compare this method with other methods three scenarios are developed 

and considered: deterministic network, stationary stochastic network, and dynamic stochastic 

network. Section 5 concludes this report and provides recommendations for future studies. 

Section 6 considers the wider implementations of this study. 
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2 Literature Review 

Most developed techniques and models for planning, routing and scheduling assume ‘known’ 

static data as their input. For instance, in the Vehicle Routing Problem (VRP) the customer 

demands, travel costs, and travel times are known in advance. In this case, the fundamental 

problem is to determine the optimal route that minimizes a certain objective such as fleet size 

and travel distance (Laporte, 1992). The built-in assumption of these approaches is that there will 

be small deviations on the realization of the demand and travel times from the plan so that the 

pre-determined routes form a basis for either the pickup or delivery schedule.  

In the real world, however, operations in any traffic network contain a fairly high degree of 

uncertainties including variable waiting and travel times due to traffic congestion, arrival of new 

orders, and cancellation of existing orders. (e.g., see Powell et al., 1995; Powell, 1996). That is 

why human operators (dispatchers) still play a major role in route planning and vehicle 

scheduling in the trucking industry. Dispatchers assign drivers to cargoes and inform the drivers 

about traffic conditions and changes in customer requests in addition to assisting them in 

departure/arrival decisions and providing navigational information (Ng et al., 1995). Dispatchers 

currently obtain information about traffic conditions, mostly through radio traffic reports and 

through information relayed back by the drivers (Hall and Intihar, 1997). 

Since route planning is a dynamic problem, any efficient algorithm should also be dynamic. 

Therefore, the dynamic route planning has emerged as an active and intense area of research, 

both due to industry needs, but also due to technological advances, including map databases, 

location determination technology (e.g., GPS), wireless communication and mobile computing.  

Probably the stochastic shortest path problem (SSPP) is the most researched problem among 

non-deterministic route-planning problems. Pattanamekar et al. (2003) examined the 

characteristics of the mean and variance of traveling time under uncertainties. They developed 

mathematical models for predicting the first and second order approximation of the mean and 

variance of the individual travel time in the future. The approximations were found using 

Taylor’s series expansions around the estimated arrival time. 
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Fu (2001) studied the shortest path problem in traffic networks in which travel times on links are 

random variables with known mean and standard deviation. In his paper, the realization of 

traveling time was assumed to be estimated in advance and made available to vehicle’s routing 

system. Fu proposed a close-loop adaptive routing rule (CAR) with the objective of identifying 

the immediate node instead of the whole path. The problem was formulated as a dynamic 

programming problem, and an approximate labeling algorithm was developed to solve the 

problem. 

Hall (1996) showed that for a time-dependent stochastic network, standard path algorithms (e.g., 

Dijkstra’s algorithm) do not find the minimum expected cost path. He showed that the optimal 

choice is not a simple path but an adaptive decision rule (policy), and proposed using Dynamic 

Programming to find such a policy. 

Kim et al. (2003) studied optimal vehicle routing in a non-stationary stochastic network. They 

developed decision making procedures based on a Markov decision process model for 

determining the optimal driver attendance time, optimal departure times, and optimal routing 

policies. The methodology was used to develop routing strategies in the stochastic shortest path 

problem. The authors concluded that the real-time traffic information combined with historical 

data can significantly reduce expected total costs and vehicle usage. They also noted that the 

implementation of historical data is easier than incorporating real-time information. 

Bander and White (2002) also considered the non-stationary shortest path problem in which 

travel time along each arc is modeled as a random variable. The distribution of the random 

variable is dependent on the time that travel is begun. The paper presented an algorithm based on 

AO*. It demonstrated that AO* is significantly more computationally efficient than dynamic 

programming when lower bounds on the cost function is available.  

Miller-Hooks and Mahmassani (2003) explored three measures for comparing time-varying, 

random path travel times: deterministic dominance, first-order stochastic dominance, and 

comparison via expected value. The measures were used for comparing paths at a single 

departure time and then it was generalized over multiple time intervals. 

In contrast to the dynamic and stochastic shortest path problem (DSSPP), the research efforts on 

dynamic and stochastic vehicle routing problem (DSVRP) has been scant. Ichoua et al. (2003) 

investigated the time-dependent vehicle routing problem (TDVRP) with soft time-windows. 
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They presented a time-dependent speed model to calculate the traveling times between each two 

nodes. In this model the horizon time was divided into time periods. In each time period the 

speeds of vehicles are assumed to be constant. A heuristic method known as Tabu Search was 

developed to find good routes for the TDVRP problem. 

Bertsimas and Van Ryzin (1991) examined a model of the VRP problem, referred to as the 

Dynamic Traveling Repairman Problem (DTRP). In DTRP demands for service arrive in time; 

these demands are independent and uniformly distributed in a Euclidean service region. The 

problem is to find a policy for routing the service vehicle that minimizes the average time 

demands spent in the system (wait plus service). Hence, the problem is stochastic and dynamic in 

the sense that demands appear randomly in time and space. 

Bertsimas and Van Ryzin (1993) extended their work of 1991 by considering m identical 

vehicles to serve customers in the DTRP. They investigated two cases: 1) vehicles with 

unlimited capacity, 2) vehicles that can serve at most q customers. 
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3 Partial Routing in Dynamic Stochastic Networks 

In this section, we will develop the partial routing methodology in dynamic and stochastic 

transportation networks.  

1

2

3
4

i

j

1

2

3
4

i

j

Figure 1: A typical transportation network. 

Shown in Figure 1 is a typical transportation network. Let  be a transportation network 

(which is called a graph hereafter) with node set 

: ( , )G N A

{ }1,.., , ,..,N i j= n and arc set 

( ){ }, ,A i j i j N= ∈ . Solid lines in Figure 1 represent the direct connections (arcs) between two 

adjacent nodes and dashed lines are indirect connections, which consist of two or more direct 

connections.  

Given graph G, our proposed partial routing methodology consists of the following stages.  

1) Predicting traveling times on arcs: Given the time of the day as well as the historical 

and real-time data of the traveling time on arcs of graph G, we predict the future 

traveling times on the arcs, recursively. 

2) Estimating arrival times at nodes: Given the departure time from one node together 

with the predicted traveling times on arcs of graph G (from stage 1), the arrival times 

at other nodes of the network are estimated. 

3) Generating partial routes: Given the estimated arrival time at nodes of graph G (from 

stage 2), partial routes are generated which guarantee some service levels.  
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4) Selecting the best route: Among all partial routes (from stage 3), we select the one 

that covers the most nodes at least cost. Nodes on the generated partial route will be 

visited next.  

In the following, each stage will be investigated and discussed in detail. 

3.1 Predicting the Traveling Times on Arcs  

Here we assume that the historical data of traveling time on arcs of the network is available. 

These data can be obtained through observing and averaging the traveling time on each arc for a 

long period of time. In addition, we assume that the real-time information regarding the traveling 

time on arcs is also available.  

Let  

T be the length of the planning horizon,  

k be an index of time in this horizon T, 

( )ijx k  be the traveling time between nodes i and j at time k, 

( )h
ijx k  be the historical traveling time between nodes i and j at time k obtained from 

previous measurements on arc (i,j), 

( )iju k  be the historical change in the traveling time between nodes i and j from time k to 

k+1, in other words ( ) ( ) ( )1h h
ij ij iju k x k x k= + − , and  

( )ijy k  be the measured traveling time between nodes i and j at time k.  

We model the dynamic behavior of the traveling time on arc (i,j) as follows: 

 
( 1) ( ) ( ) (

( ) ( ) ( )
ij ij ij ij

ij ij ij

)x k x k u k w

y k x k v k

+ = + +

= +

k
 (1) 

where ( )ijw k  is the traveling time disturbance on arc (i,j) representing real-time changes in the 

traveling time at time k, which are not included in the historical data , and ( )iju k ( )ijv k is the 
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error in the measurements of traveling time on arc (i,j) which is introduced by sensing devices or 

human errors.  

We assume that , , ( )iju k ( )ijw k ( )ijv k , and ( )0ijx  are all mutually uncorrelated Gaussian 

random variables with the following specifications: 

 ( ){ } ( ) ( ) ( ){ } ( ) ( )2 2

;
0

ij ij
ij ij ij ij

k k k
E u k k E u k u l

k l
σ η

η
⎧ l+ =

= = ⎨
≠⎩

 (2) 

 ( ){ } ( ) ( ){ } ( )2

0;
0

ij
ij ij ij

q k k l
E w k E w k w l

k l
⎧ =

= = ⎨
≠⎩

 (3) 

 ( ){ } ( ) ( ){ } ( )2

0;
0
ij

ij ij ij
r k k l

E v k E v k v l
k l

⎧ =
= = ⎨

≠⎩
 (4) 

and  

 ( ) ( ) ( )( )0 0 ,ij ij ijx λ 0p  (5) 

In the following, we use a Kalman-Filtering corrector-predictor technique to estimate the future 

traveling times on the arcs of graph G.  

3.1.1 Single-Stage Predictor 

In the single stage predictor case, given the measured traveling time ( )ijy k on arc (i,j) at time k, 

we would like to estimate the traveling time ( )1ijx k + on the arc at time k+1. From estimation 

theory results, we know that the estimator that minimizes the mean-squared error of the 

estimation error is given by 

 ( ) ( ) ( ){ }ˆ 1 1ij ij ijx k k E x k y k+ = +  (6) 
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where (ˆ 1ij )x k k+  denotes the estimate of traveling time ( )1ijx k +  given measurement ( )ijy k , 

and is called the mean-squared predicted estimator of ( )1ijx k + . Using our dynamical model in 

(1), the predicted estimator (ˆ 1ij )x k k+  can be generated as  

 
( ) ( ) ( ) ( ) ( ){ }

( ) ( )

ˆ 1

ˆ

ij ij ij ij ij

ij ij

x k k E x k u k w k y k

x k k kη

+ = + +

= +
 (7) 

where (ˆij )x k k  is the mean-squared filtered estimator of ( )ijx k  given . Equation (7) 

indicates that to calculate the predicted estimator 

( )ijy k

( )ˆ 1ijx k k+  the value of the filtered estimator 

(ˆij )x k k  should be first obtained.  

Let’s denote by ( 1ij )x k k+%  the single-stage predictor error, which is defined as 

 ( ) ( ) ( )ˆ1 1ij ij ij 1x k k x k x k k+ = + − +%  (8) 

Note that since ( )1ijx k +  and  are joint Gaussian random variables, the estimator in (6) is 

unbiased [Mendel 1995], and we have,  

( )ijy k

 ( ){ }1ijE x k k 0+ =%  (9) 

Using (9), the error variance of the estimator is given by 

 

( )( ) ( ){ }
( ) ( )( ){ }
( ) ( ) ( ) ( ) ( )( ){ }
( ) ( ) ( ) ( )( ){ }

2

2

2

2

var 1 1

ˆ1 1

ˆ

ij ij

ij ij

ij ij ij ij ij

ij ij ij ij

x k k E x k k

E x k x k k

E x k u k w k x k k k

E x k k u k k w k

η

η

+ = +

= + − +

= + + − −

= + − +

% %

%

 (10) 
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where ( ) ( ) (ˆij ij ij )x k k x k x k k= −%  is the filter error which is the error of estimating ( )ijx k  given 

. Since ( )ijy k ( )ijx k k% , ( ) ( )( )ij iju k kη− , and ( )ijw k  are statistically uncorrelated, (10) can be 

simplified as, 

 
( )( ) ( ){ } ( ) ( )

( )( ) ( ) ( )

2 2 2

2 2

var 1

var

ij ij ij ij

ij ij ij

x k k E x k k k q k

x k k k q k

σ

σ

+ = + +

= + +

% %

%
 (11) 

Equations (9) and (11) provide the mean and variance of the single-stage predictor error of the 

mean-squared predicted estimator of ( )1ijx k + given in (7). 

3.1.2 mth-Stage Predictor 

In this subsection, we extend the single-stage predictor to the mth-stage predictor, such that given 

the measured traveling time  at time k on arc (i,j), we determine an unbiased estimate of 

traveling time on the arc at time k+m, where m≥1. Similar to the single-stage predictor, we know 

that the estimator that minimizes the mean-squared estimation error is given by 

( )ijy k

 ( ) ( ) ( ){ }ˆij ij ijx k m k E x k m y k+ = +  (12) 

where (ˆij )x k m k+  is the estimate of ( )ijx k m+  given the measurement . Using (1) 

recursively, we have  

( )ijy k

 
( ) ( ) ( ) ( ) ( )

( ) ( )

1 1

0 0

1

0

ˆ

ˆ

m m

ij ij ij ij ij
l l

m

ij ij
l

x k m k E x k u k l w k l y k

x k k k lη

− −

= =

−

=

⎧ ⎫+ = + + + +⎨ ⎬
⎩ ⎭

= + +

∑ ∑

∑
 (13) 

The mth-stage predictor error is defined as ( ) ( ) ( )ˆij ij ijx k m k x k m x k m k+ = + − +% . Similar to the 

single stage predictor case, since ( )ijx k m+  and ( )ijy k  are joint Gaussian random variables, the 

estimator in (13) is unbiased, i.e.,  
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 ( ){ } 0ijE x k m k+ =%  (14) 

The error variance of the mth-stage predictor is  

 

( )( ) ( ){ } ( ) ( )( ){ }
( ) ( ) ( ) ( ) ( )

( ) ( ) ( )( ) ( )

22

21 1 1

0 0 0

21 1

0 0

ˆvar

ˆ

ij ij ij ij

m m m

ij ij ij ij ij
l l l

m m

ij ij ij ij
l l

x k m k E x k m k E x k m x k m k

E x k u k l w k l x k k k l

E x k k u k l k l w k l

η

η

− − −

= = =

− −

= =

+ = + = + − +

⎧ ⎫⎛ ⎞⎪ ⎪= + + + + − − +⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

⎧ ⎫⎛ ⎞⎪ ⎪= + + − + + +⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

∑ ∑ ∑

∑ ∑

% %

%

 (15) 

Using (2) and (3), we know that ( )ijx k k% , ( ) ( )( )ij iju k l k lη+ − + , and  are statistically 

uncorrelated for , therefore 

(ijw k l+ )

0,..., 1l m∀ = −

 
( )( ) ( ){ } ( ) ( )

( )( ) ( ) ( )

1 12 2 2

0 0
1 1

2 2

0 0

var

var

m m

ij ij ij ij
l l

m m

ij ij ij
l l

x k j k E x k k k l q k l

x k k k l q k l

σ

σ

− −

= =

− −

= =

+ = + + + +

= + + +

∑ ∑

∑ ∑

% %

% +
 (16) 

Equations (14) and (16) present the mean and variance of the mth-stage predictor error of the 

mean-squared predicted estimator of ( )ijx k m+  given in (13). Equation (16) indicates that as m, 

the number of stages of prediction, increases, the variance of the prediction error increases too. 

In other words, as m becomes larger, we face more uncertainties in estimating the traveling time 

on arc (i,j) using the current information at time k.  

3.1.3 State Filter 

As seen from (7) and (13), the predicted estimate of traveling time ( )ijx k m+  on arc (i,j) at time 

k+m,  m≥1, depends on the value of the filtered estimator ( )ˆijx k k , i.e. the estimate of traveling 

time ( )ijx k  at time k, given the measured traveling time ( )ijy k at time k. The Kalman filter 

allows us to calculate the filtered estimator ( )ˆijx k k . The predictor-corrector form of the Kalman 

filter is as follows [Mendel 1995]: 
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 ( ) ( ) ( ) ( )ˆ ˆ 1ij ij ij ijx k k x k k k y k k= − + Κ % 1−  (17) 

where for the dynamic model in (1) ( )1ijy k k −%  is the measurement residual process of ( )ijy k , 

and is defined as  

 ( ) ( ) ( )ˆ1ij ij ijy k k y k x k k 1− = − −% , (18) 

and  is the Kalman gain of arc (i,j) at time k which is specified by the following 

equations: 

( )ij kΚ

 ( )
( ) ( )( )

( )( )
( )( )

( )( ) 2

cov , 1 var 1

var 1 var 1 ( )
ij ij ij

ij
ij ij ij

x k y k k x k k
k

y k k x k k r k

− −
Κ = =

− −

% %

% % +
, (19) 

and from (11) 

 ( )( ) ( )( ) ( ) (2 2var 1 var 1 1 1 1ij ij ij ijx k k x k k k q kσ− = − − + − + −% % ) , (20) 

and 

 ( )( ) ( )( ) ( )( )var 1 var 1ij ij ijx k k k x k k= − Κ −% % . (21) 

It is always possible that the value of ( )( )var 1ijx k k −%  is equal to zero for some k, which makes 

equation (19) undefined if . Therefore, we require that ( ) 0ijr k = ( ) 0ijr k >  for all k. 

Note that the error variance of traveling time on arc (i,j) at time k=0 is given by (5), i.e., 

( )( ) ( )var 0 0 0ij ijx p=% , which initializes equations (19) to (21). In other words, given 

( )( )var 0 0ijx% , ( )2
ij kσ , , and ( )2

ijq k ( )2
ijr k , 0,1, 2,k∀ = L  by (5), (2), (3), and (4), respectively, 

all variables in (19) to (21) can be determined recursively in the following order:  

 ( )( ) ( )( ) ( ) ( )( )using (20) using (19) using (21)var 0 0 var 1 0 1 var 11ij ij ij ijx x x⎯⎯⎯⎯→ ⎯⎯⎯⎯→Κ ⎯⎯⎯⎯→ →% % % L . (22) 

In particular, the Kalman gain of arc (i,j) at each time k, is determined by (22).  ( )ij kΚ
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Note also that Equation (17) is the predictor-corrector form of the Kalman filter, in which the 

predictor step (ˆ 1ijx k k − )  uses information from (7) to predict the next step, and the corrector 

step ( ) ( 1ij ijk y k kΚ % )−  uses the new measurement to update or correct the predictor estimation 

(ˆ 1ijx k k − ) . It can be shown that the filter estimator given by (17) is unbiased [Mendel 95].  

The filtered estimate of traveling time on arc (i,j) at time k=0 is also given by (5), i.e., 

( ) ( )ˆ 0 0 0ij ijx λ= , which initializes equations (7) and (17). In other words, given ( )ˆ 0 0ijx , 

, and ,  by (5), (2), and (22), respectively, together with the 

measured traveling time  at each arc (i,j) at each time k, the mean-squared predicted 

estimate and mean-squared filtered estimate of 

( )ij kη ( )1ij kΚ + 0,1, 2,k∀ = L

( )ijy k

( )ijx k  can be calculated recursively as follows: 

 ( ) ( ) ( )using (7) using (17)ˆ ˆ ˆ0 0 1 0 11ij ij ijx x x⎯⎯⎯⎯→ ⎯⎯⎯⎯→ →L . (23) 

Therefore, at each time k and by using the mth-stage predictor in (13), the traveling time 

( )ˆijx k m k+  on each arc (i,j) at time k+m, can be predicted.  

3.2 Estimating Arrival Times at Nodes  

In the previous section, we developed a methodology to predict the traveling times on arcs of a 

given transportation network. Available historical (offline) data are used for predicting the 

traveling times, and new measurements (online) were used to correct and update our prediction 

at each instant of time. In this section, we use the predicted traveling times on arcs to estimate 

the arrival times at each node of the network.  

Let’s consider graph G as shown in Figure 1, again. We define route r in graph G as a set of 

nodes visited in the specified order. Figure 2 shows a typical route { }1,2,.., , ,..,r i j= d . Let also 

 be the arc set associated with route r which is defined as rA

  ( ){ }, , ,and  is visited immidiately after rA i j i j r j i= ∈  (24) 
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1

2

3

d-1

i

j

d

1

2

3

d-1

i

j

d

Figure 2: A typical route r in graph G. 

We assume that the departure time from node {1} on route r, , is given. We also assume that 

predicted traveling times on arcs of graph G are available using the developed methodology in 

Section 3.1. Given , the departure time from node {1}, the arrival time at all other nodes on 

route r in Figure 2 can be determined using the following set of equations, 

1
rz

1
rz

 

( )
( )

( )

( )

2 1 12 1

3 2 23 2

1 1,

r r r

r r r

r r r
j i ij i

r r r
d d d d d

z z x z

z z x z

z z x z

z z x z− − −

= +

= +

= +

= +

M

M

1

 (25) 

where  is the arrival time at node i taking route r, and r
iz ( )r

ij ix z  is the traveling time on arc 

(i,j)∈  at time . It should be noted that, in general  takes a real value, while the 

methodology developed in Section 3.1 was based on integer numbers of discrete-time indices, 

k’s.  

rA r
iz r

iz

Generally speaking, the dynamics of many transportation networks is slow. Therefore, by 

selecting an appropriate sampling time, the error of approximating ijx  at time  with its value at 

the nearest sampling time would be negligible. More precisely, let T  be the sampling period, 

and , where k is an integer number representing the time index. The 

argument is that with an appropriate selection of sampling period T , 

r
iz

S

( )1r
S ik T z k T⋅ ≤ < + ⋅ S

S ijx  at time  can be well r
iz
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approximated with (ij s )x k T⋅ , which for simplicity in this report has been denoted by ( )ijx k . 

Besides, from a practical point of view, the traveling time on each arc (i,j) cannot be measured 

continuously in time, i.e., in practice,  and  in (1) are discrete-time variables evaluated at 

each , .  

iju ijy

Sk T⋅ 0,1, 2,k∀ = L

Given the sampling period  and the arrival time at node i, , we define the discretizing 

function  , which returns the discrete-time index, as follows: 

ST r
iz

:Θ →

 ( ) i
i

S

zz
T

⎢ ⎥
Θ = ⎢ ⎥

⎣ ⎦
 (26) 

where the floor function  returns the largest integer equal to or less than its argument. In the 

sequel, we use traveling times 

⋅⎢ ⎥⎣ ⎦

ijx  approximated at each time instant Sk T⋅ . 

3.2.1 Estimating the arrival time at the second node 

In this subsection, and for the purpose of route planning, we will estimate the arrival time at each 

node of route r in (25). Given the departure time from node {1}, , the mean-squared estimate 

of the arrival time at node {2}, the next node on route r, is  

1
rz

 
{ } { } { }

( ) ( )( )
2 2 1 1 12 1 1 12 1

1 12 1 1

ˆ

ˆˆ

r r r r r r

r r r

z E z z E z x z z E x z

z x z z

= = + = +

≅ + Θ Θ

r

 (27) 

where  is the discretizing function defined in (26) and Θ ( ) ( )( )12 1 1ˆ r rx z zΘ Θ  is the mean-squared 

filtered estimate of traveling time on arc (1,2), 12x , at time ( )1
rzΘ  given the measured traveling 

time  at time .  ( )(12 1
ry zΘ )

2
r

( )1
rzΘ

We denote by  the error of the estimator in (27), which is defined as . Recall from 

Section 3.1 that 

2
rz% 2 2 ˆr rz z z= −%

( )12x̂ k k ,  has a normal distribution. Besides, 0,1, 2,k∀ = L (12ˆ )x k k  and  are 1
rz
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joint Gaussian random variables, hence, the estimator in (27) is unbiased, and the error variance 

of the estimator is 

 
( ) ( ){ }

( ) ( )( )( ) ( ) ( )( )( )

2

2 2 2

2

12 12 1 1 12 1 1

ˆvar

ˆ var

r r r

r r r r

z E z z

E x x z z x z z

= −

⎧ ⎫≅ − Θ Θ = Θ Θ⎨ ⎬
⎩ ⎭

%

%
 (28) 

3.2.2 Estimating the arrival time at other nodes 

Likewise, given , the mean-squared estimate of the arrival time at node {3} is  1
rz

 
{ } { } { } { }

( ) ( )( )
3 3 1 2 23 1 2 1 23

2 23 2 1

ˆ

ˆˆ

r r r r r r r

r r r

z E z z E z x z E z z E x z

z x z z

= = + = +

≅ + Θ Θ

1
r

 (29) 

where ( ) ( )(23 2 1ˆ r r )x z zΘ Θ  is the mean-squared predicted estimate of 23x  at time ( )2
rzΘ  given the 

measured traveling time at time ( )(23 1
ry zΘ ) ( )1

rzΘ . 

It should be noted that the estimator in (29) cannot be realized since the value of  is not 

available at the time of route preplanning. To overcome the problem, we use the estimate , 

computed in (27), instead of  in (29). Therefore, the estimator in (29) can be approximated by 

2
rz

2ˆ
rz

2
rz

 ( ) ( )( )3 2 23 2 1ˆˆ ˆ ˆr r r rz z x z z≅ + Θ Θ  (30) 

Later in this report, we will show that the error of estimation in (30) is negligible for appropriate 

selections of the sampling period . Moreover, we will find a bound on the error variance of the 

estimator in (30).  

ST

Now, let’s assume that node i precedes node j on route r. Let’s also assume that given  the 

arrival time at node i on route r is estimated by . Given , the arrival time at node j, the 

immediate node after node i on route r can be estimated by  

1
rz

ˆr
iz ˆr

iz
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{ } { } { } { }

( ) ( )( )
1 1 1

1

ˆ

ˆˆ ˆ

r r r r r r r
j j i ij i ij

r r r
i ij i

z E z z E z x z E z z E x z

z x z z

= = + = +

≅ + Θ Θ

1
r

 (31) 

We denote by r
jz%  the error of estimation in (31) which is defined as ˆr r

j j
r
jz z z= −% . In the 

following, we will show that if  is an unbiased estimate of the arrival time at node i, the error 

of the arrival time estimator of 

ˆr
iz

ˆr
jz  in (31) will be negligible as the sampling period  becomes 

smaller. 

ST

Definition 1 (Bounded function): The discrete-time function :µ  is said to be bounded 

in time if there exists a 

→

µ < ∞  such that ( )kµ µ≤ , 0,1, 2,k∀ = L  . 

Proposition 1: Let route r start from node {1} and pass through nodes i and j, in that order. Let 

 be the departure time from node {1}, and  be an unbiased estimate of the arrival time at 

node i given . Let also  be a discrete-time random process with 

1
rz ˆr

iz

1
rz ( )h k ( ){ } ( )E h k kµ= , 

 , where  is a bounded function for all , then  0,1, 2,k∀ = L ( )kµ 1
rk z≥

 ( )
( )

( )
( )

( )

( )

1 1

ˆ1 1r r
i i

r r

z z

k z k z

E h k kµ
Θ − Θ −

=Θ =Θ

⎧ ⎫⎪ ⎪ ≅⎨ ⎬
⎪ ⎪⎩ ⎭

∑ ∑  (32)  

where the error of the approximation goes to zero as the sampling period  becomes smaller. ST

Proof: 

 ( )
( )

( )
( )

( )

( )
( )

( )

( )
( )

( )

( )
( )

( )

( )

1 1 1

ˆ ˆ1 1 1 1

ˆ ˆ

r r r r r
i i i i i

r r r r
i i

z z z z z

k z k z k z k z k z

1

r

E h k E h k h k E h k E h k
Θ − Θ − Θ − Θ − Θ −

=Θ =Θ =Θ =Θ =Θ

⎧ ⎫ ⎧ ⎫ ⎧ ⎫ ⎧ ⎫⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪= + = +⎨ ⎬ ⎨ ⎬ ⎨ ⎬ ⎨
⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎩ ⎭ ⎩ ⎭ ⎩ ⎭

∑ ∑ ∑ ∑ ∑ ⎪
⎬  (33) 

where, without loss of generality, in (33) we assumed that ( ) ( )ˆr
izΘ ≥ Θ r

iz

 

. The first term 

in (33) can be simplified as follows 

( )
( )

( )
( ){ }

( )

( )
( )

( )

( )

1 1 1

ˆ ˆ ˆ1 1 1r r r
i i i

r r r

z z z

k z k z k z

E h k E h k kµ
Θ − Θ − Θ −

=Θ =Θ =Θ

⎧ ⎫⎪ ⎪ = =⎨ ⎬
⎪ ⎪⎩ ⎭

∑ ∑ ∑  (34) 
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To compute the second term in (33), we use the fact that for any two random variables x 

and y, we have (Papoulis [1991])  

 ( ){ } ( ){ }{ }, ,E g x y E E g x y x=  (35) 

Using (35), the second term in (33) can be written as 

 
( )

( )
( )

( )
( ) ( )

( )
( )

1 1

ˆ

r r
i i

r
i

z z
r
i

k z

( ) 1r
iz

ˆ ˆr r
i ik z k z

E h k E E h k z E kµ
Θ − Θ −

=Θ

⎧ ⎫⎧ ⎫⎧ ⎫ ⎛ ⎞⎪ ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪⎜ ⎟= =⎨ ⎬ ⎨ ⎨ ⎬⎬ ⎨ ⎬
Θ −⎧ ⎫

=Θ =Θ⎜ ⎟⎪ ⎪ ⎪ ⎪⎩ ⎭⎪ ⎪ ⎪⎪⎩ ⎭ ⎝ ⎠⎩ ⎭⎩ ⎭
∑ ∑ ∑  (36) 

Since  is a bounded function for all  (36) can be simplified as f

 

( )kµ 1
rk z≥ , ollows 

( )
( )

( ) ( )

( )1 1r r
i iz z

k

E k E
ˆ ˆr r
i ik z z

µ µ
Θ − Θ −

=

⎧ ⎫ ⎧ ⎫⎪ ⎪ ⎪ ⎪≤⎨ ⎬ ⎨ ⎬
⎪⎩

∑ ∑  (37) 

Note that as the sampling period  becomes smaller, the last term in (37) can be 

approximated by 

 

=Θ Θ⎪ ⎪ ⎪⎩ ⎭ ⎭

ST

( )

( )
( )

{ } { }

ˆ

ˆ

ˆ. . . 0

r r

r
i

r
i

r
i

z

z
r r r

S S i i S i
z

T E d T E z z T E zµ τ µ µ

1

ˆ

i i

r
i

z z

S
k z

E E d Tµ µ τ
Θ −

=Θ

⎧ ⎫ ⎧ ⎫⎪
⎬

⎪ ⎪⎩ ⎭

⎧ ⎫⎪ ⎪= ⋅ = ⋅ − = ⋅ =⎨ ⎬
⎪ ⎪⎩ ⎭
∫ %

 (38) 

In other words, by appropriately selecting  and substituting (37) and (38) in (36) the 

second term in (33) becomes zero. Hence, using (34) and (33), (32) is obtained.♦ 

Proposition

sampling period

⎪ ⎪ ⎪≅ ⋅ ⋅⎨ ⎬ ⎨
⎪ ⎪⎩ ⎭

∑ ∫

ST

 2: Let iz  be an unbiased estimator of iz . Then, with proper selection of the 

 ST , the arrival time estimator ˆ j

ˆr r

rz  in (31) will also be an unbiased estimator of 

r
jz . 

Proof: 
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Let r
jz%  denote the estimator error, which is defined as ˆr r r

j j jz z z= −% , and let ST  be small 

enough. The mean estimation error in (31) is 

{ } { } ( ) ( )( ){ }1ˆˆ ˆ ˆr r r r r r r
j j j i ij i ij iE z E z z E z x z x z z= − = + − − Θ Θ%  (39) 

e { } 0iE zrSinc iz  is an unbiased estimator of iz , i.e.,  ˆr r =% , (39) can b written as 

follows, 

 Equation e 

{ } ( ) ( )( ){ }
( )( ) ( )

( ) (

( )
( )

)

( )
( ) ( )( ) ( )

( )

( )

( ) ( )( )} ( )
( )

( )
( )

( )

( )
( )

( )

( )
1

1 1 1

1

ˆ1 1 1

ˆ1 1

1 1

ˆ ˆ

ˆ
r r r
i i i

r

r r r
i i i

r r r

r r r
j ij ij i

z z z
r r r

ij

z z z
r r

ij ij ij ij
k z k z k z

E x x z z

E x z u k w k x z z k

z z E u k E w k k

η

η

Θ − Θ − Θ −

Θ − Θ − Θ −

=Θ =Θ =Θ

= − Θ Θ

⎧ ⎫⎪ ⎪≅ Θ + + − Θ Θ −⎨ ⎬

⎧ ⎫ ⎧ ⎫⎪ ⎪ ⎪ ⎪Θ + + −⎨ ⎬ ⎨ ⎬
⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎩ ⎭

∑ ∑ ∑

∑ ∑

%

%
1

∑

 (40) 

where in deriving (40), we use (1) and (13). As discussed, the mean-squared filtered 

estimate 

E z

{
1 1

1 1 1
r r

ij ij ij ij
k z k z k z

E x

=Θ =Θ =Θ⎪ ⎪⎩ ⎭

= Θ

( )x̂ k k  is unbiased; i.e., 

 ( ) ( )( ){ }1 1 0r r
ijE x z zΘ Θ =%  (41) 

 

Using Proposition 1 and Equations (2) and (3), Equation (40) can be simplified as 

follows, 

{ } ( ){ }
( )

( )
( ){ }

( )

( )
( )

( )

( )

( ) ( ) 0
r r

ij ijl lη η= − =∑ ∑
( )

( )

( )

( )
1 1

1 1

ˆ ˆ ˆ1 1 1

ˆ ˆ1 1

r r r
i i i

r r

r r
i i

z z z
r
j ij ij

k z k z

z z

k z k z

E z E u k E w k
Θ − Θ − Θ −

=Θ =Θ

Θ − Θ −

=Θ =Θ

≅ +∑ ∑%

 (42) 

which indicates that our estimator in (31) is an unbiased estimator if  is properly 

selected.♦ 

In the following, we calculate the error variance of arrival time estimator 

1
r

ij
k z

kη
=Θ

− ∑

ST

ˆr
jz  in (31). 

20 



  

Proposition 3: Let route r start from node {1} and pass through nodes i and j, in that order. Let 

 be the departure time from node {1}, and  be an unbiased estimate of the arrival time at 

node i given . Let also  be a discrete-time random process with 

1
rz ˆr

iz

1
rz ( )h k ( ){ } ( )E h k kµ= , and  

 ( ){ } ( ) ( )2 2

( )
0 l k

k k l k
E h l h k

δ µ⎧ + =
= ⎨         , 0,1, 2,k l∀ = L

≠⎩
 (43) 

where  are bounded functions for all , then  ( )kδ  and µ ( )k 1
rk z≥

 ( )
( )

( )
( )

( )

( )

1 1

2var
r rk z k z

h k kδ
=Θ =Θ

⎜ ⎟ ≅
⎜ ⎟

ˆ1 1r r
i iz zΘ − Θ −⎛ ⎞

⎝ ⎠
∑ ∑

 becomes sm

roof: 

 Using (43), we have  

 (44) 

where the error of the approximation goes to zero as the sampling period aller.  ST

P

 

( )
( )

( )
( )

( )

( )
( )

( )

( )

( )
( )

( )
( )

( )

1

1 1 1

1

1 1

ˆ

ˆ 1

ˆ

var var

var var

r

r r r

r

r r

z

k z k z k z

z

k z k z

h k h k h k

h k h k

Θ

=Θ =Θ =Θ

Θ −

=Θ =Θ

⎞
⎜ ⎟ ⎜ ⎟= +
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎛ ⎞ ⎛
⎜ ⎟ ⎜ ⎟= +
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∑ ∑ ∑

∑ ∑

where in (45) we assumed that 

1̂1 1 1r r
iz zΘ − Θ − −⎛ ⎞ ⎛

( )1 1rzΘ − ⎞
 (45) 

( ) ( )ˆr r
i iz zΘ ≥ Θ .  The case  will be 

ter. The first term in (45) can be simplified as follows 

 

( ) ( )ˆr r
i iz zΘ < Θ

discussed la

(
( )

( )

)
( )( )

( )

( )
( )

( )

( )

1 1 1

ˆ1 1 1
2var var

r r r
i i i

r r r

z

k z k z k z

h k h k kδ
− Θ − Θ −

=Θ =Θ =Θ

⎞
⎜ ⎟ = =
⎜ ⎟
⎝ ⎠

∑ ∑ ∑  (46) 

In deriving (46), we used (43). Using (35), the second term in (4

follows  

ˆ ˆz zΘ⎛

5) can be calculated as 
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( )
( )

( )
( )

( )

( )
( )

( )

)(

 ( )
( )

( )
( )

( )

( )

( )
( ) 1

2

r
iz

E kδ
Θ −

( )

2
1 1

ˆ ˆ

ˆ

r r
i i

r r
i i

r
i

z

z z

k z k z

k z

E E h k E h k

− Θ

Θ − Θ −

=Θ =Θ

=Θ

2
1 1 1

ˆ ˆ ˆ

var
r r r
i i i

r r r
i i i

z z

k z k z k z

h k E h k E h k
Θ − Θ −

=Θ =Θ =Θ

⎧ ⎫⎛ ⎞⎛ ⎞ ⎧
⎜ ⎟⎜ ⎟

⎫⎪ ⎪ ⎪ ⎪= −⎨ ⎨ ⎬ ⎬⎜ ⎟⎜ ⎟ ⎪ ⎪ ⎪ ⎪⎝ ⎠ ⎩ ⎭

r
iz

⎝ ⎠⎩ ⎭
⎧ ⎫⎧ ⎫⎛ ⎞⎧ ⎫⎪ ⎪ ⎪ ⎪⎜ ⎟= −

∑ ∑ ∑

⎪⎪
⎨ ⎨ ⎨ ⎬⎜ ⎟ ⎬⎬
⎪ ⎪ ⎪ ⎪ ⎪⎪⎩ ⎭⎝ ⎠⎩ ⎭⎩ ⎭

⎪ ⎪⎩ ⎭

∑ ∑

Since  is bounded for all  (47) can be computed as follows 

 

 (47) 

⎧ ⎫⎪ ⎪= ⎨ ⎬∑

( )kδ 1
rk z≥ ,

( )
( )

( )
( )

( )

( )1 1
2

ˆ ˆ

0
r r
i i

r r
i i

z z

k z k z

E k Eδ δ
Θ − Θ −

=Θ =Θ

⎧ ⎫ ⎧⎪ ⎪ ⎪ ⎫⎪≤ ≅⎨ ⎬ ⎨
⎪ ⎪ ⎪⎩ ⎭ ⎩

∑ ∑ ⎬
⎪⎭

 (48) 

where in obtaining (48) the same procedure used in (38) was applied here. Substituting 

(46), (47) and (48), equation (44) is obtained. 

Recall that in (45), we assumed ( ) ( )ˆr r
i iz zΘ ≥ Θ . We will show that (44) is also valid for 

e ( ) ( )ˆr r
i iz z< Θ . When ( ) ( )ˆr rz< Θ , (45) can be written as fthe cas Θ i izΘ ollows 

 

( )
( )

( )
( )

( )

( )
( )

( )

( )

( )
( )

( )
( )

( ) ( )
1

ˆ ˆ ˆ ˆ1 1 1 1

var var 2cov ,
i i i i

r r
i

z z z z

k z k z

h k h k h l h k
Θ − Θ − Θ − Θ −

=Θ =Θ

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟= + −
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∑ ∑ ∑ ∑
( ) ( )

( )

( )

( )

( )
1 1

1

ˆ ˆ1 1 1

var var
r r r
i i i

r r r
i

r r r r

r r
i

z z z

k z k z k z

l z k z

h k h k h k
Θ − Θ − Θ −

=Θ =Θ =Θ

=Θ =Θ

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟= −
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎜ ⎟
⎝ ⎠

∑ ∑ ∑
 (49) 

nd term in the 

 

Repeating (47) and (48), the seco last row of (49) is approximately zero for 

small ST , i.e., 

( )
( )

( )ˆ 1

var 0
r
i

r
i

z

k z

h k
Θ −

=Θ

⎛ ⎞
⎜ ⎟ ≅
⎜ ⎟
⎝ ⎠

∑  (50) 

The third term in (49) can be calculated as follows 
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( )
( )

( )
( )

( )

( )

( )
( )

( )
( )

( )

( )
( )

( )

( )
( )

( )

( )
1

1 1

ˆ ˆ1 1

ˆ ˆ ˆ ˆ1 1 1 1

cov ,
r r
i i

r r
i

r r r r
i i i i

r r r r
i i

z z

l z k z

z z z z

l z k z l z k z

h l h k

E h l h k E h l E h k

Θ − Θ −

=Θ =Θ

Θ − Θ − Θ − Θ −

=Θ =Θ =Θ =Θ

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠

⎧ ⎫ ⎧ ⎫ ⎧⎪ ⎪ ⎪ ⎪ ⎪= ⋅ − ⋅⎨ ⎬ ⎨ ⎬ ⎨
⎪ ⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎩ ⎭ ⎩

∑ ∑

∑ ∑ ∑ ∑
 

⎫⎪
⎬
⎪⎭

 (51) 

Using the same procedure in (37) and (38), and knowing that the random variables ( )h l  

and ( )h k  are s k l≠tatistically uncorrelated for all , (51) can be written as  

 

( )
( )

( )
( )

( )

( )
( )

( )

( )
( )

( )

( )

( ) ( )
( )

( )
( ) ( )

( )

( )

( ) ( )( )
( )

( )

1 1

ˆ ˆ ˆ1 1 1

ˆ 1

ˆ 1
2 2

cov ,

.

r r r
i i i

r r r r
i i

r r
i

r r
i i

r
i

r
i

z z z

l z k z l z k z

z
r
i

k z k z

z

k z

h l h k E h l

h k h k z

E k kδ µ

Θ − Θ − Θ −

=Θ =Θ =Θ =Θ

−

=Θ =Θ

Θ −

=Θ

⎛ ⎞ ⎧⎪
ˆ 1r
iz

h k
Θ − ⎫⎪⎜ ⎟ = ⋅⎨⎜ ⎟ ⎪ ⎪⎝ ⎠ ⎩ ⎭

⎬

ˆ 1

.
iz

E h k h k E E
Θ − Θ⎧ ⎫⎧ ⎫⎞ ⎪⎪⎟ ⎬⎬⎜ ⎟⎪ ⎪ ⎪ ⎪ ⎪⎪⎩ ⎭ ⎝ ⎠⎩ ⎭⎩ ⎭

⎧⎪= +⎨
⎩

∑ ∑ ∑

∑

∑

⎧ ⎫ ⎛⎪ ⎪ ⎪ ⎪⎜= =⎨ ⎬ ⎨ ⎨∑

∑

( )( )
( )

( )ˆ 1
2 2 0

r
i

r
i

z

k z

E δ µ
Θ −

=Θ

⎫⎪
⎬

⎪ ⎪⎭
⎧ ⎫⎪ ⎪≤ + ≅⎨ ⎬
⎪ ⎪⎩ ⎭

∑

 (52) 

Proposition 4: Given the assumptions in proposition 3, we have  

 

where in obtaining (52) the same procedure in (37) and (38) is applied. By considering 

Equations (46) through (52), Equation (44) is obtained.♦ 

( )
( )

( )
( )

( )

( )
( )

1

1 1

ˆ

. .
r r
i i

r r
i

z z
r r
i i

k z k z

E z h k E z k T zµ µ
Θ − Θ −

=Θ =Θ

⎧ ⎫ ⎧ ⎫⎛ ⎞ ⎛ ⎞⎪ ⎪ ⎪ ⎪⎜ ⎟ ⎜ ⎟= ≤⎨ ⎬ ⎨ ⎬⎜ ⎟ ⎜ ⎟⎪ ⎪ ⎪ ⎪⎝ ⎠ ⎝ ⎠⎩ ⎭ ⎩ ⎭
∑ ∑% % var r

S i%  (53) 

here r
i  is the arrival time estimation error at node i on route r. 

Proof: 

 ˆr r
i iz z z= −%w
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( )ˆ 1r

izΘ −

( )
( )

( )
( )

( )

( )
(

( )

( )ˆ1 1 1

ˆ

. .
r r r
i i i

r r r

z z z
r r
i i

k z k z k z

E z h k E z h k h k
Θ − Θ − Θ −

=Θ =Θ =Θ

⎧ ⎫ ⎧ ⎫⎛ ⎞ ⎛ ⎞⎪ ⎪ ⎪ ⎪⎜ ⎟ ⎜= +⎨ ⎬ ⎨⎜ ⎟ ⎜⎪ ⎪ ⎪
)

( )
( )

( )
( )

( )

1 1

1

1

ˆ

. .

i

r
i

r r
i

z
r r
i i

k z k z

E z h k E z h k
Θ −

=Θ =Θ

⎟⎬⎟⎪⎝ ⎠ ⎝ ⎠⎩ ⎭ ⎩ ⎭
∑ ∑ ∑% %

⎧ ⎫ ⎧⎛ ⎞ ⎛ ⎞⎫⎪ ⎪ ⎪ ⎪⎜ ⎟ ⎜ ⎟= +⎨ ⎬ ⎨ ⎬⎜ ⎟ ⎜ ⎟⎪ ⎪ ⎪ ⎪⎝ ⎠ ⎝ ⎠⎩ ⎭ ⎩ ⎭
∑ ∑% %

 (54) 

where in (54), and without loss of generality, we assumed . Since  is an 

unbiased e o, i.e., 

 
⎫⎪

ˆr r
i iz z≥ ˆr

iz

stimate of the arrival time r
iz , the first term in (54) is zer

( )
( )

( )
{ } ( )

( )

( )

1 1

ˆ ˆ1 1

. 0
r r
i i

r r

z z
r r
i i

k z k z

E z h k E z E h k
Θ − Θ −

=Θ =Θ

⎧ ⎫⎛ ⎞ ⎧⎪ ⎪ ⎪⎜ ⎟ = =⎨ ⎬ ⎨⎜ ⎟⎪ ⎪ ⎪⎝ ⎠ ⎩⎩ ⎭
∑ ∑% % ⎬

⎪⎭
 (55) 

he second term in (54) can be calculated as follows T

( )
( )

( )
( )

( )

( )

( )

 

( )

( ) 1

ˆ

r
i

r
i

z

k z

E z k
Θ −

=Θ

1 1

ˆ ˆ

. .

.

r r
i i

r r
i i

z z
r r r
i i i

k z k z

r
i

E z h k E E z h k z

µ

Θ − Θ −

=Θ =Θ

⎧ ⎫⎧ ⎫ ⎧ ⎫⎛ ⎞ ⎛ ⎞⎪ ⎪ ⎪ ⎪ ⎪⎪⎜ ⎟ ⎜ ⎟=⎨ ⎬ ⎨ ⎨ ⎬⎬⎜ ⎟ ⎜ ⎟⎪ ⎪ ⎪ ⎪ ⎪⎪⎝ ⎠ ⎝ ⎠⎩ ⎭ ⎩ ⎭⎩ ⎭

⎜ ⎟=
⎧ ⎫⎛ ⎞⎪ ⎪
⎨ ⎬⎜ ⎟⎪ ⎪⎝ ⎠

∑ ∑% %

%

 (56) 

ince  is a bounded function for all  we have  

⎩ ⎭
∑

 ( )kµ 1
rk z≥ ,S

 ( )
( )

( )

(ˆ

. .
r
i i

r r
i i

k z k z

E z k E z
)

( )1 1

ˆ

r r
i i

r

z z

µ µ
Θ − Θ −⎧ ⎫ ⎧ ⎫⎛ ⎞ ⎛ ⎞⎪ ⎪ ⎪ ⎪⎟⎬⎟⎪⎠⎭

 (57) 

For small sampling period , (57) can be approximated by 

 

=Θ =Θ

⎜ ⎟ ⎜≤⎨ ⎬ ⎨⎜ ⎟ ⎜⎪ ⎪ ⎪⎝ ⎠ ⎝⎩ ⎭ ⎩
∑ ∑% %

ST

( )

( )
( )

{ } ( )

1

ˆ ˆ

ˆ

.
r
i

S i i i
z

T E z d z zµ τ . . var

r r
i i

r r
i i

r
i

z z
r r
i i S

k z z

z
r r r r

S S i

E z E z d T

T E T z

µ µ τ

µ µ

Θ −

=Θ

⎧ ⎫⎛ ⎞ ⎧ ⎫⎪ ⎪ ⎪ ⎪⎜ ⎟⋅ ≅ ⋅ ⋅ ⋅⎨ ⎬ ⎨ ⎬⎜ ⎟⎪ ⎪ ⎪ ⎪⎩ ⎭⎝ ⎠⎩ ⎭
⎧ ⎫⎪ ⎪= ⋅ ⋅⋅ = ⋅ = ⋅⎨ ⎬
⎪ ⎪⎩

∑ ∫% %

%

 (58) 

⎭
∫% % %
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In other words, by appropriately selecting , equations (54) till (58) together result in 

♦  

Proposition riance equal to 

Then, with proper selection of the sampling period , the error variance of estimator 

ST

(53). 

 5: Let ˆiz  be an unbiased estimator of iz , with error var r ( )var r
iz% . 

 ST ˆr
jz  in (31) 

is bounded by 

 ( ) ( ) ( ) ( ) ( )( )( ) ( )
( )

( )
( )

( )

( )

1 1

ˆ ˆ1 1
2 2

1 1var 1 2 var var
r r
i i

r r

z z
r r r r
j ij i ij ij ij

k z k z

z z x z z kη σ
Θ − Θ −

=Θ =Θ

≤ + + Θ Θ + +∑ ∑%% % q k  (59) 

Proof: 

ator in (31) is 

 

The error variance of the estim

( ) )( ( ) ( )( )( )
( ) ( ) ( )( )( ) ( ) ( )( )( )(

1

1 1

ˆˆ ˆ ˆvar var var

ˆ ˆˆ ˆvar var cov ,

r r r r r r r
j j j i ij i ij i

r r r r r r
i ij ij i i ij ij i

z z z z x z x z z

z x x z z z x x z z

= − = + − − Θ

= + − Θ Θ + − Θ Θ

%

% % )2

Θ
 (60) 

The second term in (60) can be written as  

( ) ( )( )( )
( )( ) ( )

( )

( )
( )

( )

( )
( ) ( )( ) ( )

( )

( )

( ) ( )( )( ) ( )
( )

( ) 1r
iz

r r ( )
( )

( )
1 1 1

1 1

1

ˆ1 1 1

1 1 1

1

1 1

ˆ ˆvar

ˆ ˆvar

ˆvar var var

r r r
i i i

r r r

r
i

r r

r r
ij ij i

z z z
r r r

ij ij ij ij ij
k z k z k z

z

ij ij ij
k z k z

x x z z

x z u k w k x z z k

x z z u k w k

η
Θ − Θ − Θ −

=Θ =Θ =Θ

Θ −

=Θ =Θ

− Θ Θ

⎛ ⎞
⎜ ⎟≅ Θ + + − Θ Θ −
⎜ ⎟
⎝ ⎠

⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟= Θ Θ + +
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∑ ∑ ∑

∑ ∑%

 (61) 

where in deriving (61) we use (1) and (13). By using Proposition 3 and equations (2) and 

(3), (61) can be simplified as  

Θ −⎛

( ) ( )( )( ) ( ) ( )( )( ) ( )
( )

( )
( )

( )

( )

1 1

ˆ ˆ1 1
2 2

1 1 1ˆ ˆvar var
r r
i i

r r

z z
r r r r

ij ij i ij ij ij
k z k z

x x z z x z z k q kσ
Θ − Θ −

=Θ =Θ

− Θ Θ ≅ Θ Θ + +∑ ∑%  (62) 

The last term in (60) can be calculated as follows 
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( ) ( )( )( )( )
( ) ( )( )( ){ } { } ( ) ( )( ){ }

1

1 1

ˆ ˆcov .

ˆ ˆˆ ˆ.

r r r
i ij ij i

r r r r r
i ij ij i i ij ij i

z x x z z

E z x x z z E z E x x z z

− Θ Θ

= − Θ Θ − − Θ Θ

%

% %

 
r

 (63) 

Knowing that the estimator  is an unbiased estimator of , the second term on the 

right hand side of (63) is zero.  Therefore, 

ˆr
iz r

iz

 ( ) ( )( )( )( ) ( ) ( )( )( ){ }1 1ˆ ˆˆ ˆcov . .r r r r r r
i ij ij i i ij ij iz x x z z E z x x z z− Θ Θ = − Θ Θ% %  (64) 

where by using (1) and (13) we have 
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( )

( )
( )
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( )

( )

( )
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ˆ1 1 1

1

1 1

1
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. .

.

r r r
i i i

r r r

r
i

r

r
i

r r r
i ij ij i

z z z

ij ij
k z k z k z

z
r r r r
i ij i ij

k z

z
r

E z x x z z

w k k

E z x z z E z u k

E z w k

η
Θ − Θ − Θ −

=Θ =Θ =Θ

Θ −

=Θ

Θ −

− Θ Θ

⎧ ⎫⎛ ⎞⎪⎟− ⎬
⎪ ⎪⎝ ⎠⎩ ⎭

⎧ ⎫⎪ ⎪= Θ Θ + ⎨ ⎬
⎪ ⎪⎩ ⎭
⎧ ⎫⎪ ⎪+ ⎨ ⎬

∑ ∑

∑

∑

%

%% %

% { } ( )
( )ˆ 1r

iz
rE z kη

Θ −

− ⋅ ∑%

 (65) 

Since  and 

1 1.r r r
i ij ijE z x z z u k⎪ ⎜≅ Θ Θ + +⎨

⎜ ⎟∑%%

( )1
r

i ij
k z=Θ⎪⎩ ( )1

r
i ij

k z=Θ⎪⎭

r
iz% ( ) ( )( )1 1

r r
ijx z zΘ Θ%  are statistically uncorrelated and both are unbiased, the 

first and last terms in (65) are zero. Using Proposition 4 and equations (2) and (3), the 

 

second and third terms in (65) can be calculated as follows 

( )
( )

( )
( )

( )

( )
( )

1 1

1 1

ˆ

. .
r r
i i

r r

z z
r r
i ij i ij ij S i

k z k z

E z u k E z k T zη η
Θ − Θ −

=Θ =Θ

⎧ ⎫ ⎧ ⎫⎪ ⎪ ⎪ ⎪= ≤ ⋅⎨ ⎬ ⎨ ⎬
⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎩ ⎭

∑ ∑% % var r⋅ %  (66) 

 ( )
( )

( )

1

1

. 0
r
i

r

z
r
i ij

k z

E z w k
Θ −

=Θ

⎧ ⎫⎪ ⎪ =⎨ ⎬
⎪ ⎪⎩ ⎭

∑%  (67) 

Therefore by substituting (66) and (67) in (65), and subsequently in (64), we have  
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( )( )( ) ( )
( )

( )
( )

1

1

1
ˆ

ˆ ˆcov . . var
r
i

r

z
r r r r
i ij ij i i ij ij S i

k z

z x x z z E z k T zη η
Θ −

=Θ

⎧ ⎫⎪ ⎪− = ≤ ⋅ ⋅⎨ ⎬
⎪ ⎪⎩ ⎭

∑% % r%  (68) 

Using (60), (62) and (68), the bound on error variance of the estimator in (31) can be 

obtained which is given by (59).♦ 

In summary, in this section we have developed a methodology to estimate the arrival time at 

each node of a transportation network. More precisely, given , departure time from node {1}, 

the arrival time at each node i on route r can be estimated using the developed arrival time 

estimator in (31) and the predicted traveling times on arcs in (13), recursively, in the following 

order: 

 

1
rz

( ) ( )( ) ( ) ( )( )using (31) using (13)
1 12 1 1 2 23 2ˆ ˆ,r r r r r r r rz x z z z x z zΘ Θ ⎯⎯⎯⎯→ ⎯⎯⎯⎯→ Θ Θ →1 L

We have shown in Propositions 2 and 5 that by properly selecting the sampling period , the 

arrival time estimator in (31) is an unbiased estimator, and its error variance is bounded by (59). 

Note that by using Equations (16) and (59), the bound on the error variance of the arrival time at 

each node j on route r can be also written as 

 

. (69) 

 ST

( ) ( ) ( ) ( ) ( )( )( )1ˆvar 1 2 var varr r r
j ij i ij iz z x zη≤ + + Θ Θ%% % rz  (70) 

Note also that given e., 

which together with the given 

1
rz , the error variance of the departure time from node {1} is zero, i.

( )1var 0rz =% , ( )( ) ( )var 0 0 0ij ijx p=%  initializes e

, and (70).  Hence, the bound of the error variance of the arrival time at each node j on route r 

can be calculated, recursively. 

As seen from (70), the bound on the error variance of the arrival time at each node j, 

quations (16), (21)

( )var r
jz% , 

depends on two elements: 1) the error variance of arrival time estimator at the previous node, 

( )var r
iz% , and 2) the error variance of traveling time predic r on arc ( ),i j  at time ˆr

iz , i.e, 

( ) ( )

to

( )( )1ˆvar r r
ij ix z zΘ Θ% . This fact indicates that the error variance increases sharply as we 
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estimate the arrival time at the nodes further down on the route. It also implies that as we predict 

the traveling time in the distant future, the error variance in (70) increases abruptly.  

3.3 Partial Routing  

d level which is called the service level, hereafter. 

et’s consider graph G as shown in Figure 1, and let r be a route in graph

route r. The route β  the error variance of the a z

all nodes i∈r be less than or equal to an arbitrary positive real number β, i.e.,  

In the previous section, we developed a methodology to estimate the arrival times at nodes of a 

transportation network. In this section, we will use the estimated arrival times to plan partial 

routes. The routes are generated such that the error variance of the arrival time at each node of 

the route is guaranteed to be less than a desire

L  G. 

Definition (β efficient route): Let random variable iz  denote the arrival time at node i taking 

r is said to be  efficient if rrival time estimator i  at 

 

r

ˆr

( )var r
iz β≤%  (71) 

( )var rIt should be noted that the value of iz%  represents the error in estimating the arrival time at 

de i. Small values of (each no )var r
iz%  implies more confidence in visiting node i at ti e ˆr

iz  

β in (71), we determine the desired confidence level in 

generate β efficient partial routes. 

m

taking route r. Therefore, by choosing 

visiting node i. In the following, given a network, we use dynamic programming techniques to 

3.3.1 Dynamic Programming 

 with node set { }1,.., , ,..,N i j= n and arc set ( ){ }, ,A i j i j N= ∈Let : ( , )G N A  be a graph . Let 

the state (S,i) be defined as S⊆N is an unordered set of visited nodes, and i∈S is the last visited 

node. Associated to each state (S,i) are: 
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1.  the estimated and error variance (denoted by ˆS
iz  and ( )var S

iz% , respectively) of the arrival 

∈

ibed above.  

Definition (acceptable arc): Let the error variance of arrival time at node i∈S meet the required 

ervice level, i.e.,

time at node i taking the path starting from node {1} passing through every node of S 

exactly once and ending at node i S, and 

2. a cost denoted by iC , defined as the cost of traveling on the path descrS

 ( )var S
iz β≤%s . An arc (i,j)∈A is sa

 (i,j) als

: Let no

tes as follows. Let’s assume that the state (S,i) has been 

generated, i.e., route S is β efficient. At each state (S,i), the algorithm looks for uncovered nodes 

d to state S, if state S can be extended to node j. Associated 

 each (S,i en  and

id to be ‘acceptable’ if the error variance of 

arrival time at node j traveling on arc o meets the required service level. 

Definition (state extendibility) de i∈S be the last visited node of the state (S,i). The state 

S is said to be expandable to node j, j∈N and j∉{S}, if the arc (i,j)∈A is ‘acceptable’.  

Having defined a state and state extendibility, we can now use a dynamic programming 

algorithm to generate partial rou

j∈N and j∉{S}. Node j will be adde

with ) are ˆS
iz  and ( )var S

iz% . Giv  ˆS
iz ( )S

i , the esti iance of 

arrival time at node j are calculated using equations (31) and (70). The procedure continues until 

all β efficient routes are generate

var z% mate and error var

d. Note that, in general, a β efficient route does not cover all 

nodes in N. That is why we called these routes partial routes.  We define max-desired-level as the 

maxi u ation in the plan. 

In orde llowing elimination test is performed which is 

called state elimination test. Given generated states (S1,i) and (S2,i), where S1 and S2 cover the 

sam N, state 2 i

m m number of stops that we need to take into consider

r to reduce the computational time, the fo

e set of nodes in S  is eliminated if 21 SS CC ≤ (and for random variables i

{ } { }1 2S SE C E C≤ ).  

The following is the summary of the dynamic programming algorithm described

i i

 above. 

Step 1 Level l=1, ( )1var 0z =%  and ( )( ) ( )1 1var 0 0 0i ix p=%   
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(Initialization): For all extendable nodes i∈N/{1} from node {1}: 

             1) Generate (S,i): S={1,i},  

             2) Compute ˆS
iz , ( )var S

iz% , S
iC  according to (31) and (70). 

Step 2: 

(During): 

Level l=l+

For all states (S,i) at level l-1,  

         Perform state elimination test 

         For all extendable nodes j∈N/{S} from state (S,i): 

1, 

1) Generate (S∪{j},j) 

2) Predict the traveling time ( ) ( )( )1ijˆ ˆr r
ix z zΘ Θ , and compute the 

( ) ( )( )( )1ˆvar r r
ij ix z zΘ Θ%error variance of predictor, i.e.,  using (13) 

and (16). 

( )var S3) Compute ˆS S  according to (31) and (70). jz , jz% , jC

Step 3 

(Termination): 

If l<max-de  and sired-level there are still some nodes left to be added to the 

generated.  

3.4 Moving al e 

revious s  dynamic programming techniques to generate all partial routes 

transpo was to find routes for which the error variances 

of arrival times at  than or equal to a desired level. We called 

these routes β efficient partial routes. Recall that to each partial route r, a cost is associated 

which represents the cost of traveling on the path starting from node {1} passing through every 

node of r exactly once, in  ending at the last node in r. We denote by 

states go to step 2. Otherwise exit the algorithm, all partial routes have been 

ong the Best Rout  

In the p ection, we used

in a given rtation network. The objective 

 their nodes are guaranteed to be less

 the specified order, and r , 

the cardinality of route r, which indicates the number of nodes in that route.  
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Among all β efficient partial routes generate

along. It should be noted that in selecting a partial route, there are multiple, sometimes 

conflicting, criteria to be c m cost partial route 

criterion. The other criterion could be maximum 

d in Section 3.3, we select a good one to move 

onsidered. For instance, minimu could be a 

r . Note, however, that in a typical network, 

the minimum cost route would be the one with least number of covered nodes. In other words, 

the more nodes we visit on a typical partia oute, th o

eport, we

ia

select the one with the lowest cost. Hereafter, this route is called the best partial route and is 

denoted by r*. The rational for adopting this selection method is to visit more nodes at least cost.  

oute, updated information of traffic conditions are 

As, we move along the partial routes, we will incorporate the newly available information of the 

 the predetermined 

l r e m re cost we endure.  

In this r  select the partial route with the highest cardinality at least cost. More precisely, 

l routes based on their cardinality. Among those with highest cardinality, we we sort all part

Note that as we move along the best partial r

becoming available. Thus, instead of visiting all nodes on the best partial route, r*, we will visit 

a predetermined number of nodes on r* before using the updated information. Later, in this 

report, we will investigate the sensitivity of the solutions to this predetermined number.  

traveling time on arcs and arrival time at nodes into the algorithm given in Section 3.3. That is, 

the updated information of traveling time is used to correct the filtered estimator in (17) and, 

consequently, update the predictor in (13). As we reach the last node among

number of nodes on the best partial route, the updated information of arrival time at that node is 

used to update the estimate of arrival time and recalculate the error variance of arrival time at 

other nodes. And finally, a new β efficient partial routes are generated based on the algorithm 

provided in Section 3.3. This procedure continues until all nodes in the network are visited. 
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4 Simulation Experiments 

In this section, we perform a variety of simulation experiments on selected transportation 

networks to evaluate the efficiency of the developed partial routing algorithm and to compare the 

In contrast to NDA, the FRA is a global routing algorithm. In fact, FRA searches for the global 

minimum. To find the optimal solution, the algorithm needs to have complete information about 

the traveling costs between all nodes of the network a priori. For a deterministic network, the 

FRA basically finds the solution for the Traveling Salesman Problem (TSP). The TSP is NP-

hard; therefore, any full routing algorithm will be computationally very slow. The FRA, in this 

report, is developed based on dynamic programming method similar to that described in Section 

3.3.1. It should be noted that, in FRA, once the route is planned any changes in the traveling 

costs would not alter the preplanned route. Therefore, although FDA leads to global minimum in 

deterministic static networks, the solution may not be a global minimum in dynamic stochastic 

networks. For dynamic stochastic networks in this report, we will use the expected costs between 

the nodes of the network in computing the route in FRA.  

In the following, the solutions obtained from NDA, FRA and PRA are evaluated and compared. 

All algorithms are coded in Matlab 6.5 developed by MathWorks, Inc., and tested on an Intel 

Pentium 4, 2.2 GHz. 

results of the developed algorithm with the solutions obtained by using the existing vehicle 

dispatching and routing policies. More precisely, we compare the Partial Routing Algorithm 

(PRA) with the Nearest Dispatching Algorithm (NDA) and Full Routing Algorithm (FRA).  

In NDA, the vehicle routing policy is very local. At each node, the vehicle is dispatched to the 

closest uncovered node. To determine the closest uncovered node, the dispatcher uses the most 

updated traveling costs between the current node and all remaining (not visited) nodes of the 

network. This algorithm continues until all nodes are visited. 
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4.1 Simulation scenario 1 (Deterministic routing)  

ic network is considered and the costs of the generated 

des. 

For instance, the traveling time between nodes {2} and {4} is 24 minutes; and between nodes 

{4}.  

Figure 3: Simple transportation network G used in the simulation experiments. 

RA for finding the best route in the deterministic network illustrated in 

Figure 3. The cost of traveling on the best route found by each algorithm is given in column 3 in 

Table 1. We assume that the cost of each route is equal to the traveling time on that route in 

minutes. Table 1 column 4 presents the CPU time, which is the time in seconds used by each 

algorithm to obtain the best route.  

In this simulation scenario, a determinist

routes by NDA and FRA are compared. Note that PRA cannot be evaluated in deterministic 

network since equation (19) will be undefined.  

Let’s consider a simple transportation network as shown by graph G in Figure 3, which consists 

of 10 nodes. The solid lines in Figure 3 demonstrate the direct connection between nodes. 

Numbers adjacent to solid lines indicate the traveling times between each two connected no

{3} and {6} is 32 minutes. We assume that graph G is fully connected. Nodes, which are not 

connected by solid lines, are assumed to be connected via intermediate nodes. Therefore, the 

traveling time between nodes {2} and {7} in Figure 3 is 42 minutes, which is the shortest 

traveling time between these two nodes passing through node 

For the sake of simplicity, we assume that graph G is symmetric, i.e., the traveling time between 

nodes i and j is equal to the traveling time between nodes j and i. It should be noted that the 

proposed algorithm is general and it is not limited to symmetric networks. 

Without loss of generality, we assume that node {1} is the origin node. Table 1 shows the results 

of using NDA and F
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Table 1: Comparing NDA and FRA for deterministic networks. 

Algorithm Best route found Cost of the route [min] CPU time [sec] 

NDA r={1 2 3 4 7 8 10 9 6 5} 180 0.05 

FRA r={1 2 5 3 4 6 7 8 10 9} 163 90.4 

 

Since the network is deterministic and all information is available in advance, the FRA has found 

the optimal route. As seen, the FRA is computationally slow since it is an exponential algorithm. 

Table 1 also shows that the NDA provides a local minimum solution in a very short amount of 

time. 

4.2 Simulation Scenario 2 (Stationary stochastic routing)  

e between 

nodes i and j, , at any time is zero. Given the above assumptions, the network characteristics 

in Equations (2) to (4) can be rewritten as fo ws 

 } ( ) ( ){ }
2

0;
0

ij
ij ij

k l
E u k E u k u l

k l
σ

In this simulation scenario, we consider a stationary stochastic network. It is stationary in the 

sense that the characteristics of the network given by Equations (2) to (4) are independent of time 

k. Without loss of generality, we assume that the historical changes in the traveling tim

iju

llo

{ ij

⎧ =( ) = = ⎨
≠⎩

(72) 

 
l

 

( ){ } ( ) ( ){ }
2

0;
0

ij
ij ij ij

q k
E w k E w k w l

k l
⎧ =

= = ⎨
≠⎩

 (73) 

ijr k l⎧
 ( ){ } ( ) ( ){ }

0ij ij ijE v k E v k v l
k l

2

0;
=

= = ⎨
≠⎩

 (74) 

Note that Equations (72) and (73) together with the dynamic model in (1) necessitate the mean 

traveling time between each two nodes i and j be constant in time equal to its initial value ( )0ijx , 

i.e., 
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( ){ } ( )0ij ijE x k x=     1,2,k∀ = L   (75) 

Let’s consider graph G given in Figure 3 again, where the numbers adjacent to solid lines are 

assumed to be the initial value of traveling times, i.e., at time zero. According to (75), the mean 

travelin s at any qual to its initial value.  

 this simulation experiment, we vary the uncertainties in the transportation network given in 

defined by 

g time  time k>0 would be e

In

Figure 3 to evaluate and compare the impact of increasing uncertainties on the cost of the routes 

generated by the three routing methodologies: NDA, FRA, and PRA. To measure the uncertainty 

of the network, we use the concept of coefficient of variation (COV) of each arc. The COV of arc 

(i,j) is 

 
( )

100%
0ij

ij

COV
x
ij ijqσ +

= ×  (76) 

Let’s assume that the ratios ( )0ij ijxσ , ( )0ij ijq x , and ( )0ij ijr x  for all arcs (i,j) of the network 

G are constants. Consequently, the COV of all the arcs of the network given by (76) are equal 

which, hereafter, referred to as the COV of the network for the sake of simplicity.  

Table 2 shows the costs of routes generated by the NDA, FRA and PRA when the COV of the 

stationary stochastic network G in Figure 3 varies. We assume that the cost of each route is equal 

 the traveling time on that route in minutes. For each simulation exp

uncertainty (COV) of network G by altering the values of 

to eriment, we change the 

( )0ij ijxσ σ= , ( )0ij ijq q x= , and 

( )0ij ijr r x= , as shown in Table 2 columns 2, 3, and 4, respectively.  

For each simulation experiment, the network in Figure 3 was generated 25 times using a 

Guassian random number generator with parameters given by (72) to (75). Table 2 shows the 

verage (mean) and the standard deviation (STD) of routing costs base

trials. Table 2 also compares the CPU time needed by each methodology to generate the best 

rt, th

es on arcs of the network is used for advance routing. Recall from (75) that we 

assumed the mean traveling times would be equal to its initial value given in Figure 3. Therefore, 

a d on the results of the 25 

route.  

As discussed earlier, the FRA is an offline preplanning routing algorithm. In this repo e 

mean travel tim
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th lation scenario 1 would be the best route for the e best route generated by the FRA for the simu

simulation scenario 2, too. Thus, the route generated in simulation scenario 1 and given in Table 

 same as that in simulation 

d the maximum number of nodes visited on each partial route is 2.  The 

maximum level of route planning represents the number of stops that we need to take into 

onsideration in the plan. The maximum number of nod

maximum number of stops the vehicle visits before the route is updated. The last column of 

arameter ) us ach simu

e COV of the 

network increases. 

1 is used here. Given by Table 2 columns 9 and 10 are the mean and STD of the costs of the 

preplanned route evaluated using the data of the 25 generated simulation trials. Note that, the 

CPU-time needed to generate the best route for the FRA is the

experiment 1 in Table 1 (i.e., 90.4). Hence, it is not repeated in Table 2. 

Table 2 columns 11 and 12 present the mean and standard deviation (STD) of the costs of routes 

generated by the PRA based on the results of the 25 trials. We assumed the following 

specifications for the PRA. The sampling time is 5 minutes, the maximum level of route 

planning is 5; an

c es visited on each partial route is the 

Table 2 shows the value of p β in (71 ed in e lation experiment. Note that as 

the COV of the network increases, the error variance of arrival time at each node of the network 

increases too. Thus, to find good partial routes, we increase the parameter β as th

Table 2: Comparing different routing algorithms in a stationary stochastic network. 

    NDA FRA PRA 

    cost CPU time cost  Cost CPU time 

COV σ % q % r % Mean STD Mean STD Mean STD Mean STD Mean STD β 

0.5 0.25 0.25 0.5 180 0.19 0.05 0.01 162.9 0.21 173 0.21 60.7 0.2 2 

1 0.5 0.5 1 180 0.37 0.05 0.01 163 0.29 173 0.38 59.1 1.48 3 

2 1 1 1 180.1 0.72 0.05 0.01 163 0.95 172.8 0.97 58.9 0.21 6 

5 2.5 2.5 1 180.6 2.52 0.05 0.01 163 2.43 172.5 2.44 59.0 0.1 15 

10 5 5 2 179.6 5.53 0.05 0.01 162.7 4.95 170.4 4.59 59.1 0.07 30 

20 10 10 2 176 9.94 0.05 0.01 161.5 7.2 168.9 6.85 54.4 0.1 50 

50 30 20 5 161.6 11.96 0.05 0.01 164 16.9 159.8 14.2 45.2 0.21 100 

75 40 3.5 5 137.8 24.4 0.05 0.01 163.6 32.5 132.8 21.0 37.4 0.75 125 
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Table 2 indicates that when the uncertainty (COV) in network G is relatively low (e.g., 

COV≤20), the FRA generates the best route in average. However, as the COV of the network 

increases other routing methods outperform the FRA. The results in Table 2 signify that for 

networks with high level of uncertainties (e.g., COV>20) the routes obtained by PRA is the 

least-cost routes in average. Interestingly, under high level of uncertainties, routes generated by 

NDA, which is a very local algorithm, excel the optimal solution of the FRA in average.  

ions by the PRA to the changes of its parameters. We consider the Simulation 

Scenario 2 with a COV of 50.  

Table 3 presents the average cost of routes generated by the PRA when the parameter β varies 

from 40  160. he t le als ws th CPU- needed erate tes. e 

s e sam i  u

the ma m numb f s d a r u 2 le o e rag f 

the resu f the 25 trials. 

a e it e o ge a r

s  

Table 2 shows that the NDA provides a route in a very short amount of time, and that the mean 

CPU time for the PRA to find the best route declines as the COV of the network increases. We 

have observed that the quality of the solution and the CPU time to find the solution by PRA is 

very much dependent on the PRA parameters including β. A detailed sensitivity analysis to study 

the effect of the variation of these parameters on the cost of solution and the CPU time is 

conducted and presented in the following simulation scenario.  

4.3 Simulation scenario 3 (Sensitivity analysis)  

In this simulation scenario, we investigate the sensitivity of the cost of solutions and CPU time to 

generate these solut

to  T ab o sho e average time to gen  these rou W

still as ume that th pling t me is 5 min tes; the maximum level of route planning is 5; and 

ximu er o node visite  on e ch pa tial ro te is . Tab  3 sh ws th  ave e o

lts o

T ble 3: S nsitiv y of th PRA t  chan s of p ramete  β. 

 Co t CPU time 

β M   ean STD Mean STD

40 160.5 12.9 11.9 0.55 

55 1  60.4 14.7 17.2 0.68

70 158.7 16.0 27.7 0.60 

85 158.4 14.9 37.0 0.45 

37 



  

100 151.4 15.1 43.9 0.35 

115 150.1 15.3 50.1 0.28 

130 150 15.3 54.5 0.42 

145 150 15.3 56.9 0.35 

160 150 15.3 58.2 0.26 

 

The results in Table 3 indicate that as parameter β increases, the PRA generates better routes in 

average, however, at the cost of increasing CPU-time. Note that, for relatively small value of β 

many good routes may be discarded due to (71). As β increases, more routes satisfy the β 

efficiency test in (71) and will be considered for being selected as a final solution.  

As seen from Table 3, having fixed all other parameters of the PRA, there exits a β* which 

increasing the parameter β beyond that level, will not improve the quality of the result found for 

a specific graph G. For the Simulation Scenario 2 with COV=50 and the specified specifications, 

*

Table 4 shows the sensitivity analysis of solutions generated by the PRA versus the changes in 

number of nodes visited on each partial route is 2; and the parameter β is 100. Table 4 shows the 

the β  is about 115. 

the maximum level of route planning. In this simulation experiment the maximum level of 

routing is varied between 2 to 9. We assume that the sampling time is 5 minutes; the maximum 

average of the results of the 25 trials. 

Table 4: Sensitivity of the PRA to the changes of the maximum level of routing (MLV). 

 Cost CPU time 

MLV Mean STD Mean STD 

2 160.6 14.7 1.8 0.05 

3 162.1 13.2 7.9 0.04 

4 160. 15.7 132 .3 0.07 

5 151.4 15.1 44.2 0.34 

6 152 14.7 48.9 0.71 

7 1152 14.7 48.9 0.72 

8 152 14.7 48.9 0.72 

9 152 14.7 48.9 0.73 
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Table 4 indicates that as the m u e ro la  increases, the PRA generates 

better routes in average. With c nt a m level, the algorithm, in fact, looks 

further down the road. In other words, the algor ore globally than locally, which 

 turn improves the quality of the obtained solutions. However, this benefit is obtained at the 

price of dramatically increasing the CPU-time.  

route on the quality of the generated routes by the PRA. Here, the maximum number of nodes 

p

 Cost CPU time 

axim m lev l of ute p nning

an in reme  in m ximu

ithm behaves m

in

Table 5 presents the impact of changes in the maximum number of nodes visited on each partial 

visited is changed from 1 to 5. We assume that the sam ling time is 5 minutes; the maximum 

level of route planning is 5; and the parameter β is 100. Table 5 shows the average of the results 

of the 25 trials. 

Table 5: Sensitivity of the PRA to changes in the maximum number of nodes visited on partial route (MN). 

MN Mean STD Mean STD 

1 150.9 18.1 67.2 0.5 

2 151.4 15.1 44.2 0.33 

3 157.4 16.0 37.6 0.11 

4 160.8 14.8 35.0 0.08 

5 168.5 18.6 34.0 0.07 

 

As indicated by the results in Table 5, as the maximum number of visited nodes decreases, the 

PRA generates better routes in average. Note that decrement in this number, the 

algorithm will look for new routes more frequently, thus co ng and updating the generated 

solutions based on updated inform herefore, as 

the maximum number of visited nodes increases,

, with a 

rrecti

ation obtained from the transportation network. T

 the CPU-time decreases.  
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4.4 Simulation Scenario 4 (Dynamic stochastic routing) 

e that the numbers adjacent to arc (i,j) are 

the initial value of traveling times on that arc, i.e., 

In this simulation scenario, we consider a dynamic stochastic network in order to evaluate the 

efficiency of the developed algorithm and to compare the solutions generated by the NDA, FRA 

and PRA when the characteristics of the network change in time.  

Let’s consider graph G shown in Figure 3. We assum

( )0ij

for any arc (i,j) in Equations (2) and (3), we have 

x . Let’s, for the time being, assume that 

( ) 0ij kσ =  and ( ) 0ijq k = , 0,1,2,k∀ = L . 

Without loss of generality, the value of ( )ij kη  in (2) is selected in such a way that the traveling 

time on arc (i,j) has a sinusoidal-like wave form as shown in Figure 4. To measure the dynamism 

of the network, we use the concept degree of dynam

s

of ism (DOD) of each arc. For the 

inusoidal-like mean travel time given in Figure 4, the DOD of arc (i,j) when ( )ij kσ  and ( )ijq k  

are zero , is defined by 

 

0,1,2,k∀ = L

( ) ( )
( )

sup x 0
10ijDOD

x
 (77) 

We assume that the DOD of all arcs of the network eafter, referred to as 

the DOD of the network. In Figur  th D e or s denoted by µ.  

0%
0ij

ij
ij = ×

k x−

G are equal which, her

e 4 e DO  of th netw k G i
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In this simulation scenario, after determining the values of

Figure 4: The assumed mean travel time on arc (i,j) when σij(k) and qij(k) are zero.  

 ( )ij kη

e

, we consider the following 

characteristics for the network parameters. We assum  that the ratios ( ) ( )ij ijk kσ η , 

( ) ( )0ij ijq k x , and ( ) ( )0ij ijr k x  for all arcs (i,j) of the network G and  are 

constants. These ratios are denoted by σ, q, and r, respectively, hereafter.  

In this simulation scenario, we vary the uncertainties (i.e., σ, q, and r) and the degree of 

dynamism (i.e., µ in Figure 4) in the transportation network given in Figure 3 to evaluate and 

compare the cost of the solutions generated by the three routing methodologies: NDA, FRA, and 

PRA. Table 6 summarizes and compares the cost of the routes generated by the NDA, FRA and 

PRA for the dynamic stochastic network G in Figure 3. For each simulation experiment, the 

network in Figure 3 was generated 25 times using a Guassian random number generator. Note 

that the cost of the routes presented in Table 6 is equal to the traveling time on those routes in 

0,1,2,k∀ = L
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minutes. Table 6 also compares the CPU time needed by each methodology to generate the best 

route.  

To generate the best route using FRA, the initial traveling times and the mean historical traveling 

times on arcs are used. These parameters are both available offline. Table 6 column 11 shows the 

CPU-time needed to generate the best route for the FRA when µ is varied. Note that, the FRA is 

an offline algorithm. Therefore, once the best route was generated it was used for all 25 

experimental trials, and, thus, column 12 is left blank.  

The “actual” traveling time for a FRA generated route was, however, evaluated at every 

simulation trial. Table 6 columns 9 and 10 show the mean and standard deviation (STD) of the 

costs of the preplanned route evaluated using the data of the 25 generated simulation trials.  

Table 6 columns 13 and 14 present the mean and STD of the costs of the routes generated by the 

PRA based on the results of the 25 trials. We assumed that the sampling time is 5 minutes; the 

maximum level of route planning is 5; and the maximum number of nodes visited on each partial 

route is 2. The last column in Table 6 shows the value of parameter β in (71) assumed in each 

simulation experiment. 
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Table 6: Comparing different routing al oc k.

    NDA 

gorithms in a dynamic st

FRA 

hastic networ  

PRA 
    cost CPU time cost CPU time cost CPU time  

µ % σ % q % r % Mean STD Mean STD Mean STD Mean STD Mean STD Mean STD β 
0 0.1 0.1 0.1 180 0.06 0.05 0.01 163 8 0.07 94.8 − 173 0.06 60.3 0.3  2 
0 1 1 1 180.1 0.43 0.05 0.01 163.1 7 0.51 92.7 − 173.1 0.47 60.1 0.3  6 
0 10 10 2 178.9 6.7 0.05 0.01 163.4  1   5.3 93.1 − 171.4 4.6 60.5 0.1  50
0 20 20 5 171 13 0.05 0.01 163. 6  7 14.2 92.6 − 165.6 7.71 60.3 0.0  100
0 40 40 5 158.6 17.6 0.05 0.01 162.8 7  16 92.8 − 148.6 14.7 58.9 0.0  125
                 

5 0.1 0.1 0.1 183.1 0.05 0.05 0.01 166.3 0  .05 94.1 − 176.5 0.05 65.9 8.7 2 
5 1 1 1 183.2 0.5 0.05 0.01 166.2  0.7 93.2 − 176.3 0.6 62.7 0.3 6
5 10 10 2 185.1 6 0.05 0.01 167.9  5.4 93.1 − 174.3 5.3 62.3 0.5 50
5 20 20 5 172.5 10.6 0.05 0.01 167.5  9.6 92.6 − 170.2 8.6 61.8 0.1 100
5 40 40 5 160.2 21 0.05 0.01 162 2 .3 1  3 92.5 − 149.4 13.3 52.8 0.1  125
                 

10 0.1 0.1 0.1 186.1 0.04 0.05 0.01 169.4 0 1.04 92.3 − 179.5 0.05 62.5 0.4  2 
10 1 1 1 186.2 0.4 0.05 0.01 169.7  0.5 92.6 − 179.6 0.6 62.5 0.7 6
10 10 10 2 186.2 9.03 0.05 0.01 169.3 6   .65 92.7 − 177 3.7 59.2 0.05 50
10 20 20 5 176.4 11.3 0.05 0.01 171.5 1  1.5 92.7 − 169 9.5 59.3 0.5 100
10 40 40 5 166.8 15.7 0.05 0.01 172.2 2  45  3.3 92.3 − 161.8 16.3 .4 0.3 125

                 
25 0.1 0.1 0.1 192.2 0.07 0.05 0.01 176.2 0  62 1.07 92.8 − 186.2 0.05 .1 0.2  5 
25 1 1 1 192 0.6 0.05 0.01 176.2  60  0.5 92.2 − 186.3 0.4 .4 1.3 15
25 10 10 2 193.2 6.6 0.05 0.01 176.7  55  6.3 92.3 − 185.4 6.1 .1 0.1 75
25 20 20 5 187.2 10.2 0.05 0.01 170.8 1  54  2.1 92.2 − 174.9 11.03 .6 0.13 150
25 40 40 5 172.7 22.8 0.05 0.01 175.9 2  46  2.8 92.1 − 165.2 18.2 .3 0.2 250

                 
50 0.1 0.1 0.1 199.1 0.06 0.05 0.01 183.6 0  61.06 91.7 − 194.2 0.06 .1 0.3 5 
50 1 1 1 199.1 0.6 0.05 0.01 183.7 0  52 8  .75 91.5 − 194.3 0.6 .7 0.1  15
50 10 10 2 197.5 6.7 0.05 0.01 181.9  41  6.1 91.5 − 190.3 8.8 .2 0.1 75
50 20 20 5 187.3 14.5 0.05 0.01 180.5 9  40 5  .2 0.1  150.03 91.3 − 184.4 10.8
50 40 40 5 177.8 22.6 0.05 0.01 192.1 3  39  .9 0.4 300170.1 5.81.1 91.1 − 
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5 Conclusions and Recommendations 

The transportation industry, like many others, has undergone significant change in the last few 

years through the introduction of information technologies. Whereas in the past, it was difficult 

for a company to control or route vehicles once they left the terminal, these technologies make 

accurate dynamic real-time routing a very real possibility. Most of the existing routing strategies 

operate under one of the two modes: (1) pre-planned full routes when the level of uncertainty is 

o

strategy are (1) the maximum 

level of route planning which represents the number of stops that we need to take into 

consideration in the plan, and (2) the maximum number of nodes visited on each partial route 

which is the number of stops the vehicle visits before the route is updated. Future research can 

focus on developing models to optimize these two variables.  

 

 

low, and (2) local dispatching strategy when the level of uncertainty is high. There is lack of 

approaches for addressing the routing when the level of uncertainty is in between the two ends of 

the spectrum. To address this gap, we developed a partial routing strategy that preplans a portion 

f the demand and makes adjustments in real-time. Experimental results demonstrated the 

benefits of the partial routing strategy over the other two methods for a wide variety of scenarios.   

Two factors that control the effectiveness of the partial routing 
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6 Implementation 

Most of the hardware components required for the developed partial routing algorithms are 

already available in the market place. They include wireless communication devices used for 

dispatching vehicles, automatic vehicle locator for monitoring the vehicles, traveler information 

system to provide actual road conditions, a server to continuously run the algorithm, and mobile 

data terminals in the vehicles so that route data can be automatically sent via a data dispatcher to 

the vehicles. In terms of the software, the partial routing algorithm needs to be coded as a 

module in existing vehicle routing software. The algorithm will need to access the data collected 

from the vehicles regarding location and system status regarding actual road conditions.  
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