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Abstract 
As one of the key advances in vehicle safety, Automatic Emergency Braking (AEB) has been 
introduced in the last several years and the number of vehicles equipped with this technology 
has been steadily increasing. To date, most of existing studies on AEB systems have been focused 
on evaluating the safety performance of this technology. In this study, we attempt to quantify 
the AEB system benefits on environmental sustainability, due to its ability to mitigate accidents 
and any resulting traffic congestion avoidance. We have developed a data-driven method that 
analyzing the impact of rear-end accidents that could potentially be avoided due to AEB systems, 
resulting in improvements to traffic flow. Towards this end, we:  1) performed literature review 
on AEB technology; 2) built a database including real-world traffic state measurements, traffic 
accident records, roadway geometry, and weather information; 3) selected the target accident 
that could be potentially mitigated by AEB systems; 4) developed a data-driven method to 
estimate the spatial-temporal region caused by the target accident; and 5) estimated the 
excessive energy consumption and tailpipe emissions that could be potentially avoided due to 
the deployment of AEB systems. To show the efficacy of the proposed method, we conducted a 
case study for a real-world scenario along SR-91 in Riverside, California. The results showed that 
a small penetration of AEB technology could potentially improve energy economy by up to 34.6% 
and reduce pollutant emissions (e.g., CO, HC, NOx and PM) by as much as 22.5%, if the selected 
accidents could be avoided. 
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Estimating the Impacts of Automatic Emergency Braking 
(AEB) Technology on Traffic Energy and Emissions 

Executive Summary 
Traffic congestion has brought about a variety of socio-economic issues to our daily lives, 

which is generally categorized into recurrent congestion and non-recurrent congestion. 

Specifically, non-recurrent congestion caused by traffic incidents such as accidents, special events 

and work zones, may be responsible for more than a half of the total travel delays in many urban 

cities. In particular, traffic accident induced congestion is much more frustrating to the travelers 

due to its unexpected and undesirable consequence (e.g., late delivery, missed flights, delayed 

meeting schedule). Even worse, the presence of accidents may also lead to the high risk of 

secondary accidents. 

Over the years, engineers and researchers have proposed and developed numerous 

solutions to mitigating traffic congestion and improving safety performance on both vehicle 

technology and traffic operation. As one of the key advances in vehicle safety, Automatic 

Emergency Braking or Autonomous Emergency Braking (AEB) has been introduced in the U.S. 

approximately a decade ago and the number of vehicles equipped with this technology has 

increased significantly. The AEB system can automatically detect an emergency situation and 

activate the vehicle braking system to decelerate the vehicle with the purpose of avoiding or 

mitigating a collision. Numerous studies have shown that this technology is capable of reducing 

the number and/or severity of relevant accidents, thus helping reduce the number of traffic 

fatalities. However, most of these studies have focused on evaluating this technology at the 

individual vehicle level and its safety impacts. Relatively few studies have attempted to quantify 

the traffic level impacts (e.g., congestion mitigation) due to the introduction of AEB, not to 

mention the effectiveness on the environment. 

 In this study, we develop an innovative approach to quantifying the environmental 

benefits of AEB system. Firstly, based on the review of AEB-related literature, we get more in-

depth understanding of the accidents that can be prevented by AEB system. Then, we create an 

integrated database by synchronizing (in both space and time) historical traffic measurements 

under “accident-free” conditions and with occurrences of accident, roadway geometry, as well 

as associated weather information. By leveraging the database and machine learning techniques, 

we: 1) estimate the spatiotemporal extent of traffic accident impact (in terms of the change in 

speed) using the Otsu’s method and morphological operations; 2) apply the Long Short-Term 

Memory (LSTM) model to predict the “accident-free” (i.e., “what-if” scenarios) traffic states 

under the prevailing traffic conditions; and 3) assess the environmental impacts induced by the 

deployment of AEB technology with the U.S Environmental Protection Agency’s MOtor Vehicular 

Emission Simulator (MOVES) model. 
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The case study of two real-world scenarios (one in Riverside, CA and the other in Las 

Vegas, NV) has showed the efficacy of the proposed methodology. The results indicate that the 

AEB technology could improve energy consumption by up to 34.6% and reduce pollutant 

emissions (such as CO, HC, NOx and PM) by as much as 22.5%, if it were adopted in the accident-

involved vehicles and could effectively avoid the studied accidents. 
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Introduction 
As one of the key advanced applications in active vehicle safety, Automatic Emergency 

Braking or Autonomous Emergency Braking (AEB) [1] has been introduced in the U.S. 
approximately a decade ago and the number of vehicles equipped with this technology has been 
increasing significantly. Table 1 reports a list of automakers and the percentage of vehicles newly 
manufactured with AEB capability [2]. Basically, the AEB system can automatically detect an 
emergency situation and activate the vehicle braking system to decelerate the vehicle with the 
purpose of avoiding or mitigating a collision. There have been many studies indicating that this 
technology is capable of reducing the number and/or severity of relevant accidents and has 
helped reduce the number of traffic fatalities.  

 
Table 1. Summary of Automakers and Their Passenger Vehicles with AEB Capability (adapted from [2])
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For example, J. Cicchino used the Poisson regression to compare rates of accidents per 

insured vehicle year in the U.S. from 2010–2014 between passenger vehicle models with AEB 

system and the same models without this optional technology [3]. The results showed that low-

speed AEB could reduce front-to-rear crash rates by 43% and front-to-rear injury crash rates by 

45%. Based on Gyeonggi province (South Korean) crash data, Jeong and Oh proposed a statistical 

method using exponential decay functions (EDF) to quantify AEB system effectiveness [4]. It was 

estimated that AEB system could prevent approximately 50% of the total rear-end accidents. In 

a comparative study, Hellman and Lindman evaluated the crash mitigation effects of AEB 

technology based on data reported to insurance companies in Sweden [5]. They claimed that 

rear-end frontal collisions were reduced by 27% for cars with AEB, compared to cars without AEB. 

A meta-analysis method was proposed by Fildes et al. for evaluating AEB system performance 

across different countries, which showed a 38% overall reduction in real-world rear-end 

accidents for vehicles due to being equipped with the low-speed AEB system [6]. 

However, most of these studies have focused on evaluating this technology at the individual 

vehicle level and its safety impacts [7 – 9]. Relatively few studies have attempted to quantify the 

traffic level impacts (e.g., congestion mitigation) due to the introduction of AEB. One of the key 

challenges in quantifying such effectiveness of AEB technology is to develop reliable algorithm(s) 

for evaluating the traffic impacts under the “what-if” scenario when the accident can be avoided 

or mitigated by AEB technology. In addition, the mitigation of traffic accidents can lead to the 

reduction of excessive energy consumption and tailpipe pollutant emissions. For example, Zhu et 

al. leveraged macroscopic economics and safety related data to estimate the nationwide 

equivalent energy costs (including both direct and indirect costs) due to crashes at intersections 

[10]. Nevertheless, to the best of our knowledge, there is no existing attempt to evaluate the 

effectiveness of AEB technology on the environment. 

To address these aforementioned gaps, we develop the following approach in this study: we 

firstly review literature related to AEB technology, to get more in-depth understanding of how 

AEB technology can potentially mitigate accidents. Then, based on the archived traffic accident 

records (e.g., Highway Safety Information System [11]) and real-time freeway traffic data (e.g., 

Caltrans Performance Measurement System [12]), we create a structured database by 

synchronizing this information in space and time both under normal conditions and with 

occurrence of accidents. By leveraging the integrated database and advanced machine learning 

techniques, we develop a data-driven method which can: 1) estimate the spatiotemporal extent 

of traffic accident impact (in terms of the change in speed); 2) predict the “accident-free” (i.e., 

“what-if” scenarios) traffic states under prevailing traffic conditions; and 3) assess the 

environmental impacts potentially due to the deployment of AEB technology with the state-of-

the-art mobile source emissions model.  

The rest of this paper is organized as follows: Section 2 discusses some background 

information on AEB technology, followed by the description of integrated database in Section 3. 



Estimating the Impacts of Automatic Emergency Braking (AEB) Technology on Traffic Energy and Emissions 
 

11 
 

The proposed data-driven method is detailed in Section 4, and Section 5 presents the results of 

case study when applying the method to a real-world example. The last section concludes this 

paper with discussion of future steps. 

 

Literature Review 

Automatic Emergency Braking System 
As sensor and control technology advance, the emergence of advanced driving assistance 

systems (ADAS) allows drivers to identify potential safety risks in different driving scenarios as 

early as possible, thereby reducing the number of collisions or mitigating their impacts. As one 

of the promising ADAS, the automatic emergency braking (AEB) system leverages on-board 

sensors (such as millimeter wave radar or camera) to perceive the surrounding environment 

(mainly in the front of the equipped vehicle), including vehicles, pedestrians, bicyclists, and other 

traffic participants or road objects, and automatically triggers the actuator (such as electronic 

stability program, ESP) to perform braking for collision avoidance or severity mitigation. Different 

from traditional passive safety technologies, AEB is considered as a preventive active safety 

technology, which aims to identify the collision risk in advance, and ensures that the people 

inside and/or outside the car can be well protected.  

The whole working process of AEB system can be divided into the following four stages 

(as shown in Figure 1): 

1) Normal Stage: At this stage, the system continuously monitors its surrounding 
environment for risk assessment, and determines that the equipped vehicle would not 
collide with other road users (e.g., vehicles, pedestrians, and bicyclists) or obstacles in 
front. Towards this end, the AEB system will not intervene the driver's driving 
maneuvers. 

2) Warning Stage: If the system judges that there is a potential collision risk, but the driver 
can take some actions (e.g., decelerating or changing the lane) in time to avoid the 
collision, then the system will alert the driver by triggering warning signals via visual, 
audial or haptic human-machine interfaces (HMI). 

3) Braking Stage: When the system judges that the collision risk is imminent and an 
accident will occur immediately if no action is taken, then the system will use a single-
stage (directly applying the maximum braking pressure) or multi-stage braking strategy 
(gradually increase the braking pressure) to stop the equipped vehicle; 

4) Collision Stage: In some extreme cases (for example, a pedestrian crossing the road 
suddenly appears in front of the vehicle), even though the vehicle immediately uses the 
maximum braking capacity to slow down, the collision cannot be avoided. The system 
will take over the driver’s brake control to minimize the severity of the collision and 
reduce casualties and property losses. 
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Figure 1. AEB System Working Principle Diagram 

 

 

As aforementioned, many studies indicate that AEB technology is capable of reducing the 

number and/or severity of rear-end accident in the range of 25 – 50%. The effectiveness may 

vary with different factors, including external environment (such as road surfaces, weather and 

lighting conditions), equipped vehicle’s features (e.g., perception modules, decision control 

strategies, and actuation functions), and even drivers’ characteristics. For example, road grade 

and pavement adhesion coefficient may affect the braking distance, so adaptive AEB system is 

needed to effectively operate under different road conditions [7]. On-board sensor settings (e.g., 

the field of view), combined with weather and lighting conditions, have significant impacts on 

the perception capability, thus influencing the reliability and accuracy of AEB system [14]. Many 

researchers have proposed a variety of AEB systems that are suitable for different types of 

equipped vehicles (e.g., motorcycles [15], electric vehicles [16], and buses [17]) and target objects 

such as pedestrians [18] and cyclists [19]. To improve the system acceptance, personalized AEB 

systems that leverage emerging technologies such as machine learning [20] and V2V 

communications [21] have been developed for differentiating driver’s preference and driving 

styles in the past few years [22]. In this study, we mainly consider those rear-end accidents that 

can be potentially avoided by AEB systems and quantify the effectiveness of AEB systems in terms 

of traffic impact of accident avoidance or mitigation.    

Impact of Traffic Accident 
AEB can reduce traffic accidents rate, and hence indirectly reduce traffic congestion and 

energy consumption. To estimate the effectiveness of AEB, the impact of traffic accident needs 

to be quantified. From the traffic operation perspective, estimation of traffic accident impact and 

development of countermeasures (e.g., traffic incident management or TIM strategies) to 

mitigate such impact have gained much attention by researchers and public agencies [23]. Some 

fundamental questions associated with the traffic accident and TIM strategies are: a) how to 

predict the traffic states if the accidents do not occur; and b) how to predict the evolution of 

traffic flows when certain type of countermeasures are deployed. Numerous methodologies have 

been introduced over the years to address these concerns. Early studies have put significant 

emphases on analytical approaches based on the queuing theory [24] and shockwave analysis 

[25]. Although these approaches may address a few interesting phenomena (e.g., 

“rubbernecking” effects [26]), for the most part they can be only applied to very limited 

scenarios. With the advent of traffic simulation software, especially microscopic simulation tools 

(e.g., PTV VISSIM), some researchers have proposed to use them to model and analyze the impact 
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of traffic incidents as well as to evaluate the effectiveness of TIM applications [27, 28]. Although 

a traffic simulation environment may provide the ability to conduct “before-and-after” studies 

and to model a variety of “what-if” scenarios, real-world validation of more realistic driving 

behaviors during accidents is critical. Further, most existing incident management impact studies 

have been focused on quantifying safety and mobility effects of traffic accidents, while very few 

have considered environmental impacts [29 – 31]. 

Construction of Integrated Database 
In this research, several data sources are utilized to assess the accident-induced 

environmental impact. As shown in Figure 2, key information includes: real-world traffic states, 

historical accident records, roadway geometry logs, and meteorological conditions (optional). 

Regarding traffic conditions, we mainly take advantage of the Caltrans Performance 

Measurement System (PeMS) [12], which receives real-time 30-second measurements of traffic 

count and occupancy from every loop detector throughout the California freeway system, 

detects the invalid or missing data, and rectifies them or fills those “holes”. Based on the flow 

and occupancy data for each lane, speed is estimated using the well-known g-factor algorithm 

for single loop detector [32]. In addition, all these raw data are aggregated at various temporal 

levels, e.g., 5 minutes, for different purposes of analysis [12].  

Regarding traffic accident records, the Highway Safety Information System (HSIS) is 

considered in this study. HSIS is a multi-state (including California) database which documents 

safety-related information for highways [11]. It provides not only accident inventory but also 

detailed information about the geometrics and other characteristics of roadways, interchange 

ramps, and intersections, such as the number of lanes, roadway width, design speed, ramp’s 

location, and horizontal and vertical alignment, as well as weather and lighting conditions (e.g., 

sunny vs. cloudy). Therefore, we also use HSIS as another major data source of geometric 

characteristics of the freeways and weather information, in addition to PeMS and other 

meteorological database (or remote automatic weather stations, RAWS). In particular, HSIS may 

provide detailed information on traffic accidents such as the accident’s lane-level location (in 

terms of post-mile and lane index), start time, duration, type (e.g., rear-end, head-on, angle, and 

sideswipe) and severity (e.g., property damage only, numbers of injuries). This information can 

be used to select those accidents that can be potentially prevented by AEB technology. 

With the availability of all these data sources, we make significant effort to preprocess 

them (e.g., inconsistency check across different sources) and develop a structured database by 

fusing various datasets based on the time stamp and location tags. Associated with each accident 

record, there are two sub-sets of traffic data: one includes normal traffic conditions (of multiple 

historical days) which are used to construct the model for predicting the “accident-free” traffic 

states. The other is for the actual traffic condition directly related to the occurrence of accident, 

i.e., the actual traffic condition after the accident. It is noted that in this study we extend our 

scope beyond California dataset and work with Waycare Technologies, Inc. 
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(https://waycaretech.com/) on a comprehensive cloud-based traffic incident management data 

platform. This dataset fuses various real-world traffic data such as roadway network geometry, 

traffic flow/density/speed information from loop detectors, probe vehicle data (i.e., from 

smartphone apps), and road weather information, and provides updates (up to) every 1 minute. 

Figure 2. Integrated Database and Work Flow 

 

 

Methodology 
Figure 3 illustrates the flowchart of our proposed approach to estimating the 

effectiveness of AEB technology on environmental sustainability. The orange blocks represent 

input data sources (from the integrated database) that enable the analysis. We firstly perform 

data fusion based on the time stamp and location tags of accidents. By associating with each 

crash record, we obtain two sets of traffic data: 1) a representation of normal traffic conditions 

without accident occurrence, which helps construct a deep learning model for predicting the 

“accident-free” traffic states; and 2) the actual traffic conditions with the occurrence of accident, 

across a spatiotemporal region large enough to cover all of the potential impacts. Enlightened by 

the image processing, we develop a data-driven algorithm to determine the accident-impacted 

area in both space and time. After identifying the impact region and predicting the traffic 

https://waycaretech.com/


Estimating the Impacts of Automatic Emergency Braking (AEB) Technology on Traffic Energy and Emissions 
 

15 
 

conditions under a “what-if” scenario (i.e., no accident), we apply the U.S. Environmental 

Protection Agency’s Motor Vehicular Emissions Simulator (MOVES) model [33] to conduct 

energy/emissions analysis. In the following, we elaborate on three key modules (see red boxes 

in Figure 3) as well as the associated models (i.e., green blocks) in the overall workflow. These 

modules are: spatiotemporal impact region identification, accident-free traffic condition 

prediction, and energy/emissions impact estimation. 

Figure 3. Overall Flowchart of Our Proposed Methodology 

 

 

Spatiotemporal Impact Region Identification 
The purpose of this module is to identify the impacted area of the incident (that can be 

potentially avoided by AEB technology) in both space and time, so that the following 

energy/emissions analysis can capture the full effect. To achieve this goal, we first construct a 

“baseline” spatiotemporal speed table based on available resolutions from the data. Figure 4 

presents an example of such table where the i-th row represents the i-th road segment covered 

by the infrastructure-based sensor, and the j-th column represents the data collection duration 

at the j-th time stamp. For each cell in the baseline speed table, the value is determined as the 

p-th percentile of all speed data samples collected within that segment over multiple historical 

days (when no traffic accidents occur). More specifically, the p-th percentile speed over D days 

at the i-th road segment (or loop detector station) during the j-th discrete time interval (e.g. 5 

minutes), denoted by 𝑣𝑝(𝑖, 𝑗), can be defined as: 

𝑃(𝑣𝑑(𝑖, 𝑗) ≤ 𝑣𝑝(𝑖, 𝑗)) ≥ 𝑝   ∀𝑑 = 1, 2, ⋯ , 𝐷 

where P(∙) represents the probability and vd(i, j) is the speed at road segment i at time window 

j on the d-th day. In this study, we choose the median (or the 50th percentile) of all speed data 

samples across one month (when no traffic accidents occur) to represent the baseline value. This 
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assumes that the median of speed distributions over a period of time (if long enough) can be 

representative of recurring traffic states, and non-recurrent effects (if any) can be mitigated. 

By comparing the spatiotemporal speed table on the crash day (as shown in Figure 4(b)) with the 

baseline table (as shown in Figure 4(a)), we may flag those cells (in red) whose speeds are lower 

than the baseline value by certain threshold [34], i.e., 

𝑓𝑙𝑎𝑔(𝑖, 𝑗) = {
1,        𝑣𝐴𝑐𝑐(𝑖, 𝑗) ≤ 𝑣𝐵𝑎𝑠𝑒(𝑖, 𝑗) − 𝑐(𝑖, 𝑗)

0,                           otherwise
 

where 𝑣𝐴𝑐𝑐(𝑖, 𝑗) represents the speed of 𝑐𝑒𝑙𝑙(𝑖, 𝑗) (i.e., at the i-th road segment within time 

window j) when the accident occurs; 𝑣𝐵𝑎𝑠𝑒 (𝑖, 𝑗) is the baseline speed; and 𝑐(𝑖, 𝑗) denotes the 

threshold value for 𝑐𝑒𝑙𝑙(𝑖, 𝑗). In this study, we apply the Otsu’s method to determining the 

threshold that can maximize inter-class variance [35].  

Figure 4. An Example of Spatiotemporal Speed Tables for Both Baseline and Incident Day 

 

 (a) Baseline (“incident-free”) case   (b) Case with incident occurrence 

 

Threshold determination 
In this study, the first step of Otsu's method is to generate a table of the speed difference 

between baseline speed and accident speed, which is calculated by 

 ∆𝑣(𝑖, 𝑗) =  𝑣𝐴𝑐𝑐(𝑖, 𝑗) − 𝑣𝐵𝑎𝑠𝑒(𝑖, 𝑗) 

Then we can have a histogram for L sections of speed difference, and the frequency of 𝑖-th 

section can be computed as 

𝑝𝑖 = 𝑓𝑖/𝑁 

where 𝑓𝑖 is the number of cells within section 𝑖, and 𝑁 is the total number of cells in the table.  

Since there are two classes in the study region, the affected (𝐶1) area and non-affected 

area (𝐶2), we can find a threshold to distinguish the affected area from the study region by 

maximizing the inter-class variance 𝜎𝐵
2. The problem can be described as: 

max
𝑡

𝜎𝐵
2 = 𝑤1(𝜇1 − 𝜇𝑇)2 + 𝑤2(𝜇2 − 𝜇𝑇)2  
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where the weights for each class are:  

𝑤1 = ∑  

𝑡

𝑖=1

𝑝𝑖  

and 

𝑤2 = ∑  

𝐿

𝑖=𝑡+1

𝑝𝑖 

and 𝑡 is the threshold to separate two classes, the mean value for each class:  

𝜇1 =
1

𝑤1
∑  

𝑡

𝑖=1

𝑖𝑝𝑖 

and  

𝜇2 =
1

𝑤2
∑  

𝐿

𝑖=𝑡+1

𝑖𝑝𝑖 

and the mean value for the whole table: 

𝜇𝑇 = 𝑤1𝜇1 + 𝑤2𝜇2 

 

Impact boundary determination 
However, this threshold-based method when applied to real-world data may result in 

disconnected cells. Considering that progression of an accident shockwave should be 

(theoretically) uninterrupted, a three-layer filtering algorithm is performed on the flagged 

(binary) spatiotemporal speed table to guarantee continuity of the impact region. As explained 

in Algorithm 1, the filter consists of noise reduction layer [36], morphological closing operation 

layer, and morphological opening operation layer [37], processing the information in such an 

order. Considering the temporal characteristics of the shockwave, a morphological structuring 

element ( 𝑀𝑡 ), is adopted to keep the shockwave continuous in time. For example, if the 

resolution of the data is 5-min,  𝑀𝑡 =  [1 1 1]  assumes the accident lasts at least for 15 

minutes (3 consecutive cells in time). Similar to the design of 𝑀𝑡, a structuring element (𝑀𝑠) is 

chosen to maintain the spatial continuity. Provided that the traffic congestion or shockwave 

should propagate upstream along the road segment at certain (bounded) speed, we can define 

𝑀𝑠 as an upper triangular block matrix to filter out those unreasonable noises with respect to the 

shockwave propagation direction. For example, in this study, we apply 

 𝑀𝑠 = [
1 1 1
0 1 1
0 0 1

] 
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to trim the congested cells along the backward forming shockwave. It is noted that regarding the 

forward recovery shockwave, we do not apply any morphological operation, as real-world 

situations (e.g., re-routing of traffic) may complicate the evolution of recovery shockwave. Figure 

5 illustrates how the affected areas keep updating after applying each filter layer. 

 

 

  

Algorithm 1: Impact boundary determination 

Input: 1) The raw-labelled impacted area table (𝑇). 2) A threshold (𝑃) of defining noise 
3) A morphological structuring element (𝑀𝑡) for temporal characteristic. 4) Morphological 
structuring element ( 𝑀𝑠) for spatial characteristic. 

Output:  The ultimate impacted area table (𝑇𝑢𝑙𝑡) 
-Noise reduction layer- 

1： Remove all connected components (objects) that have fewer than  𝑃 cells from the 

binary 𝑇; 
-Morphological closing layer-  

2：Calculate the dilation of T by 𝑀𝑡:𝑇1 =  𝑇 ⊕ 𝑀𝑡 = {𝑧 ∈ 𝐸 ∣ (𝑀𝑡
𝑠)𝑧 ∩ 𝑇 ≠ ∅}, where E is a 

Euclidean space or an integer grid, 𝑀𝑡
𝑠 = {𝑥 ∈ 𝐸 ∣ −𝑥 ∈ 𝑀𝑡}, and (𝑀𝑡

𝑠)𝑧 is the translation 
of 𝑀𝑡

𝑠  by the vector z, i.e.,(𝑀𝑡
𝑠)𝑧 = {𝑏 + 𝑧 ∣ 𝑏 ∈ 𝑀𝑡}, ∀𝑧 ∈ 𝐸; 

3：Calculate the erosion of 𝑇1 by 𝑀𝑡:𝑇2 =  𝑇1 ⊖ 𝑀𝑡 = {𝑧 ∈ 𝐸 ∣ 𝑀𝑡𝑧
⊆ 𝑇1}, where 𝑀𝑡𝑧

 is the 

translation of 𝑀𝑡 by the vector z;  
-Morphological opening layer- 
4:  Calculate the erosion of 𝑇2 by 𝑀𝑠: 𝑇3 =  𝑇2 ⊖ 𝑀𝑠; 
5:  Calculate the dilation of 𝑇3 by 𝑀𝑠: 𝑇𝑢𝑙𝑡 =  𝑇3 ⊕ 𝑀𝑠; 
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Figure 5. Impact Area during the Process of Impact Boundary Determination 

 

       (a) Raw-labelled impact area                  (b) Noise reduction 

 

(c) Morphological closing operation   (d) Morphological opening operation 

 

Incident-Free Traffic Condition Prediction 
Once we identify the spatiotemporal region affected by an accident, we can reconstruct 

(predict) traffic conditions of the “what-if” scenario, i.e., assuming if the accident did not occur. 

In this study, we adopt the Long Short-Term Memory (LSTM) model [38] to predict “accident-

free” traffic condition, due to its capability to capture both historical traffic patterns for long-

term reference and short-term information right before accident occurrence. The data structure 

for LSTM is illustrated in Figure 6, where the normal traffic dataset (without accident) at each 

station over a long period (e.g., one month) is differentiated by the day of week (considering 

different traffic patterns for weekdays and weekends). The model is then trained for each day of 

week across all the stations within the spatiotemporal impact region identified in previous 

section. As presented in Figure 7, the network consists of two LSTM layers, each followed by one 

dropout layer, and four fully connected layers. This network takes traffic measurements of 

certain time window, right before the accident (based on the region described above) to predict 

traffic states for the next time window. The selection of prediction window may depend on the 

identified temporal span due to the accident.  
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Figure 6. Data Structure for LSTM 

 

 

Figure 7. LSTM Network Structure 

 

 

Figure 8 presents two examples of flow (the number of vehicles passing a reference point 

per unit time, e.g., 5 minutes) prediction from the model, one for a normal day and the other for 

an accident day, where predicted flow (in blue) can fit actual flow (in red) very well. In particular, 

for the day with two incidents (Figure 8(b)), our model is effective in predicting the hypothetical 

flow if those two accidents did not occur. The root mean square errors (RMSE) of our LSTM model 

(after training) are 2.7 mph for speed prediction, 1.9 vehicles per hour for flow prediction in a 

validation dataset. 
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Figure 8. Examples of Traffic State Prediction with the Proposed LSTM Model 

 

(a) Normal day                                                      (b) Accident day 

 

Energy/Emissions Impact Estimation 
Based on: 1) the actual traffic state (e.g., average speed) with incident occurrence; and 2) 

predicted traffic state with the assumption of no accident, we can synthesize snippets of 

representative second-by-second driving cycles for each cell in the identified spatiotemporal 

region under two scenarios (actual vs. hypothetical), and estimate the environmental 

performance for comparison. To construct the typical trajectories, we employ the default driving 

cycles in USEPA’s MOVES database differentiated with source type, roadway type and average 

speed. Table 2 lists the index of default driving cycles in MOVES for light-duty vehicles. These 

driving cycles have approximate average speeds ranging from 2.5 mph to 76 mph. Note that some 

driving cycles may apply to freeways (in either rural or urban areas), while others are for non-

freeways. In this study, we only use those driving cycles collected from urban freeway scenarios. 

  

Incidents
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Table 2. MOVES Driving Cycle Index for Light-duty Vehicles (Adapted from [39]) 

 

 

With MOVES default driving cycle, the second-by-second representative speed trajectory 

for each cell can be synthesized by following these steps: 

1. Select two MOVES driving cycles whose average speeds bracket the observed traffic 

speed at a detection station. For example, if the observed traffic speed in 𝑐𝑒𝑙𝑙(𝑖, 𝑗) is 55 

mph, then Driving Cycle 1019 (with the average speed of 58.8 mph) and Driving Cycle 

1020 (with the average speed of 46.1 mph) were selected for trajectory synthesis; 

2. Create speed-acceleration frequency distributions for the two selected driving cycles. In 

this study, bin sizes for speed and acceleration values are 2 mph and 2 mph/s, 

respectively; 

3. Set the initial speed 𝑣(0) as the observed traffic speed at detection station (e.g., 55 mph); 

4. Randomly pick one of the two selected driving cycles as a lottery pool for determining 

acceleration value of next step. The probability of choosing the target driving cycle is 

calculated by how close the current speed is to the average speed of the target driving 

cycle. The closer these two values are, the more likelihood the target driving cycle would 

be selected. Using the same example, since 𝑣(0)=55 mph, the probability of choosing 

Driving Cycle 1019 is 

𝑝1 = 1 −
(58.8 − 55)

(58.8 − 46.1)
= 0.701 

while the probability of choose Driving Cycle 1020 is 1 − 𝑝1 = 0.299; 
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5. Randomly draw an acceleration value from the selected driving cycle in Step 4 and use it 

to calculate the speed of the next time step; 

6. Repeat Step 4 and Step 5 until cumulative travel distance of the synthesized trajectory is 

not less than the spatial coverage of 𝑐𝑒𝑙𝑙(𝑖, 𝑗). 

After synthesizing the second-by-second trajectory as a representative driving cycle for 

each cell, we can estimate the corresponding second-by-second Vehicle Specific Power (VSP) 

values (in kWatt/metric ton) for a light-duty vehicle (e.g., passenger car) using the equation 

below: 

𝑉𝑆𝑃 =  
𝐴 ∙ 𝑣 + 𝐵 ∙ 𝑣2 + 𝐶 ∙ 𝑣3 + 𝑚 ∙ 𝑣 ∙ (𝑎 + 𝑔 ∙ sin 𝜃)

𝑓𝑠𝑐𝑎𝑙𝑒
 

where 𝐴, 𝐵 and 𝐶 are road-load related coefficients for rolling resistance (kW ∙ sec/m), rotating 

resistance (kW ∙ sec2/m2), and aerodynamic drag (kW ∙ sec3/m3), respectively; 𝑚 is mass of 

passenger car (metric ton); and 𝑓𝑠𝑐𝑎𝑙𝑒  is fixed mass factor for the source type (kg). Default values 

of these parameters are provided in [39]. In addition, 𝑣  is vehicle speed (m/sec); 𝑎  is vehicle 

acceleration (meter/sec2); 𝑔 is the gravitational acceleration (m/sec2); and 𝜃 is the angle of road 

segment inclination (rad). 

Figure 9. Vehicle Operating Mode Bin Definition in MOVES 

 

 

Once second-by-second VSP values are calculated, they are used in conjunction with 

speed and acceleration data to determine the corresponding operating modes according to the 
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definition in Figure 9 defined by MOVES. Based on second-by-second operating modes of the 

representative driving cycle for each cell, energy consumption and pollutant (e.g., CO, HC, NOX, 

PM and CO2) emissions at the cell level can be estimated from the lookup tables available in 

MOVES database. Therefore, the overall environmental impacts due to an accident can be 

calculated by summing the energy consumption and pollutant emissions of all the cells within the 

spatiotemporal region. 

 

Case Study 
In this section, we use real world data to prove the efficacy of our methodology for 

estimating accident-related environmental impacts, by assuming that AEB system was adopted 

in these accident-involved vehicles and took effects to avoid these collisions. 

Case I: CA-91 in Riverside, CA 
The first case is a rear-end one (involved with two vehicles), which occurred at 07:48:00 

(PST time) on 05/16/2017 (Wednesday) along CA-91 highway in Riverside, California, whose 

location is illustrated in Figure 10. The update rate of this dataset (PeMS) is 5-minute. Following 

the aforementioned methodology, we obtain the speed contours for both typical day and 

accident day, and identify the continuous spatiotemporal affected region (in yellow) as shown in 

Figure 11. In total, there are 39 affected cells, covering the region of 6 stations (in space) and 55 

minutes (in time), and 6 LSTM models are trained for traffic state prediction. As shown in Figure 

12, there are two speed drops on that day. The LSTM model identifies the first speed drop from 

69 to 79 (time step) is due to the accident, and the second one is a normal traffic jam predicts a 

normal speed, and thus generates a hypothetical speed for this accident. 

Figure 10. Location of the Accident 

            

(a) Google map     (b) Satellite image 
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Figure 11. Incident Affected Area Analysis 

 

 

Figure 12. Speed profile (5-minute) Prediction Result for An Affected Station 

 

 

We calculate the emission and fuel consumption as shown in the Table 3. It can be 

observed that if this studied accident could be avoided or significantly mitigated, then energy 

consumption within the spatiotemporal impact region would be reduced by up to 14.99% and 

the resultant pollutant emissions (such as CO, HC, NOx, PM and CO2) would decrease by as much 

as 17.59%.  
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Figure 13. Incident Affected Area Analysis 

 

 

Table 3. Estimated Environmental Impact of Entire Spatiotemporal Region due to the 
Accident 

 CO(g) HC(g) NOx(g) PM2.5_Ele(g) PM2.5_Org(g) Energy(KJ) CO2(g) Fuel(g) 

Actual  
(with accident) 

12.14 0.117 0.55 0.008 0.04 107295.99 7633.90 2390.80 

Predicted  
(if incident-free) 

10.00 0.115 0.71 0.007 0.03 91212.48 6489.59 2032.42 

Reduction (%) 17.59 1.71 -28.31 12.5 16.67 14.99 14.99 14.99 

 

Case II: US-95 in Las Vegas, NV 
The second rear-end case occurred at 21:27:00 (UTC time) on 01/02/2020 (Thursday) 

along US-95 highway in Las Vegas, Nevada, whose location is illustrated in Figure 14. The traffic 

data were collected from inductive loop detectors with 1-minute update (different from the 5-

minute resolution dataset in Case 1). Based on the location of the accident, we first identify the 

set of nearest detection stations (upstream) according to the road section and detector 

configuration information. The set of stations is large enough to spatially cover potential 

impacted area by this incident. Following the aforementioned methodology, we obtain the speed 

contours for both typical day and accident day, and identify the continuous spatiotemporal 

affected region (in yellow) as shown in Figure 15. In total, there are 174 affected cells, covering 

the region of 6 stations (in space) and 34 minutes (in time). Therefore, we train 6 LSTM models 

for traffic state prediction, and Figure 16 presents the predicted speed profile (in blue) of the 

fourth (upstream) affected station during the accident period. 
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Figure 14. Location of the Accident 

 

(a) Google map     (b) Satellite image 

 

Figure 15. Incident Affected Area Analysis 

 

 

Figure 16. Speed Profile (1-minute) Prediction Result for An Affected Station 

 

 



Estimating the Impacts of Automatic Emergency Braking (AEB) Technology on Traffic Energy and Emissions 
 

28 
 

Figure 17. Top 30 Cells with Most Significant Fuel Consumption Difference between Normal 
States and Accident States 

 

 

Next, we synthesize second-by-second speed trajectory for each cell within the 

spatiotemporal impact area and estimate the accident-induced energy/emissions effects with 

MOVES model. Figure 17 shows the results for the top 30 cells (out of 174 cells) whose estimated 

environmental impacts by the accident (i.e., the difference in fuel consumption between the 

actual and predicted conditions) are most significant. By summing up all affected cells, the overall 

accident-induced environmental impacts in terms of energy consumption and pollutant 

emissions are summarized in Table 4. As shown in the table, if this studied accident could be 

avoided or significantly mitigated, then energy consumption within the spatiotemporal impact 

region would be reduced by up to 34.6% and the resultant pollutant emissions (such as CO, HC, 

NOx, PM and CO2) would decrease by as much as 22.5%. 

 

Table 4. Estimated Environmental Impact of Entire Spatiotemporal Region due to the Accident 

 CO(g) HC(g) NOx(g) PM2.5_Ele(g) PM2.5_Org(g) Energy(KJ) CO2(g) Fuel(g) 

Actual  
(with accident) 36.92 0.31 1.14 0.024 0.11 378107.4 26901.59 8425.09 

Predicted  
(if incident-free) 28.62 0.3 1.51 0.02 0.09 247451.1 17605.65 5513.77 

Reduction (%) 22.5 4.1 -32.1 16.7 17.4 34.6 34.6 34.6 
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Conclusions and Future Work 
In this study, we developed a methodology to estimate potential environmental impacts 

due to the introduction of AEB system, owing its effectiveness of collision avoidance. The main 

idea of this approach was to first identify the target accident that can be potentially avoided by 

AEB system. Then, the spatiotemporal impact region by the target accident was estimated with 

the Otsu's method and morphological operations. Once the region was determined, the Long 

Short-Term Memory (LSTM) technique was applied to historical data to predict hypothetical 

traffic conditions if the accident was successfully avoided due to the deployment of AEB system. 

Based on both the predicted (“what-if” scenarios without accident) and actual (scenarios with 

accident occurrence) traffic states, we applied the U.S. EPA’s MOVES model to estimate 

energy/emissions effects within the affected region, and estimated the differences between two 

types of scenarios. It is noted that due to the complexity in real-world traffic (e.g., re-routing) and 

unavailability of traffic information on the local streets, we estimated the environmental impact 

based on speed variation (i.e., assuming a typical speed trajectory traversing the affected region 

under the “what-if” scenario and actual scenario). We used real-world data of an accident 

collected in Riverside, California to show the efficacy of our approach. The results showed that 

the energy consumption and pollutant (such as CO, HC, NOx and PM) emissions could be reduced 

by up to 15% and 18%, respectively, if AEB technology were adopted in the accident-involved 

vehicles and effectively prevented the studied accident from occurrence. 

As one of the future steps, we will evaluate the proposed method in extensive datasets 

by further considering other factors such as road grade, vehicle mix, and meteorological 

conditions, which may affect the effectiveness of AEB system. In addition, comprehensive models 

will be developed for traffic state prediction, which should not only model the spatial and 

temporal correlation across all the affected stations but also address potential re-routing effect 

due to the accident occurrence. 
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Data Management Plan 
Products of Research  

In this project, two types of data are used: the accident data from the Highway Safety 

Information System (HSIS) and the traffic data from the Caltrans Performance Measurement 

System or PeMS (http://pems.dot.ca.gov/). The HSIS data will be used for accident analysis. The 

traffic data will be used to calculate the “baseline” spatiotemporal speed table and to train the 

Long Short-Term Memory (LSTM) model.  

Basically, HSIS is a multi-state database, where the California portion is derived from the 

California TASAS (Traffic Accident Surveillance and Analysis System). This system, maintained by 

the Traffic Operations Office (TO) of CALTRANS, is a mainframe-based system based on COBOL 

programming. The accident data from TO Office provides not only accident inventory but also 

detailed information about the geometrics and other characteristics of roadways, interchange 

ramps, and intersections, such as the number of lanes, roadway width, design speed, ramp’s 

location, and horizontal and vertical alignment, as well as weather and lighting conditions. 

PeMS receives real-time measurements (with different temporal resolutions) on traffic 

count and lane occupancy from each inductive loop detector (ILD) throughout the California 

freeway system. In this study, we focus on the segment affected by the accident in Southern 

California and extract 5-min aggregated data from the affected vehicle detection stations (VDS) 

in PeMS. The temporal span would be 24 hours. 

Data Format and Content  
The format of HSIS data is in .csv, and four types of data files are provided, including 

accident data, vehicle data, occupant data, and roadway inventory data. 

The data archived in PeMS can take the format in .txt, containing only one type of data, 

which is the 5-min aggregated data from the affected vehicle detection stations (VDS). 

Data Access and Sharing  
In this project, for HSIS data, we requested it from the official website of HSIS: 

(https://www.hsisinfo.org/datarequest.cfm).  

For PeMS data, we will download the zipped file (in .txt after unzipping) from the "Data 

Clearing House". 

The data are available publicly via DataDRYAD: https://doi.org/10.6086/D1D11H  

Reuse and Redistribution  
The PIs and Regents of the University of California will hold the intellectual property right 

for the data created, e.g., tailored PeMS data and HSIS data. The data from Waycare 

Technologies, Inc. is considered to be confidential. The PIs do not see any other legal 

requirements that need to be addressed. 

http://pems.dot.ca.gov/
https://www.hsisinfo.org/datarequest.cfm
https://doi.org/10.6086/D1D11H
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