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Abstract 
The purpose of this project is to discover new continuous approximation models for modern logistical 
problems, such as last-mile delivery and the adoption of teleworking. The continuous approximation 
paradigm is a quantitative method for solving logistics problems in which one uses a small set of 
parameters to model a complex system, which results in a simple algebraic equation that is easier to 
manage than (for example) a large-scale optimization model. As a further benefit, one often obtains 
insights from these simpler formulations that help to determine what affects the outcome most 
significantly. Continuous approximation models have been used for over 60 years to study classical 
logistical problems, but modern logistical systems bring new levels of complexity that existing models do 
not address. This project combines tools from geospatial optimization, computational geometry, and 
geometric probability theory to formulate new models that will enable practitioners and policy-makers 
to solve these new problems, and most importantly, to identify what features are most impactful in 
their real-world use.  
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New continuous approximation models for passenger 
and freight transportation 

Executive Summary 
The purpose of this project is to design simple and concise mathematical models for quantifying 
the reductions in vehicle miles travelled (VMT), among other cost measures, that result from 
implementing modern logistics systems with complex features such as ridesharing, 
crowdsourcing or teleworking. Traditionally, these problems have been solved in a discrete 
setting, involving fixed sets of (for example) demand points, time periods, and service facility 
locations; one then solves them with an integer mathematical programming solver such as 
CPLEX or Gurobi. A drawback of this approach is that the problems are almost always NP-hard, 
and hence solving large-scale instances would require enormous computational efforts which 
likely increase exponentially with the problem instance size. A further drawback is that such 
models are often extremely complex, which hinders understanding of salient problem features 
and managerial insights. 

For these reasons, this project has used tools from geospatial optimization, computational 
geometry, and geometric probability theory to discover simple continuous approximation 
models that identify the key problem attributes that affect them most significantly. A 
continuous approximation model is characterized by its use of continuous representations of 
input data and decision variables as density functions over time and space, and the goal is to 
approximate the objective function into an expression that can be optimized by relatively 
simple analytical operations. Such an approximation enables transforming otherwise high-
dimensional decision variables into a low-dimensional space, allowing the optimal solution to 
be obtained with mere calculus, even when significant operational complexities are present. 
The results from such models often bear closed-form analytical structures that help reveal 
managerial insights. 

Continuous approximation models for classical transportation problems such as the travelling 
salesman problem (TSP) and the vehicle routing problem (VRP) are well-understood. Modern 
logistical challenges, such as the integration of crowdsourcing, ridesharing, and so-called 
“random stow” policies, all bring with them new problem complexities that are not easily 
handled using traditional continuous approximation models. However, our recent successes in 
previous research sponsored by METRANS indicate to us that there do indeed exist tractable 
continuous approximation models for handling them, and we present them in this report. 
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1 Introduction
Recent years have seen major changes in modern logistics systems analysis, due to the adoption
of modalities such as ridesharing, crowdsourcing or teleworking. New paradigms such as these
often give rise to challenging mathematical optimization problems, such as mixed‐integer linear
programs (MILPs) or constraint programs. Traditionally, these problems have been solved in a dis‐
crete setting, involving fixed sets of (for example) demand points, time periods, and service facility
locations; one then solves them with an integer mathematical programming solver such as CPLEX
or Gurobi. A drawback of this approach is that the problems are almost always NP‐hard, and hence
solving large‐scale instances would require enormous computational efforts which likely increase
exponentially with the problem instance size. A further drawback is that such models are often
extremely complex, which hinders understanding of salient problem features and managerial in‐
sights.

For these reasons, this project has used tools from geospatial optimization, computational ge‐
ometry, and geometric probability theory to discover simple continuous approximation models
that identify the key problem attributes that affect themmost significantly. A continuous approxi‐
mation model is characterized by its use of continuous representations of input data and decision
variables as density functions over time and space, and the goal is to approximate the objective
function into an expression that can be optimized by relatively simple analytical operations. Such
an approximation enables transforming otherwise high‐dimensional decision variables into a low‐
dimensional space, allowing the optimal solution to be obtained with mere calculus, even when
significant operational complexities are present. The results from such models often bear closed‐
form analytical structures that help reveal managerial insights. Continuous approximationmodels
for classical transportation problems such as the travelling salesman problem (TSP) and the vehicle
routing problem (VRP) are well‐understood. Modern logistical challenges, such ridesharing and
so‐called “random stow” policies inmaterials handling, all bring with them new problem complex‐
ities that are not easily handled using traditional continuous approximation models.

One family of problems that we found particularly relevant for this study are what we call
selection routing problems. A selection routing problem is a routing optimization problem, such
as the TSP or VRP, in which one is given a large collection of destinations and the goal is to select
a subset of those points that satisfies certain criteria and optimizes some objective function. By
way of comparison, the TSP and VRP both require that one visit all destinations. Such problems
are particularly timely in modern analysis of logistical systems in several contexts:

• Selection routing problems arise organically in studying the consequences of trip chaining
[24], that is, performing multiple errands during a single outing, because one has multiple
choices of locations at which to perform errands.

• One proposed approach for mitigating the inefficiencies in “last mile” delivery has been
the use of a socially networked system in which parcel recipients can “opt in” for packages
to be delivered at multiple possible locations (as opposed to their doorstep), such as their
workplace [27, 38]. The parcel delivery company then solves a selection routing problem
in which they must select one of the multiple locations for each customer and deliver a
package there.

• Selection routing problems are fundamentally important in studying randomized strategies
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in warehouses, in which one stores a stock keeping unit (SKU) in any available location (as
opposed to designating specific regions of thewarehouse for different SKUs). This is because
a warehouse picker will often select multiple SKUs at a time, and can benefit if those SKUs
are dispersed throughout the warehouse. Amazon, for example, calls this process random
stow and attributes its rapid growth to the efficiency that is realized as a result [8]:

Random stow: The storage of items in a randomised order at fulfilment cen‐
tres tomaximise the chance ofmultiple items on the same order being near each
other. The fulfilment centre management system knows the location of every
item and is able to work out the shortest travel distance to pick the orders.

The remainder of this report is devoted to the derivation of new continuous approximationmodels
for various selection routing problems, which we subsequently verify and validate using compu‐
tational experiments.

2 Related research
This section reviews previous research in the area of selection routing problems as well as contin‐
uous approximation models in logistics.

2.1 Selection routing problems
One of the most famous selection routing problems is the generalized TSP (GTSP). In the GTSP,
given a collection of point sets, X1, . . . ,Xn, we seek the shortest tour that visits 1 point of each
point setXi; the traditional TSP simply hasXi = {xi} for all i, i.e. each point set is a single point.
The GTSP was first introduced in [1], and the author proposes a dynamic programming approach
for solving it. The application in their paper is sequencing computer files. The GTSP is an NP‐Hard
optimization problemwith potential applications in warehousing, distribution, and scheduling. As
such it is important to solve it to a high level of optimality. Saksena [32] studied the routing of
welfare clients through governmental agencies as a symmetric GTSP. Other applications include
vehicle dispatching [14], plant location [30], and other problems such as the warehouse order
picking with multiple stock locations, airport selection and routing for courier planes, and certain
types of flexible manufacturing scheduling. For more on these applications, we invinte the reader
to refer to papers such as [12] and [23].

2.2 Continuous approximation models
The motivation for studies on continuous approximation paradigm is the replacement of com‐
binatorial quantities that are difficult to compute with simpler mathematical expressions, which
(under certain conditions) provide accurate estimations. This type of approximation is common
for combinatorial problems. Examples include TSP approximations as in [2], which is reproduced
in Theorem 4 of this report, and [10], facility location problems as in [17], [19], and [26], and basi‐
cally any subadditive Euclidean functional such as a minimum spanning tree [35], k‐medians [20],
Steiner tree [35], or matching [33] and other papers such as [28], [34], and [36] papers.

9
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This report derives continuous approximation models for selection routing problems. In this
way, it is similar to papers like [4], which studies the trade‐offs between inventory and trans‐
portation costs. Also, the work in [21] studies how to route relief vehicles following a disaster in
a time‐sensitive manner. Chowdhury et al. [7] showed how to optimally partition the disaster‐
affected region for emergency drone distribution. Another similar work is [22] which develops a
geometricmodel to find the optimal long‐term vehicle fleet composition for distribution activities.
Finally for more refere to Franceschetti et al. who reviewedmany studies in the same vein in their
paper [13].

In thiswork, weassume that the points are distributedbasedon adensity function, i.e. stochas‐
tically. The paper [5] studies a partitioning algorithm in which the client locations are indepen‐
dent and identically distributed samples from a given probability density function. Goodson [15]
describes a set of rollout policies based on fixed routes to obtain dynamic solutions to the vehi‐
cle routing problem with stochastic demand and duration limits. For more on the literature of
stochastic vehicle routing models refer to the survey in [31].

3 Preliminaries
The first four results are stated without proof and are standard textbook material. Theorem 4 is
the famous Beardwood‐Halton‐Hammersley (BHH) Theorem [2].

Lemma 1. Let f : R → R be a real‐valued function and let Bd(r) ⊂ Rd be a ball of radius r
centered about the origin. We have∫

Bd(r)

f(‖x‖) dx =
∫ r

0

Sd−1(t)f(t) dt ,

where Sd−1(t) is the surface area of a (d− 1)‐sphere of radius t, which is given by

Sd−1(t) =
2πd/2

Γ(d/2)
td−1 .

Lemma 2. The volume of a d‐dimensional ball of radius r is πd/2rd/Γ(d/2 + 1), where Γ denotes
the gamma function..

Lemma 3 (Stirling’s formula). The gamma function Γ(x) satisfies logΓ(x + 1) = x log x − x +
1
2
log x+ 1

2
log 2 + 1

2
log π +O(1/x) as x→ ∞.

Theorem 4 (BHH Theorem). There is a constant βd such that, for almost any sequence of indepen‐
dent random variables {Xi} sampled from an absolutely continuous density f onRd with compact
support, we have

lim
n→∞

TSP(X1, . . . , Xn)

n(d−1)/d
= βd

∫
Rd

f(x)(d−1)/d dx

with probability one.

Lemma 5 (Super‐ and sub‐additivity of the TSP). LetR ⊂ R2 be a compact Lebesgue measurable
set, partitioned into pieces P1, . . . ,Pm whose common boundaries (i.e. ∂Pi ∩ ∂Pj) have finite

10
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length. There exists a constant C that depends only on the partition such that, for any set of
pointsX = {x1, . . . , xn} ⊂ R, we have

−C +
m∑
i=1

TSP(X ∩ Pi) ≤ TSP(X) ≤ C +
m∑
i=1

TSP(X ∩ Pi)

Proof. See Lemma 2.4.1 of [36], for example.

Lemma6 (Borel‐Cantelli). Let {En}bea sequence of events in a sample space. Then if
∑∞

n=1 Pr(En) <
∞, we have

Pr(En occurs infinitely often) = 0 ,

or equivalently

Pr(lim sup
n→∞

En) := Pr(
∞⋂
n=1

∞⋃
m=n

Em) = 0 .

The remaining results are routine volume computations:

Lemma 7. Let ℓ > 0 and let D ⊂ Rdn denote the set of all n‐tuples (u1, . . . , un) of points in Rd

such that
∑n

i=1 ‖ui‖ ≤ ℓ . The volume ofD, Vol(D), satisfies

Vol(D) =

(
2πd/2

Γ(d/2)

)n
· Γ(d)n

Γ(dn+ 1)
· ℓdn . (1)

Proof. This is nothing more than the integral∫
Bd(ℓ)

∫
Bd(ℓ−∥un∥)

· · ·
∫
Bd(ℓ−

∑n
i=3 ∥ui∥)

∫
Bd(ℓ−

∑n
i=2 ∥ui∥)

1 du1 du2 · · · dun−1 dun ,

which we can compute using a standard inductive argument applying Lemma 1.

Corollary 8. Let ℓ > 0 and let D′ ⊂ Rdn denote the set of all n‐tuples (x1, . . . , xn) of points in Rd

such that ‖x1‖+
∑n

i=2 ‖xi − xi−1‖ ≤ ℓ . The volume ofD′, Vol(D′), satisfies

Vol(D′) =

(
2πd/2

Γ(d/2)

)n
· Γ(d)n

Γ(dn+ 1)
· ℓdn . (2)

Proof. This is just Cavalieri’s principle applied to Lemma 7

4 Two additional lemmas
The lemma below is useful for bounding the length of a TSP tour from below:

Lemma 9. Let X0 be the origin in Rd and let X1, . . . , Xn be a collection of independent, uniform
samples drawn from a regionR of unit volume in Rd. Then

Pr(TSP(X0, X1, . . . , Xn) ≤ ℓ) ≤ Γ(n+ 1) ·
(

2πd/2

Γ(d/2)

)n
· Γ(d)n

Γ(dn+ 1)
· ℓdn .

11
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Proof. It is easy to see that

Pr

(
‖X1‖+

n∑
i=2

‖Xi −Xi−1‖ ≤ ℓ

)
︸ ︷︷ ︸

(∗)

≤
(

2πd/2

Γ(d/2)

)n
· Γ(d)n

Γ(dn+ 1)
· ℓdn ; (3)

this is because we can regard the samples X1, . . . , Xn as being a single sample drawn uniformly
fromRn, so that the probability of interest (∗) is simply the probability that this single sample lies
in the domain D′ described in Corollary 8. This probability is of course equal to Vol(D′ ∩ Rn) ≤
Vol(D′), which gives us the desired inequality (3). We obtain our lemma by applying the union
bound to (3) over all n! = Γ(n+ 1) permutations ofX1, . . . , Xn.

The following lemma allows us to approximate a probability density function with a step func‐
tion in a way that preserves certain quantities of interest.

Lemma 10 (Approximation with a simple function). Let f be a probability density function with
compact supportR ⊂ R2 whose level sets have Lebesguemeasure zero, let k be a positive integer,
and define

P (x) = Pr(f(X) ≤ f(x)) =

∫
x′:f(x′)≤f(x)

f(x′) dx′ .

For any ϵ > 0, there exists a step density function ϕ(x) =
∑s

i=1 ai1(x ∈ �i) and corresponding

Π(x) = Pr(ϕ(X) ≤ ϕ(x)) =

∫
x′:ϕ(x′)≤ϕ(x)

ϕ(x′) dx′

such that the following conditions hold:

1.
∫
R |ϕ(x)− f(x)| dx ≤ ϵ,

2.
∣∣P (x)k−1 − Π(x)k−1

∣∣ ≤ ϵ for all x ∈ R,

3. All of the components of ϕ have the same mass, i.e. ai Area(�i) = 1/s.

Proof. The requirement that the level sets havemeasure zero just is not actually necessary, butwe
find it useful for keeping notation consistent throughout this paper (this requirement is flagrantly
violatedwhen f is a uniform distribution, which is our base case for all of the various TSP instances
in this paper anyway). For a large integer q, define contour sets Si = {x : (i − 1)/q < P (x) ≤
i/q}. For each Si, we can approximate the restriction of f to Si (i.e. f(x)1(x ∈ Si)) to arbitrary
precision ϵ′ by a step function ψi(x) =

∑
j aij1{x ∈ �ij} (this is a classical result of measure

theory; see e.g. Theorem 2.4(ii) of [37]). Section A of the appendix also establishes that for all i
and j, we can assume without loss of generality that

• �ij ⊂ Si for all i and j (i.e. the support of ψi is contained in Si),

• aij < a(i+1)j′ for all i, j, and j′,

• all aij and Area(�ij) are rational, and

12
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•
∫
Si
ψi =

∫
Si
f = 1/q.

Given any ϵ > 0, we set q = d1/ϵe and ϵ′ = ϵ/q in the above construction. The function ψ :=∑q
i=1 ψi is therefore a step density approximation of f whose aggregate error overR is at most ϵ,

so condition 1 is satisfied. If we defineΠ′(x) =
∫
x′:ψ(x′)≤ψ(x) ψ(x) dx, then condition 2 is satisfied

as well; indeed, this is the purpose of the initial decomposition ofR into the Si’s.
For ease of notation, we now re‐index all of the components of ψ (i.e. we disregard the fact

that ψ decomposes into a sum of ψi’s) so that we simply have ψ(x) =
∑

j bj1{x ∈ �j}, where bj
andArea(�j) are rational. If we take δ to be the lowest commondenominator over all bj Area(�j),
then we can write bj Area(�j) = zj/δ, with zj a positive integer. To satisfy the third condition,
all that remains is to decompose each �j into zj pieces of equal area, and let ϕ denote the step
function resulting thereof, which completes the proof.

5 The main theorems proven in this report
The main results that we have proven in this report, as a result of this project, are shown below.
We give their proofs in Sections 6 and 7. For both of these, we let f ,R, and P be as in Lemma 10.

Theorem (Section 6). Let Xi ⊂ R2 be a finite set of points, for i ∈ {1, . . . , n}, and assume that
all sets Xi consist of k independent samples from f . Let L(X1, . . . ,Xn) denote the length of the
shortest tour that visits one element from each set Xi. With probability one, we have

λ1
2
< lim inf

n→∞

L(X1, . . . ,Xn)√
nk
∫∫

R

√
f(x)P (x)k−1 dx

≤ lim sup
n→∞

L(X1, . . . ,Xn)√
nk
∫∫

R

√
f(x)P (x)k−1 dx

<
µ1

2
(4)

with λ1 = 0.4839 and µ1 = 1.8408 as in Theorem 11.

Theorem (Section7). LetX1, . . . , Xn bea sequence of independent samples from f . LetL(X1, . . . , Xn;m)
denote the length of the shortest tour that visits atm of the pointsX1, . . . , Xn. For fixed p ∈ (0, 1),
we have

λ2

∫
R

√
f(x)1(P (x) ≥ p) dx < lim inf

n→∞

L(X1, . . . , Xn; dpne)
p
√
n

≤ lim sup
n→∞

L(X1, . . . , Xn; dpne)
p
√
n

< µ2

∫
R

√
f(x)1(P (x) ≥ p) dx

with probability one, where λ2 = 0.2935 and µ2 = 0.9204.

The value of the theorems above is that they provide a way to predict the length of a tour of
a complex routing problem, without actually performing any optimization, by merely multiplying
by

√
n. For instance, the second theorem suggests that a valid prediction is

L(X1, . . . , Xn; pn) ≈ cp
√
n

∫
R

√
f(x)1(P (x) ≥ p) dx ,

where c is a constant such that λ2 ≤ c ≤ µ2. We will validate these claims in Section 8.

13
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Figure 1: A generalized TSP tour of six sets of points X1, . . . ,X6, each consisting of k = 3 points.
The optimal tour contains one element from each such set (and is the shortest such tour to do so).

6 Continuous approximationanalysis of the generalized TSP (GTSP)
This section gives a continuous approximation formula for the GTSP; Theorem 11 addresses the
uniformcase and Theorem15addresses the general case. Throughout this section, we letL(X1, . . . ,Xn)
denote the length of the shortest tour that visits one element from each point set Xi, which has
|Xi| = k ≥ 2 for all i; see Figure 1 for an example.

Theorem 11 (Uniform demand). Let k ≥ 2 be fixed and letX1, . . . ,Xn be point sets of cardinality
k that are all drawn independently and uniformly at random in a region of unit area in R2. Then
for all fixed k ≥ 2, we have

0.4839 =: λ1 < lim inf
n→∞

L(X1, . . . ,Xn)√
n/k

≤ lim sup
n→∞

L(X1, . . . ,Xn)√
n/k

< µ1 := 1.8408 (5)

with probability one.

Proof. The upper bounding constant is conceptually very simple: first, take the special case where
R is the unit square, and from each point set Xi, let pointXi be the member of Xi that lies the
farthest to the right. The pointsXi follow the probability distribution

f(x = (x1, x2)) = kxk−1
1

and Theorem 4 says that a TSP tour of a collection of points following this distributionmust satisfy
(with probability one)

lim
n→∞

TSP(X1, . . . , Xn)√
n

= β2

∫
R

√
f(x) dx =

∫ 1

0

∫ 1

0

√
kxk−1

1 dx1 dx2 =
2β2

√
k

k + 1
< 2β2/

√
k

(6)

14
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where β2 is the BHH constant, and so wemerely apply the bound of β2 < 0.9204 from Section 8.5
of [11] which gives the desired value of µ1.

WhenR is an arbitrary region (of unit area), the intuition is the same, but we exploit the fact
that the selection of the rightmost point in the previous constructionwas arbitrary (as opposed to,
say, the leftmost point). LetR1, . . . ,Rs be a partition ofR into measurable pieces with area 1/s,
and for each point set Xi, let Xi be the member of Xi that belongs to the piece of the highest
index (breaking ties arbitrarily). We have

Pr(Xi ∈
j⋃

j′=1

Rj′) =

(
j

s

)k
=⇒ Pr(Xi ∈ Rj) =

(
j

s

)k
−
(
j − 1

s

)k
=: pj

withp ∈ ∆s−1, the usual probability simplex. TheXi’s followa stepdistributionϕ(x) = s
∑s

j=1 pj1{x ∈
Rj}, and so Theorem4 says that a TSP tour of a collection of points following this distributionmust
satisfy (with probability one)

lim
n→∞

TSP(X1, . . . , Xn)√
n

= β2

∫
R

√
ϕ(x) dx =

β2
s

s∑
j=1

√
spj

→ β2

∫ 1

0

√
ktk−1 dt as s→ ∞

=
2β2

√
k

k + 1
< 2β2/

√
k

as desired.
To derive the lower bound, let En be the event that L(X1, . . . ,Xn) < c

√
n/k for fixed c.

Applying the union bound to Corollary 9 for the case d = 2 and using the fact that there are kn
different possible ways to select one member from each set Xi, we see that

Pr(En) ≤ kn · Γ(n+ 1)

Γ(2n+ 1)

(
2πc2n

k

)n
=⇒ log Pr(En) ≤ (1 + 2 log c− log 2 + log π)n−O(1) (7)

where we have applied Lemma 3. We see that (7) → −∞ if and only if the coefficient of n is
negative:

0 > 1 + 2 log c− log 2 + log π
m

c <

√
2

πe
≈ 0.48393 . (8)

Furthermore, this guarantees that Pr(En) ≤ a−n for some a > 1, so that
∑∞

n=1 Pr(En) < ∞.
We apply Lemma 6 to obtain λ1 < lim infn→∞ L(X1, . . . ,Xn)/

√
n/k with probability one, which

completes the proof.
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To attack the case where the samples arise from a non‐uniform distribution, we require the
following consequence of Theorem 11:

Corollary 12 (Tour length in a subset with uniform demand). Let X1, . . . ,Xn be independent uni‐
form samples of cardinality k drawn from a compact region R with volume 1 and let S ⊂ R.
Then

lim inf
n→∞

L(Xi : Xi ⊂ S)√
n

> λ1

√
Area(S)k+1

k

with probability one, where Xi ⊂ S means that all k elements of Xi lie in S and λ1 = 0.4839
from Theorem 11.

Proof. Let {Yi} denote a sequence of uniform samples of cardinality k drawn from S (not R).
Certainly, by scaling areas, Theorem 11 says that

lim inf
n→∞

L(Y1, . . . ,Yn)√
n

> λ1
√

Area(S)/k .

We now define N(n) = |i ∈ {1, . . . , n} : Xi ⊂ S| and p = Area(S)k to be the probability that
Xi ⊂ S . We have (with probability 1)

lim inf
n→∞

L(Xi : Xi ⊂ S)√
n

= lim inf
n→∞

L(Y1, . . . ,YN(n))√
n

= lim inf
n→∞

L(Y1, . . . ,YN(n))√
n

·

√
N(n)

N(n)

= lim inf
n→∞

L(Y1, . . . ,YN(n))√
N(n)

·
√
N(n)

n

=

(
lim inf
n→∞

L(Y1, . . . ,YN(n))√
N(n)

)(
lim
n→∞

√
N(n)

n

)
>
(
λ1
√

Area(S)/k
)√

p = λ1
√

Area(S)k+1/k

as desired.

We next prove the non‐uniform convergence result for the special case where the density is a
step function:

Lemma 13 (Tour length from a step density). Let ϕ(x) =
∑s

i=1 ai1(x ∈ �i) be a step density
function with compact supportR such that a1 ≥ · · · ≥ as and ai Area(�i) = 1/s for all i (so that
Area(R) = 1). If Y1, . . . ,Yn are independent samples from ϕ having cardinality k and Π(x) is
defined as in Lemma 10, then

lim inf
n→∞

L(Y1, . . . ,Yn)√
n

≥ λ1(k + 1)

2
√
k

∫
R

√
ϕ(x)Π(x)k−1 dx

with probability one, where λ1 = 0.4839 from Theorem 11.
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�10

(a) (b) (c)

�′
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2 �′
3 �′

4 �′
5 �′

6 �′
7 �′

8 �′
9 �′

10

(d)

Figure 2: Figure 2a shows a step function ϕ that presumably satisfies the conditions of Lemma
13 (in the sense that darker – i.e. denser – regions are smaller, reflecting the assumption that
ai Area(�i) = 1/s for all i). Figure 2b shows the TSP tour of a collection of independent samples
Y1, . . . , Yn of ϕ, whose length differs from that of a collection of tours within each component
(Figure 2c) by a constant, by Lemma 5. Figure 2d shows the re‐scaled components �′

i = Ψ(�i)
and the points Y ′

1 , . . . , Y
′
n.

Proof. We have

L(Y1, . . . ,Yn) = min
Yi∈Yi

TSP(Y1, . . . , Yn)

= min
Yi∈Yi

s∑
i=1

TSP(Y1, . . . , Yn ∩ �i) +O(1)

from Lemma5. For each i, defineΨi : �i → R2 byΨi(y) =
√
aiy+ξi, where the ξi are selected so

that the imagesΨi(�i) are all disjoint (their specific values are irrelevant). LetΨ : R → R2 be the
union of all the Ψi’s (i.e. for any y ∈ R, we have Ψ(y) = Ψi(y), where �i 3 y). The significance
of this construction is that the imageΨ(R) has area 1 andΨ(Y1), . . . ,Ψ(Yn) becomes a uniform
collection of samples inΨ(R). For notational compactness, define Y ′

i = Ψ(Yi),Y ′
i = Ψ(Yi), and�′

i = Ψ(�i) = Ψi(�i); Figure 2 shows this construction. Basic scaling arguments tell us that

TSP({Y1, . . . , Yn} ∩ �i) =
1

√
ai

TSP({Y ′
1 , . . . , Y

′
n} ∩ �′

i) .
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Since the ai’s are decreasing, we can define increasing terms bi = 1/
√
ai andwe can also construct

non‐negative cj ’s so that bi =
∑i

j=1 cj . This tells us that

min
Yi∈Yi

s∑
i=1

TSP({Y1, . . . , Yn} ∩ �i) = min
Y ′
i ∈Y ′

i

s∑
i=1

1
√
ai

TSP({Y ′
1 , . . . , Y

′
n} ∩ �′

i)

= min
Y ′
i ∈Y ′

i

s∑
i=1

bi TSP({Y ′
1 , . . . , Y

′
n} ∩ �′

i)

= min
Y ′
i ∈Y ′

i

s∑
i=1

(
i∑

j=1

cj

)
TSP({Y ′

1 , . . . , Y
′
n} ∩ �′

i)

= min
Y ′
i ∈Y ′

i

s∑
j=1

cj

s∑
i=j

TSP({Y ′
1 , . . . , Y

′
n} ∩ �′

i)

and now note that for all j, Lemma 5 also tells us that
s∑
i=j

TSP({Y ′
1 , . . . , Y

′
n} ∩ �′

i) = TSP({Y ′
1 , . . . , Y

′
n} ∩ �′

≥j) +O(1) ,

where we define �′
≥j =

⋃s
i=j �′

i. It is certainly true that

TSP({Y ′
1 , . . . , Y

′
n} ∩ �′

≥j) ≥ L(Y ′
p : Y ′

p ⊂ �′
≥j)

because if Y ′
p ⊂ �′

≥j , then certainly Y ′
p ∈ �≥j ’. The samples Y ′

p : Y ′
p ⊂ �′

≥j are independently
and uniformly distributed within �′

≥j . Therefore, since Area(�′
≥j) = (s − j + 1)/s, Lemma 12

says that

lim inf
n→∞

1√
n
L(Y ′

p : Y ′
p ⊂ �′

≥j) ≥ λ1

√(
s− j + 1

s

)k+1 /
k

and so if we adopt the convention that b0 = 0, we have

lim inf
n→∞

1√
n

min
Yi∈Yi

s∑
j=1

cj

s∑
i=j

TSP({Y ′
1 , . . . , Y

′
n} ∩

√
ai�i) ≥

λ1√
k

s∑
j=1

cj

√(
s− j + 1

s

)k+1

=
λ1√
k

s∑
j=1

(bj − bj−1)

√(
s− j + 1

s

)k+1

≥ λ1√
ksk+1

s∑
j=1

bj

[√
(s− j + 1)k+1 −

√
(s− j)k+1

]
and we have √

(s− j + 1)k+1 −
√

(s− j)k+1 ≥ k + 1

2

√
(s− j)k−1
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for all j ≤ s and k, thus

λ1√
ksk+1

s∑
j=1

bj

[√
(s− j + 1)k+1 −

√
(s− j)k+1

]

≥ λ1(k + 1)

2
√
ksk+1

s∑
j=1

bj

√
(s− j)k−1

=
λ1(k + 1)

2s
√
k

s∑
j=1

1
√
aj

√(
s− j

s

)k−1

=
λ1(k + 1)

2
√
k

s∑
j=1

√
aj Area(�j)

√(
s− j

s

)k−1

=
λ1(k + 1)

2
√
k

s+1∑
j=2

√
aj Area(�j)

√(
s− j + 1

s

)k−1

=
λ1(k + 1)

2
√
k

s∑
j=2

√
aj Area(�j)

√(
s− j + 1

s

)k−1

=
λ1(k + 1)

2
√
k

 s∑
j=1

√
aj Area(�j)

√(
s− j + 1

s

)k−1

−
√
a1 Area(�1)


≥ λ1(k + 1)

2
√
k

 s∑
j=1

√
aj Area(�j)

√(
s− j + 1

s

)k−1

− 1

s

√
Area(R)

 (9)

=
λ1(k + 1)

2
√
k

∫
R

√
ϕ(x)Π(x)k−1 dx− λ1(k + 1)

2s
√
k

√
Area(R)︸ ︷︷ ︸

(∗)

(10)

as desired, where (9) uses the fact that a1 Area(�1) = 1/s and a1 is the largest of all the ai’s.
The desired result follows from the fact that we can make s as large as we like by breaking each
component �i of ϕ into multiple components of equal area without changing the function ϕ,
which allows us to drop the term (∗).

To attack the non‐uniform case of Theorem 11, we require one more observation:
Claim 14. If

∫
R |g| dx ≤ δ, then

∫
R

√
|g| dx ≤

√
Area(R)δ.

Proof. If we maximize
∫
R
√
g dx subject to the constraint that

∫
R g dx ≤ δ, the solution g∗ is

uniform with g∗(x) = δ/Area(R) everywhere.

It is now a simple matter to apply Lemma 10:

Theorem 15. Let f ,R, and P be as in Lemma 10. With probability one, we have

λ1
2
< lim inf

n→∞

L(X1, . . . ,Xn)√
nk
∫∫

R

√
f(x)P (x)k−1 dx

≤ lim sup
n→∞

L(X1, . . . ,Xn)√
nk
∫∫

R

√
f(x)P (x)k−1 dx

<
µ1

2
(11)
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with λ1, µ1 as in Theorem 11.

Proof. The upper bounding argument is very simple: for each point set Xi, let point Xi be the
member of Xi where f is the densest, i.e. Xi = argmaxx∈Xi

f(x). This is intuitive because it is
desirable to select those points that belong tomore densely populated areas. The density function
on theXi’s is

f(x) = kf(x)P (x)k−1

and by Theorem 4, the length of a tour of thoseXi’s satisfies

lim
n→∞

TSP(X1, . . . , Xn)√
n

= β2

∫
R

√
f(x) dx = β2

∫
R

√
kf(x)P (x)k−1 dx ≤ µ1

2

∫
R

√
kf(x)P (x)k−1 dx

where β2 is the BHH constant.
To prove the lower bound, let ϕ be the approximation of f from Lemma 10. By a standard

coupling argument [25], there is a joint distribution for random variables (X,Y ) such thatX has
density f , Y has density ϕ, and Pr(X 6= Y ) ≤ ϵ/k for any ϵ; this means that ifX = (X1, . . . , Xk)
is a collectionof k independent samples of f andY = (Y1, . . . , Yk) is a collectionof k independent
samples of ϕ, then Pr(X 6= Y ) < ϵ. We have

L(X1, . . . ,Xn) ≥ L(X1, . . . ,Xn : Xi = Yi)

= L(Y1, . . . ,Yn : Xi = Yi)

≥ L(Y1, . . . ,Yn)− L(Y1, . . . ,Yn : Xi 6= Yi)−O(1)

=⇒ lim inf
n→∞

L(X1, . . . ,Xn)√
n

≥ lim inf
n→∞

L(Y1, . . . ,Yn)√
n

−
α2

√
Area(R)ϵn√

n

= lim inf
n→∞

L(Y1, . . . ,Yn)√
n

− α2

√
ϵArea(R)

≥ λ1(k + 1)

2
√
k

∫
R

√
ϕ(x)Π(x)k−1 dx− α2

√
ϵArea(R)

wherewehave applied Lemma13 in the last inequality. Finally, note thatwe can select our approx‐
imation ϕ,Π arbitrarily closely so that, by Lemma 10 (compactifying our notation momentarily),

ϵ ≥ max
x

∣∣P (x)k−1 − Π(x)k−1
∣∣+ ∫

R
|ϕ(x)− f(x)| dx

≥
∫
ϕ
∣∣P k−1 − Πk−1

∣∣+ ∫ |ϕ− f |P k−1

≥
∫ ∣∣ϕΠk−1 − ϕP k−1 + ϕP k−1 − fP k−1

∣∣
=

∫ ∣∣ϕΠk−1 − fP k−1
∣∣

=⇒
√

Area(R)ϵ ≥
∫ √

|ϕΠk−1 − fP k−1| ≥
∣∣∣∣∫ √ϕΠk−1 −

∫ √
fP k−1

∣∣∣∣
=⇒

∫ √
ϕΠk−1 ≥

∫ √
fP k−1 −

√
Area(R)ϵ
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and therefore, we ultimately conclude that

lim inf
n→∞

L(X1, . . . ,Xn)√
n

≥ λ1(k + 1)

2
√
k

∫
R

√
ϕ(x)Π(x)k−1 dx− α2

√
ϵArea(R)

≥ λ1(k + 1)

2
√
k

(∫ √
f(x)P (x)k−1 dx−

√
Area(R)ϵ

)
− α2

√
ϵArea(R)

≥ λ1
√
k

2

∫ √
f(x)P (x)k−1 dx−

√
ϵArea(R)

(
λ1(k + 1)

2
√
k

− α2

)
︸ ︷︷ ︸

(∗)

(12)

which completes the lower bound (and therefore, the proof), since (12) can be made as small as
desired by choosing small values of ϵ.

6.1 The GTSP with clustering
In this section we study the case where samples are not independently drawn; rather, we will as‐
sume that each point setXi consists of points that are clustered together. This assumption holds in
the vast majority of instances of the GTSP; for example, the benchmark data in [12] is constructed
by selecting problems from the TSPLIB library [29] and then grouping point sets together based
on proximity. Our motivation for doing so is in order to derive some managerial insights before
proceeding to the next selection routing problem of interest.

Our model of clustering is as follows: we assume that we are given a fixed (compact) Jordan
measurable shape S of arbitrary volume, and that each Xi is obtained by placing S uniformly at
random in the unit cube [0, 1]d and sampling k points uniformly within S . In order to sidestep
boundary effects that might occur by having S only partially contained in the cube, we assume
that the uniform placement of S is done in a “toroidal” fashion (in which opposing sides of the
cube are “glued” together), as suggested in Figure 3. It turns out that the bounds from Theorem
11 remain valid even in this situation:

Theorem 16. The bounds from Theorem 11 remain valid when point sets Xi are sampled from a
uniformly placed shape S as described above.

Proof. We first note that, if one selects points X1 ∈ X1, . . . , Xn ∈ Xn arbitrarily, then the re‐
sulting samplesX1, . . . , Xn are still uniformly and independently drawn in the cube, by virtue of
the fact that S was placed uniformly at random. Hence, we can again apply the union bound to
Corollary 9 exactly as in the proof of Theorem 11, so that our lower bound is unaffected. Thus, our
proof is complete if we can show that the upper bounds bd apply as well. Note that in Theorem
11, we derived those upper bounds by selecting the member of eachXi whose first entry was the
smallest. It is obvious that this is not guaranteed to work here; consider the case where S is a ball
whose radius is very small.

Since S is Jordan measurable, it can be approximated to arbitrary precision by a finite set of
disjoint rectangles. More precisely, for any threshold ϵ′ > 0, we can construct a finite set of disjoint
rectangles R1, . . . , Rm (where m varies depending on ϵ′), each of which is contained in S , such
that

m∑
i=1

Vol(Ri) ≥ Vol(S)− ϵ′ .
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1
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5
6
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6

Figure 3: A generalized TSP tour of six sets of points X1, . . . ,X6, each consisting of k = 3 points,
where S is a “jellybean” type shape that is placed uniformly at random in a “toroidal” fashion in
the unit square.

We now fix a threshold ϵ > 0, and let R1, . . . , Rm be disjoint rectangles contained in S such that
m∑
i=1

Vol(Ri) ≥
[
1−

( ϵ

k1/d

)d/(d−1)
]1/(2k)

Vol(S) ,

and we define R =
⋃m
i=1Ri. Next, we write the dimensions of each rectangle Ri as si1 × si2 ×

· · · × sid, we define s = mini{si1}, and we define δ > 0 to be any number such that 1/δ is an
integer and

δ ≤

(
1−

[
1−

( ϵ

k1/d

)d/(d−1)
]1/(2k))

s

2
.

Our “algorithm” for selecting one of the k samples drawn from S is described below:

1. Place S uniformly at random (in a “toroidal” fashion) in the unit cube [0, 1]d, and place R
correspondingly in S. Draw k samplesX1, . . . , Xk uniformly at random from S.

2. Let each Ri ∈ R be written as

Ri = [ui1, v
i
1]× [ui2, v

i
2]× · · · × [uid, v

i
d]

and define R̃1, . . . , R̃m by

R̃i =

[⌈
ui1
δ

⌉
δ,

⌊
vi1
δ

⌋
δ

]
× [ui2, v

i
2]× · · · × [uid, v

i
d] ;

that is, round ui1 upwards and round vi1 downwards to their nearest integer multiple of δ
(this obviously implies that R̃i ⊆ Ri). Define R̃ =

⋃m
i=1 R̃i.
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3. If any one of the k samplesX1, . . . , Xk lies outside R̃, setX∗ = X1 (i.e. an arbitrary choice)
and returnX∗. Otherwise, go to step 4.

4. Write each sampleXi asXi = (xi1, . . . , x
i
d). For each sampleXi, define

ti = xi1 −
⌊
xi1
δ

⌋
δ

and letX∗ be the sample for which ti is minimal. ReturnX∗.

The salient properties of the above scheme are as follows: on the one hand, if any of the k samples
lies outside R̃, then it is obvious that the returned sampleX∗ simply follows a uniformdistribution
on [0, 1]d (since S was positioned uniformly at random). On the other hand, if all k samples lie
in R̃, then it is not hard to see that each value ti is uniformly distributed between 0 and δ, with
all ti’s being independent; this is because the rounding that defines the R̃i’s in step 2 guarantees
that each xi1 is a uniform sample from an interval whose endpoints are integer multiples of δ.
Therefore, the minimum of the ti’s follows a probability density function h(t) given by

h(t) =
k(δ − t)k−1

δk
,

and so the selectionX∗ follows a probability density g(x) given by

g(x) = k[δ − (x1 − bx1/δc δ)]k−1

δk−1
,

as shown in Figure 4. This density function is periodic (with period δ) with respect to the first
coordinate x1 of x and is concentrated near one side of the hyperplanes of the form x1 = qδ with
q ∈ Z. Note that if one draws n′ samples X∗

1 , . . . , X
∗
n′ from this distribution, the BHH theorem

says that their TSP tour must be almost surely asymptotic to

βdn
′(d−1)/d

∫
[0,1]d

g(x)(d−1)/d dx = βdn
′(d−1)/d1

δ

∫ δ

0

[
k(δ − t)k−1

δk−1

](d−1)/d

dt = βdn
′(d−1)/d · dk(d−1)/d

(d− 1)k + 1

<
βdd

d− 1

(
n′d−1

k

)1/d

which is the same expression as (6).
To put all of the pieces together, we let f(x) denote the probability density function associated

with the sampleX∗ obtained according to our “algorithm”. It is easy to see that f(x) is a mixture
of the density g(x) that we just defined together with a uniform distribution, which we will write
as f(x) = λg(x) + (1 − λ) for some λ ∈ [0, 1]. We want to show that λ is close to 1. In step 2,
note that each rectangle R̃i is obtained by increasing ui1 by less than δ and decreasing vi1 by less
than δ, and consequently

Vol(R̃i) >
vi1 − ui1 − 2δ

vi1 − ui1
Vol(Ri) ≥

s− 2δ

s
Vol(Ri) ,
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1

0
0 1

Figure 4: The function g(x) in [0, 1]2, with δ = 1/7. We have used k = 3, although this is not
reflected in any obvious way by the shading above.

where s = mini{si1} as defined above, and therefore

Vol(R̃) =
m∑
i=1

Vol(R̃i) >
s− 2δ

s

m∑
i=1

Vol(Ri) ≥ s− 2δ

s

[
1−

( ϵ

k1/d

)d/(d−1)
]
Vol(S)

=⇒ Vol(R̃)

Vol(S)
≥ s− 2δ

s

[
1−

( ϵ

k1/d

)d/(d−1)
]1/(2k)

≥
[
1−

( ϵ

k1/d

)d/(d−1)
]1/k

.

Therefore, for any placement of S , the probability that all k samplesX1, . . . , Xk lie in R̃ is at least([
1−

( ϵ

k1/d

)d/(d−1)
]1/k)k

= 1−
( ϵ

k1/d

)d/(d−1)

,

which says that λ ≥ 1 − (ϵ/k1/d)d/(d−1). Thus, by the BHH theorem, the TSP tour of a collection
of n points sampled from the distribution f(x) is proportional to

βdn
(d−1)/d

∫
[0,1]d

f(x)(d−1)/d dx = βdn
(d−1)/d

∫
[0,1]d

[λg(x) + (1− λ)](d−1)/d dx

≤ βdn
(d−1)/d

∫
[0,1]d

[g(x) + (1− λ)](d−1)/d dx

≤ βdn
(d−1)/d

∫
[0,1]d

[
g(x) +

( ϵ

k1/d

)d/(d−1)
](d−1)/d

dx

≤ βdn
(d−1)/d

∫
[0,1]d

g(x)(d−1)/d +
ϵ

k1/d
dx

=
βdd

d− 1

(
nd−1

k

)1/d

+ ϵ
βdn

(d−1)/d

k1/d

<
βdd

d− 1

(
nd−1

k

)1/d

+ ϵ
βdd

d− 1

(
nd−1

k

)1/d

= (1 + ϵ)
βdd

d− 1

(
nd−1

k

)1/d

.
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Since ϵ was chosen arbitrarily, this completes the proof.

6.2 Managerial insights for the GTSP
The preceding result is somewhat counterintuitive because it effectively says that the GTSP is unaf‐
fected by clustering within subsets, provided that the overall placement of the subsets themselves
remains uniform and that the number of subsets is large. Managerially speaking, to refer back to
the introduction, this implies that:

• If one employs a fully randomized distribution strategy in a warehouse, in which each SKU
is uniformly randomly positioned at k separate locations, then the average length of an
order‐picking tour of n distinct SKUs is proportional to

√
n/k, as opposed to

√
n in the

deterministic case as established in [18]. Hence, one expects a reduction in total distance
travelled that is proportional to 1/

√
k.

• If one employs a randomized strategy in a warehouse, such as Amazon’s random stow [8],
Theorem 16 says that one does not need to distribute identical SKUs throughout the entire
warehouse to reap the benefits of the GTSP; it suffices to randomize the SKU placement
by selecting a small portion of the warehouse uniformly at random, then distributing the
identical SKUs within it.

• The paper [6] uses the GTSP to study whether delivery services are guaranteed to improve
the carbon footprint in a region; they find that, for households that already drive to many
different locations that are all independently and uniformly distributed, the carbon foot‐
print may actually increase. Theorem 16 says that this remains true when those locations
are clustered near each other, which is a more realistic assumption (since Hotelling‐style
competition usually implies that similar businesses will locate close to one another).

• If one is using a socially networked system such as that described in [27, 38] (inwhich parcels
can be delivered to multiple locations such as a customer’s workplace or gym, in addition
to their home), Theorem 16 says that one will see increases in system efficiency even when
a customer’s locations are all grouped near each other.

Remark 17. We emphasize that the assumption of “toroidal” placement is done for the sole pur‐
pose of ensuring that an arbitrary selectionXi ∈ Xi is still uniform, so that the lower bound from
Theorem 11 is in effect; if one makes some other assumption about the behavior near the bound‐
ary, one might see small non‐uniformities around the boundary of the unit cube. Clearly, when S
is small, the likelihood of being placed near the boundary of the cube becomes small anyway, so
the assumption is only an unrealistic one when S is large (in which case the amount of clustering
within sets is expected to be small anyway).

7 Continuous approximationanalysis of the cardinality constrained
TSP (CCTSP)

This section gives a continuous approximation formula for the cardinality constrainted TSP (CCTSP).
The CCTSP is an optimization problem inwhichwe are given a set of pointsX1, . . . , Xn and an inte‐
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germ < n, and the goal is to find the shortest route that visits anym of the n points. Throughout
this section, we let L(X1, . . . , Xn;m) denote the length of the shortest tour that visitsm of the
pointsX1, . . . , Xn. Theorem 18 addresses the uniform case and Theorem 21 addresses the gen‐
eral case.

To save wear and tear on floors and ceilings, whenm is non‐integer, we round it upwards.

Theorem 18. Let X1, . . . , Xn be independent uniform samples drawn from a region of unit area
in R2. For all fixed 0 < p < 1, we have

0.2935 =: λ2 < lim inf
n→∞

L(X1, . . . , Xn; pn)

p
√
n

≤ lim sup
n→∞

L(X1, . . . , Xn; pn)

p
√
n

< µ2 := 0.9204 (13)

with probability one.

Proof. The upper bounding constant is simple: take a TSP tour T of all of the points, whose length
satisfies TSP(X1, . . . , Xn)/

√
n → β2 with probability one (where β2 is the BHH constant from

Theorem 4). Fix an orientation of the tour and let Ti denote the subtour of T that begins at point
i and traverses T until it has visited dpne points. Certainly,

n∑
i=1

length(Ti) = (dpne − 1) length(T )

=⇒ min
i

length(Ti) ≤
1

n

n∑
i=1

length(Ti) =
(dpne − 1)

n
length(T )

=⇒ lim sup
n→∞

mini length(Ti)
p
√
n

≤ lim
n→∞

(dpne − 1)

n
· length(T )√

n
= β2p < µ2p

as desired, where we apply the bound of β2 < 0.9204 from Section 8.5 of [11].
To derive the lower bound, let En be the event that L(X1, . . . , Xn; pn) < cp

√
n for fixed c.

We will apply the union bound to Corollary 9 for the case d = 2. Note that the number of possible
subsets of cardinality dpne is

(
n

⌈pn⌉

)
, which satisfies(

n

dpne

)
=

Γ(n+ 1)

Γ(dpne+ 1)Γ(n− dpne+ 1)

≤ Γ(n+ 1)

Γ(pn+ 1)Γ(qn+ 2)
=

1

qn+ 1
· Γ(n+ 1)

Γ(pn+ 1)Γ(qn+ 1)

=⇒ log
(

n

dpne

)
≤ logΓ(n+ 1)− logΓ(pn+ 1)− logΓ(qn+ 1)− log(qn+ 1)

= − (p log p+ q log q)n+O(logn)

and so

Pr(En) ≤
(

n

dpne

)
Γ(dpne+ 1)

Γ(2dpne+ 1)

(
2πc2p2n

)pn
≤
(

n

dpne

)
Γ(pn+ 2)

Γ(2pn+ 1)

(
2πc2p2n

)pn
=

(
n

dpne

)
(pn+ 1)

Γ(pn+ 1)

Γ(2pn+ 1)

(
2πc2p2n

)pn
=⇒ log Pr(En) ≤ (2p log c+ p− q log q − p log 2 + p log π)n+O(logn) .
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The above expression approaches−∞ if and only if the coefficient of n is negative:

0 > 2p log c+ p− q log q − p log 2 + p log π
m

c <

√
2

πe
· qq/p =

√
2

πe
· (1− p)(1−p)/p .

this is convex and increasing in p, and satisfies

lim
p→0+

√
2

πe
· (1− p)(1−p)/p =

√
2π

e
> 0.2935 =: λ2 .

Furthermore, this guarantees that Pr(En) ≤ a−n for some a > 1, so that
∑∞

n=1 Pr(En) <∞. We
apply Lemma 6 to obtain λ2 < lim infn→∞ L(X1, . . . , Xn; pn)/(p

√
n) with probability one, which

completes the proof.

In order to address the general (i.e. non‐uniform) case of the CCTSP, the following lemma is
useful:

Lemma 19. LetX1, . . . , Xn be independent uniform samples drawn froma compact regionRwith
area 1 and let S ⊂ R, with Area(S) = q. Then

lim inf
n→∞

L(X1, . . . , Xn ∩ S; pn)
p
√
n

≥

{
λ2 if p ≤ q

∞ otherwise.

Proof. This is simple: if p > q then the law of large numbers says that |X1, . . . , Xn ∩ S|/n → q
with probability one, soL(X1, . . . , Xn∩S; pn) does not exist (we would have to visit more points
than are contained in S). On the other hand, if p ≤ q, then we merely observe that

L(X1, . . . , Xn ∩ S; pn) ≥ L(X1, . . . , Xn; pn)

and apply Theorem 18.

The non‐uniform equivalent of Theorem 18 for step functions follows:

Lemma 20. Let ϕ(x) =
∑s

i=1 ai1(x ∈ �i) be a step density function with compact support R
such that a1 ≥ · · · ≥ as and ai Area(�i) = 1/s for all i (so that Area(R) = 1). If Y = {Yi} is a
sequence of independent samples from ϕ, 0 < p < 1 and Π(x) is defined as in Lemma 10, then

λ2

∫
R

√
ϕ(x)1(Π(x) ≥ p) dx < lim inf

n→∞

L(X1, . . . , Xn; pn)

p
√
n

≤ lim sup
n→∞

L(X1, . . . , Xn; pn)

p
√
n

< µ2

∫
R

√
ϕ(x)1(Π(x) ≥ p) dx

with probability one, where λ2 and µ2 are the constants from Theorem 18.
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Proof. The upper bound is easy: if we simply take a tour of those points x such that Π(x) ≥ p,
then the law of large numbers says that wewill visit∼ pn points as n→ ∞, and the BHH Theorem
(i.e. Theorem 4) We have

L(Y1, . . . , Yn;m) = min
S⊂Y :|S|=m

TSP(S)

= min
S⊂Y :|S|=m

s∑
i=1

TSP(S ∩ �i) +O(1)

from Lemma 5. By definition, we also have

min
S⊂Y :|S|=m

s∑
i=1

TSP(S ∩ �i) = min
q∈Q

s∑
i=1

L(S ∩ �i; qi)

where q denotes the number of points from each �i that are selected, i.e.

Q =

{
q ∈ Zs+ :

s∑
i=1

qi = m, qi ≤ |Y ∩ �i| ∀i

}
.

Define Ψ, Y ′, and Y ′
i as in the proof of Lemma 13, as well as S ′ = Ψ(S) for S ⊂ Y . As before,

we have

TSP(S ∩ �i) =
1

√
ai

TSP(S ′ ∩ �′
i)

for all subsets S. Since the ai’s are decreasing, we can define increasing terms bi = 1/
√
ai and we

can also construct cj ’s so that

min
q∈Q

s∑
i=1

L(S ∩ �i; qi) = min
q∈Q

s∑
i=1

1
√
ai
L(S ′ ∩ �′

i; qi)

= min
q∈Q

s∑
i=1

biL(S
′ ∩ �′

i; qi)

≥ min
q̃∈Q̃

s∑
i=1

biL(S
′ ∩ �′

i; q̃in)

where Q̃ is a “lower bounding set” ofQ defined as follows: fix ϵ and let ξ(t) = ϵbt/ϵc, which in par‐
ticular tells us that 0 ≤ t−ξ(t) ≤ ϵ for all t. The set Q̃ is the imageof (bnξ(q1/n)c, . . . , bnξ(qs/n)c)
for all feasible vectors q ∈ Q; in particular, it has the property that for any q ∈ Q, there exists
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q̃ ∈ Q̃ such that q̃ ≤ q. We have therefore established that

lim inf
n→∞

L(Y1, . . . , Yn; pn)√
n

≥ lim inf
n→∞

1√
n
min
q∈Q

s∑
i=1

biL(S
′ ∩ �′

i; qin)

≥ lim inf
n→∞

1√
n
min
q̃∈Q̃

s∑
i=1

biL(S
′ ∩ �′

i; q̃in)

= min
q̃∈Q̃

lim inf
n→∞

1√
n

s∑
i=1

biL(S
′ ∩ �′

i; q̃in) (14)

≥ min
t∈p∆s−1

lim inf
n→∞

1√
n

s∑
i=1

biL(S
′ ∩ �′

i; (ti − ϵ)n)

where the exchange in (14) is permissible because the cardinality of Q̃ remains bounded1 as n→
∞. We are therefore free to consider the outer optimization problem in t, which is

minimize
t

λ2bi(ti − ϵ) s.t. (15)
s∑
i=1

ti = p

0 ≤ ti ≤ 1/s ∀i

and is obviously minimized by setting t1 = · · · = t⌊ps⌋ = 1/s and t⌈ps⌉ = p − bpsc/s (see e.g.
exercise 4.8(e) of [3]). We can disregard the t⌈ps⌉ term for notational convenience and use the fact
that x ∈

⋃⌊ps⌋
i=1 �i if and only ifΠ(x) ≥ bpsc/s to see that the objective function of (15) is at least

λ2

⌊ps⌋∑
i=1

bi(1/s− ϵ) =
λ2
s

⌊ps⌋∑
i=1

bi − ϵλ2

⌊ps⌋∑
i=1

bi ≥
λ2
s

⌊ps⌋∑
i=1

bi − ϵ

(
λ2

s∑
i=1

bi

)

=

∫
R

√
ϕ(x)1(Π(X) ≥ bpsc/s) dx− ϵ

(
λ2s

∫
R

√
ϕ(x) dx

)
≥
∫
R

√
ϕ(x)1(Π(X) ≥ p) dx− ϵ

(
λ2s

∫
R

√
ϕ(x) dx

)
which completes the proof, because for fixed s, we can make ϵ as small as we like to reduce the
subtracted term.

The non‐uniform equivalent to Theorem 18 follows:

Theorem 21. Let f ,R, and P be as in Lemma 10. We have

λ2

∫
R

√
f(x)1(P (x) ≥ p) dx < lim inf

n→∞

L(X1, . . . , Xn; pn)

p
√
n

≤ lim sup
n→∞

L(X1, . . . , Xn; pn)

p
√
n

< µ2

∫
R

√
f(x)1(P (x) ≥ p) dx

with probability one, where λ2 and µ2 are the constants from Theorem 18.
1For example, since each entry of Q̃ is of the form biϵncwith i ∈ Z satisfying 0 ≤ i ≤ d1/ϵe, a crude upper bound

is |Q̃| ≤ (d1/ϵ+ 1)s.
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Proof. We omit the proof for brevity because it is almost identical to the proof of Theorem 15,
in the sense that we merely show that a step density can approximate a smooth density to any
desired precision.

8 Computational experiments
This section presents the results from two computational experiments. The first two experiments
use synthetic data in the unit square, and the third uses road network data to determine if clus‐
tering in the GTSP has an impact for reasonable values of n. In order to (heuristically) solve the
GTSP, both experiments use the Lin‐Kernighan‐Helsgaun heuristic adapted for the GTSP described
in [16].

8.1 Predicting tour lengths of the generalized TSP
We consider predicting the length of a GTSP tour of uniform samples of points in a unit square.
Based on Theorem 11, we predict that the length L of a GTSP tour of n sets of k points each
satisfies

λ1
√
n/k ≤ L ≤ µ1

√
n/k .

Figure 5a shows that these lengths do indeed lie well within the bounds given. Figure 5b shows
the same data, but using a truncated Gaussian distribution in the unit square.

8.2 Predicting tour lengths of the cardinality‐constrained TSP
We consider predicting the length of a CCTSP tour of uniform samples of points in a unit square.
Based on Theorem 18, we predict that the length L of a CCTSP tour that visits a fraction p of n
points satisfies

λ2p
√
n ≤ L ≤ µ2p

√
n .

Figure 6a shows that these lengths do indeed lie well within the bounds given. Figure 6b shows
the same data, but using a truncated Gaussian distribution in the unit square.

8.3 An experiment in a road network
Our second experiment addresses the impact of clustering in the GTSP when distances are mea‐
sured with respect to a road network, using the Google Distance Matrix API [9]. We again used
the Lin‐Kernighan‐Helsgaun heuristic from [16] for 5 ≤ n ≤ 100 and 2 ≤ k ≤ 4, and our point
sets were sampled uniformly from the centers of the 1856 census blocks of the city of Sunnyvale,
California, which are shown in Figure 7. We computed GTSP tours for both the case where all
samples are independent as well as the case where each Xi is clustered: specifically, we let each
Xi consist of samples that are all within one mile of one another (i.e. sampled in a ball of radius
0.5 miles). The tour lengths for these trials, as well as a comparison between the clustered and
non‐clustered cases, are shown in Figure 8, which indicates that the same basic principles are in
effect as in the Euclidean case.
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(a) Tour lengths, and upper and lower bounds, for
uniformly sampled points in the unit square.

(b) Tour lengths, andupper and lower bounds, for
points sampled from a truncated Gaussian distri‐
bution in the unit square.

Figure 5: Tour lengths and their bounds. For each diagram, the horizontal axis shows the number
of sets Xi, and the vertical axis shows the lengths. The plots show the lower bounds, upper
bounds, and true lengths computed, for k ∈ {3, 4, 5, 6}.
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(a) Tour lengths, and upper and lower bounds, for
uniformly sampled points in the unit square.

(b) Tour lengths, andupper and lower bounds, for
points sampled from a truncated Gaussian distri‐
bution in the unit square.

Figure 6: Tour lengths and their bounds. For each diagram, the horizontal axis shows the number
of points Xi, and the vertical axis shows the lengths. The plots show the lower bounds, upper
bounds, and true lengths computed, for p ∈ {0.1, 0.25, 0.5, 0.75, 0.9}.

Figure 7: The centers of census blocks in Sunnyvale, California.
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Figure 8: Figure (a) shows the lengths of the GTSP tours, in miles, of randomly selected centers
of census blocks; here the abbreviation (cl.) refers to clustered point sets. In (b), we see that the
ratio between clustered and non‐clustered lengths indeed approaches 1 as n becomes large, as
expected. Also note that the clustered tours are significantly longer than the non‐clustered tours
when k = 3, 4 and n is small.

9 Conclusions
We have proven two theorems that can be used to predict the total length of the solution to
a selection routing problem, such as the generalized TSP or the cardinality‐constrained TSP. As
demonstrated in our computational experiments, these predictions are useful both for Euclidean
instances as well as distances on a road network. Further research directions include the inte‐
gration of temporal constraints such as time windows or capacities on vehicles, and we plan to
address them in future work.
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Data Management Plan 
Products of Research  
The data that were collected consist of uniformly sampled points in a geographic region as well as 
lat/lng pairs sampled from Southern California.  All origin-destination distances can be computed using 
OpenStreetMaps, Google Maps, or HERE Maps. 
 
Data Format and Content  
There are no files to share; all experiments can be reproduced using only the contents of this paper. 
 
Data Access and Sharing  
The general public can access the data from this paper by repeating the experiments that we conducted, 
which merely require a random number generator. 
 
Reuse and Redistribution  
No restrictions to report.  
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Appendix
A Proof of Lemma 10
In order to reduce our use of subscripts, it will suffice to prove the following:
Claim 22. Let g be a non‐negative measurable function with bounded support S whose level sets
have Lebesgue measure zero and assume that

∫
S g is rational. For any ϵ > 0, there exists a step

function approximation ψ(x) =
∑

j aj1(x ∈ �j) of g such that
∫
S |g − ψ| ≤ ϵ, and

• ψ(x) = 0 whenever x /∈ S ,

• infx∈S g(x) < aj < supx∈S g(x) for all j,

• aj and Area(�j) are rational for all j, and

•
∫
S ψ =

∫
S g.

This proves Lemma 10 by substituting g 7→ f(x)1(x ∈ Si), S 7→ Si, and ϵ 7→ ϵ′.

Proof. For ease of notation, all integrals in this proof are taken over S. We will build a sequence
of functions σ → σ̃ → φ → φ̃ → ψ. Since simple functions are dense in L1(R2) (see e.g.
Theorem 2.4(ii) of [37]), we can approximate g with a simple function σ(x) =

∑
j bj1(x ∈ sj) so

that
∫
|g−σ| ≤ ϵ/8, where each sj is measurable. We can assume without loss of generality that

sj ⊂ S for all j (otherwise, just set sj 7→ sj ∩ S , which can only decrease the distance
∫
|g − σ|).

Let l = infx∈S g(x) and u = supx∈S g(x). Certainly, l Area(S) <
∫
g < uArea(S) because

the level sets of g have Lebesgue measure zero. We can assume without loss of generality that
l ≤ bj ≤ u for all j, since if bj < l, we can only improve our approximation

∫
|g − φ| by setting

bj 7→ l (and similarly for u). Let l′ > l and u′ < u be rational numbers sufficiently close to l′ and u′
respectively so that l′ Area(S) <

∫
g < u′ Area(S), (l′−l)Area(S) ≤ ϵ/8, and (u−u′)Area(S) ≤

ϵ/8. For each component coefficient bj of σ, define b̃j = min{max{bj, l′}, u′}. The function
σ̃(x) =

∑
j b̃j1(x ∈ sj) satisfies∫

|σ − σ̃| =
∑
j:bj<l′

(l′ − bj)Area(sj) +
∑
j:bj>u′

(bj − u′)Area(sj)

≤
∑
j:bj<l′

(l′ − l)Area(sj) +
∑
j:bj>u′

(u− u′)Area(sj)

≤ max{l′ − l, u− u′}Area(S) ≤ ϵ/8

and therefore
∫
|g − σ̃| ≤

∫
|g − σ|+

∫
|σ − σ̃| ≤ ϵ/4.

We can approximate each piece sj to arbitrary precision with a finite collection of rectangles
⊞j , all of which are contained in S; this is just the Lebesgue inner measure. If each collection ⊞j

is chosen so that Area(sj \⊞j) ≤ ϵ/(8b̃j#σ̃), where #σ̃ denotes the number of components of σ̃,
then the resulting step function φ =

∑
j b̃j1(x ∈ ⊞j) satisfies∫

|σ̃ − φ| =
∑
j

b̃j Area(sj \⊞j) ≤ ϵ/8

38



New continuous approximation models for passenger and freight transportation

and therefore
∫
|g − φ| ≤

∫
|g − σ̃|+

∫
|σ̃ − φ| ≤ 3ϵ/8.

For ease of notation, we re‐index the entries of φ and write φ(x) =
∑

j cj1(x ∈ �j), where
each�j is an individual rectangle (the identification of the sets⊞j is no longer of any relevance to
us). The penultimate step is to construct a further approximation φ̃(x) =

∑
j c̃j1(x ∈ �j) such

that c̃j and Area(�j) are rational. This is straightforward; choose δ > 0 sufficiently small so that
δ ≤ ϵ(16

∫
φ)−1 and (1−δ)cj > l′ for all j such that cj > l′. For each j, let�j ⊂ �j have rational

endpoints with Area(�j) ≥ (1− δ)Area(�j), and let c̃j be rational with cj ≥ c̃j ≥ (1− δ)cj . We
have ∫

|φ− φ̃| =
∑
j

cj Area(�j)− c̃j Area(�j)

≤
∑
j

cj Area(�j)− (1− δ)2cj Area(�j)

≤ 2δ
∑
j

cj Area(�j) = 2δ

∫
φ ≤ ϵ/8

and so the step function φ̃(x) =
∑

j c̃j1(x ∈ �j) satisfies
∫
|g − φ|+

∫
|φ− φ̃| ≤ ϵ/2.

The last step is to define ψt(x) = min{max{φ̃(x) + t, l′}, u′} (this simply amounts to shifting
φ̃ vertically by an amount t but truncating everything below l′ or above u′). Clearly, the function
ρ(t) =

∫
ψt is continuous and monotonically increasing, and there exist values t− and t+ such

that ρ(t−) <
∫
g < ρ(t+), and therefore ρ(t∗) =

∫
g for some t∗. Because c̃j and Area(�j) are

rational, we know that t∗ is rational as well, and therefore the step function ψ ≡ ψt∗ satisfies
all four bullet points that we required. The last step is to show that

∫
|φ̃ − ψ| ≤ ϵ/2, whence∫

|g − ψ| ≤ ϵ. Since φ̃ and ψ differ only on a vertical translation, we have∫
|φ̃− ψ| =

∣∣∣∣∫ (φ̃− ψ)

∣∣∣∣ = ∣∣∣∣∫ φ̃−
∫
ψ

∣∣∣∣ = ∣∣∣∣∫ φ̃−
∫
g

∣∣∣∣ ≤ ∫ |φ̃− g| ≤ ϵ/2

which completes the proof.
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